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ed graph neural networks for
carbon dioxide isotherm and adsorption prediction
in aluminum-substituted zeolites‡

Marko Petković, ac José-Manuel Vicent Luna, *a Elı�za Beate Dinne, a

Vlado Menkovski bc and Sof́ıa Calero *ac

Accurately predicting adsorption properties in nanoporous materials using deep learning models remains

a challenging task. This challenge becomes even more pronounced when attempting to generalize to

structures that were not part of the training data. In this work, we introduce SymGNN, a graph neural

network architecture that leverages material symmetries to improve adsorption property prediction. By

incorporating symmetry operations into the message-passing mechanism, our model enhances

parameter sharing across different zeolite topologies, leading to improved generalization. We evaluate

SymGNN on both interpolation and generalization tasks, using samples with varying Si/Al distributions

from 108 zeolite topologies for interpolation and assessing generalization on two unseen frameworks.

SymGNN successfully captures key adsorption trends, including the influence of both the framework and

aluminium distribution on CO2 adsorption. Furthermore, we apply our model to the characterization of

experimental adsorption isotherms, using a genetic algorithm to infer likely aluminium distributions. Our

results highlight the effectiveness of machine learning models trained on simulations for studying real

materials and suggest promising directions for fine-tuning with experimental data and generative

approaches for the inverse design of multifunctional nanomaterials.
1. Introduction

In recent years, there has been a noticeable increase in atmo-
spheric CO2 levels, with the corresponding rise in greenhouse
effects, highlighting the pressing need for effective carbon
mitigation strategies. Carbon capture emerges as a viable
approach to address this issue,1 and nanoporous materials,
specically zeolites, stand out as promising candidates.2

Zeolites exhibit a notable capacity for gas adsorption, making
them well-suited for reducing carbon levels in the atmosphere.
This capacity is commonly analyzed through adsorption
artment of Applied Physics and Science

logy, Eindhoven, Netherlands. E-mail: j.

ics and Computer Science, Eindhoven

rlands

s Institute, Eindhoven University of

(ESI) available: Fig. S1: aluminium
umber of samples per zeolite topology;
idation; Fig. S4: RUPTURA validation;
neralization experiment for MEL, MFI,
n parity plots from the generalization
MOR; Table S1: reduced simulation
meters; Table S3: error from the
FI, TON and MOR (PDF). See DOI:

of Chemistry 2025
isotherms, which describe how the amount of CO2 adsorbed
varies with pressure and provide insights into the material's
efficiency and suitability for carbon capture. Their appeal
extends further with attributes such as high thermal stability3

and cost-effectiveness in synthesis when compared to other
adsorbents.4

Additionally, the extensive variety of synthesizable zeolite
topologies,5 each characterized by distinct pore sizes and proper-
ties, adds a layer of versatility to their application. Within a zeolite
topology, there are multiple possible congurations, as a result of
different silicon and aluminium atom arrangements. These
congurations can have different CO2 adsorption properties,
where the overall trend is that an increase in aluminium atoms
leads to better adsorption properties.6 However, for the same Si/Al
ratio there can still be a considerable variance in properties such
as the heat of adsorption and the adsorption isotherms.

Due to the large conguration space of possible zeolite
topologies and Si/Al congurations, experimentally studying each
conguration to nd structures with desirable properties is
impossible. In this context, simulations provide a powerful
alternative, enabling the prediction of adsorption properties
without the need for extensive synthesis and testing.7–12 However,
certain computational methods, particularly classical simula-
tions such as Grand Canonical Monte Carlo (GCMC), require
sampling at multiple pressures to generate adsorption isotherms
and fully characterize a material's adsorption behavior. This can
J. Mater. Chem. A
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be computationally expensive, making it challenging to effi-
ciently screen large numbers of candidate structures.

To this end, deep learning (DL) can be a powerful tool for
accelerating the discovery and characterization of materials.13–16

For predicting the properties of crystals, several graph neural
network (GNN) architectures17–21 and transformer-based
models22,23 have been proposed, which operate on atomic
types and positions within the unit cell. In addition, generative
models have been increasingly explored for the design of novel
materials, allowing the discovery of structures with targeted
properties.24–27 Furthermore, various DL approaches have been
specically tailored for nanoporous materials, such as zeolites
and metal–organic frameworks (MOFs). Some of these methods
focus on predicting adsorption behavior across different
adsorbates,28–33 while others aim to design new materials with
optimized adsorption and structural properties.34,35

Most of these models explicitly respect and leverage the
symmetries present in a crystal by being invariant or equivariant
to the Euclidean group E(3), as well as the periodic boundary
conditions. Each crystal has an associated space group (SG),
which is a subgroup of E(3) and determines the equivalent
atomic positions within the unit cell. By incorporating this
information, geometric constraints can be directly embedded
into the neural network architecture. Although several
approaches for predicting crystal properties account for space
group information, they either neglect symmetries at the unit
cell level36 or lack generalizability across materials with
different topologies.37 These approaches introduce separate
parameters in the GNN for the node and message update
functions for nodes/edges, which are considered symmetrically
equivalent. Complementary to these efforts, Li et al.38 recently
demonstrated that incorporating quantum mechanical
descriptors into GNNs can enhance generalizability in chemical
property prediction, highlighting the broader value of embed-
ding physical principles into model architectures.

In this work, we introduce SymGNN, a symmetry-informed
graph neural network architecture designed to incorporate
crystal symmetries into message passing. By leveraging
symmetry operations, our model enables more effective
parameter sharing across different zeolite topologies, leading to
improved generalization. We demonstrate that SymGNN
successfully predicts both adsorption isotherms and heats of
adsorption for unseen topologies, capturing key adsorption
trends by effectively modeling the inuence of both the
framework structure and the Si/Al distribution on adsorption
properties. Finally, we show that our model can be applied to
characterize experimental adsorption isotherms by inferring
structural properties such as the Si/Al ratio, potentially
enhancing materials characterization and analysis.

2. Crystal symmetries
2.1. Unit cell

In crystalline materials, the arrangement of atoms follows
a repeating periodic structure, which is described using the
Bravais lattice L. A Bravais lattice denes the periodic
arrangement of points in space, and the structure of the entire
J. Mater. Chem. A
crystal can be generated by translating these points along the
lattice vectors. Eqn (1) describes the Bravais lattice, where ai are
the linearly independent basis vectors of the lattice and mi are
their integer multiples. This denes the periodicity of the lattice
in a three-dimensional space.

L ¼
(X3

i

miai j mi˛ℤ

)
(1)

From the Bravais lattice, we can dene the unit cell U, which
represents the smallest repeating unit in the crystal structure.
The unit cell can be dened using the basis vectors of the crystal
lattice, as shown in eqn (2). Here, xi are the fractional coordi-
nates of the points in space belonging to the unit cell.

U ¼
(X3

i

xiai j 0# xi\1

)
(2)

The set of atoms S contained within a unit cell is dened by
eqn (3), in which Zi is the atomic number, and xi is the position
in fractional coordinates of an atom. By combining the Bravais
lattice and the set of atoms in the unit cell, we can fully describe
the crystal structure.

S = {(Zi,xi) j xi˛U} (3)

2.2. Space group

Crystals exhibit a high degree of symmetry, which plays a crucial
role in determining their physical properties. The symmetry of
a crystal can be described mathematically by a space group G. A
space group encompasses the full set of symmetry operations
that can be applied to the crystal, leaving it invariant. As such, it
captures all of the rotational, reectional, and translational
symmetries of the structure.

Each element of the space group is a group action g. Each
group action consists of a tuple of a linear transformation W
and a translation vector t. The elements of a space group act on
a position x as shown in eqn (4).

g$x = Wx + t (4)

One important property of space groups is their closure
under multiplication. This means that when two elements of
the space group are multiplied, the result is another element of
the same space group. This closure property is described by eqn
(5) and (6).

W0 = W1W2 (5)

t0 = W2t1 + t2 (6)

2.3. Group orbit

The orbit of an atom is the set of all positions which the atom
can be mapped to by elements of the space group, and can be
This journal is © The Royal Society of Chemistry 2025
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formally dened using eqn (7). Atoms that belong to the same
orbit are considered to be equivalent under the space group
symmetry. The cardinality (or size) of an atom's orbit depends
on its position within the crystal. Specically, an atom located
in the least symmetric position will have an orbit that includes
all the space group operations, meaning its orbit will have the
same cardinality as the space group. In contrast, an atom in
a more symmetric position will have a smaller orbit, as some
space group operations may map the atom to equivalent posi-
tions within the unit cell, reducing the total number of distinct
positions in the orbit.

Orbit(x) = {g$x j g˛G} (7)

Next, we will dene the set of operations that can map each
position in an orbit to every other position, except the original
position. For orbits with the same cardinality as the space
group, this set will coincide with the full set of space group
operations, minus the identity operation. However, for smaller
orbits (those with fewer positions), some of the space group
operations may be redundant as they do not contribute to
mapping positions within the orbit. In such cases, the set of
operations that maps one position to another will be a proper
subset of the full space group. Mathematically, this set of
operations is dened in eqn (8).

Ops(x) = {g ˛G j g$x ˛ Orbit(x) ^g$x s x} (8)

2.4. Generators

To dene the generators of the set of operations associated with
an orbit, we need to identify the minimal set of operations that,
when combined (with repetition) through multiplication, can
generate all other operations that map positions within the
orbit. These generators are crucial because they form the core
operations that preserve the symmetry of the crystal while
minimizing redundancy.

Mathematically, we dene the set of generators, Gen(Ops(x)),
as the minimal subset of operations (eqn (9)) such that every
operation in Ops(x) can be expressed as a product of elements
from this set (eqn (10)). This set of generators can be thought of
as the building blocks for the full set of orbit operations.

Gen(Ops(x)) 4 Ops(x) (9)

hGen(Ops(x))i = Ops(x) (10)

In this equation, hSi denotes the subgroup generated by the
set S. As such, every element g˛Ops(x) can be dened using the
generators, as shown in eqn (11).

g ¼ gn1i gn22 .g
nk
k ; ni˛Z; g1; g2;.; gk˛GenðOpsðxÞÞ (11)

However, there can still be multiple minimal yet distinct sets
of generators for a given set of symmetry operations. For
example, in the cyclic group of order 4 (C4), both a 90-degree
rotation and a 270-degree rotation can independently generate
This journal is © The Royal Society of Chemistry 2025
all other elements of C4. To ensure a consistent choice of
generators for a given position x, we adopt the generator sets
dened for different space groups as provided by the Bilbao
Crystallographic Server (BCS).39
3. Methods
3.1. Zeolite frameworks

For this work, we used 108 different zeolite topologies with
varying structural features. For each topology, varying congu-
rations of silicon and aluminium atoms were generated, with
the lowest Si/Al ratio being 3. The different congurations for
each topology were generated using the ZEORAN6 program and
the PORRAN program, which is a Python extension of ZEORAN.
These programs make use of four different algorithms to place
aluminium atoms in an all-silica zeolite. These algorithms place
the aluminium atoms either in clusters, chains, uniformly
(maximum entropy) or randomly. Depending on the algorithm,
the resulting structures may violate the Löwenstein rule (Al–O–
Al linkages), which recent studies have shown can occur in
practice.40–43 As demonstrated in Romero-Marimon et al.,6 the
different aluminium placement algorithms lead to variations in
properties such as the heat of adsorption (HOA). While some
generated structures may not be (commonly) observed experi-
mentally, their inclusion in the dataset can help a model learn
a broader range of congurations, potentially improving
robustness and generalization. A more detailed description of
the algorithms can be found in the ESI.‡ Si/Al congurations for
theMOR, RHO,MFI and ITW zeolite topologies were taken from
Petković et al.30 For the other structures, atomic coordinates for
pure silica were taken from IZA,44 following which Si/Al
congurations were generated using the aforementioned algo-
rithms. In total, 27 648 structures were generated.
3.2. Computational details

In this study, we investigated the CO2 adsorption isotherm and
heat of adsorption (−DH). These properties can give us insight
into the CO2 adsorption in zeolites. The heat of adsorption can
give an indication about the interaction strength between the
zeolite and the adsorbate, whereas the isotherm can tell us
about the adsorption capacity of a zeolite at different pressures.
To calculate the heat of adsorption, simulations using the
Widom particle insertion method in the canonical ensemble
(NVT) were performed45 for 200 000 cycles. For the CO2

adsorption isotherms, simulations were carried out using the
grand canonical ensemble (mVT), where the loading was calcu-
lated for a range of pressures between 0.01 and 10 000 kPA.

The isotherms were calculated for the MOR, MFI, MEL, TON,
and ITW zeolites. These frameworks were selected for isotherm
calculations due to the availability of extensive heat of adsorp-
tion data from previous studies,30,37 as well as their represen-
tation of diverse topological characteristics. To obtain an
adsorption isotherm for a single Si/Al conguration of a zeolite,
multiple simulations need to be carried out. To generate a large
dataset of adsorption isotherms efficiently, some simulations
were sped up by using a reduced number of unit cells,
J. Mater. Chem. A
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Fig. 2 Distribution of loading values at each simulated pressure.
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depending on the zeolite. We validated this approximation by
comparing isotherms varying the Si/Al ratio using full (i.e., the
number of unit cells ensures that the simulation box is longer
than twice the cutoff in each direction) and reduced simulation
boxes of each zeolite. We found that the number of unit cells
can be reduced for MOR, MFI, and MEL, without compromising
the adsorption results. However, using the reduced simulation
box, we found more uctuations for TON and ITW. Therefore,
we use the full simulation box for these two zeolites. The full
and reduced number of unit cells and the verication procedure
and results of the verication can be found in the ESI.‡ Finally,
we tted the 2-site Langmuir-Freundlich model (eqn (12)) using
RUPTURA,46 which can smooth out possible uctuations as
a consequence of using reduced simulation boxes.

qðpÞ ¼
X2

i

qsati

bip
ni

1þ bipni
(12)

The RASPA soware47 was used to carry out all the simula-
tions. The force eld and point charges used for the simulations
were taken from Romero-Marimon et al.6 It extends the force
eld introduced in Garcia-Sanchez et al.,48 by accounting for
atoms breaking the Löwenstein rule. For each zeolite congu-
ration, sodium cations were introduced to balance the differ-
ence in charge as a result of the aluminium substitutions. The
simulations were carried out at room temperature (298 K).
3.3. Dataset

In Fig. 1, the relationship between the proportion of aluminium
atoms and the heat of adsorption is visualized. Overall, there is
a slight trend for an increasing heat of adsorption with a higher
aluminium proportion. However, there is still a signicant
dependence of the heat of adsorption on both the framework
type, as well as the distribution of aluminium atoms within the
framework. Sodium cations have been shown to reside close to
the aluminium framework atoms,6 and can thus affect the
Fig. 1 Heat of adsorption for all datapoints as a function of the
aluminium proportion. Note that the color is in log-scale.

J. Mater. Chem. A
strength of adsorption sites. Furthermore, the geometry of the
framework pores also plays a role in the adsorption strength.

Similarly, the behaviour of the adsorption isotherms is also
impacted by the aluminium distribution and the geometry of
the material. As can be seen in Fig. 2, the shape of the isotherms
can vary greatly between topologies, showing how the geometry
of the pores plays a role in the isotherm. Furthermore, there is
a signicant variance in the isotherms for the same zeolite
topology, suggesting that the distribution and ratio of
aluminium atoms plays a role. This can be seen in Fig. 3, where
the loading for a given pressure and aluminium proportion is
shown for each zeolite topology. In general, when increasing the
pressure, the loading rst increases for structures with a higher
aluminium proportion. However, at higher pressures, these
structures tend to reach saturation earlier, whereas structures
with a lower aluminium proportion tend to achieve a higher
loading.

Using this data, we dene two different splits of the data. In
the rst split, the generalization split, the model is evaluated on
the ITW and CHA structures, and trained on the remaining
zeolites. As such, the model will not have seen the structure of
ITW and CHA. Therefore, we can use this test set to evaluate
how well the model has learned how the structure and distri-
bution of aluminium atoms of a zeolite impact its adsorption
properties. In the second split, interpolation split, the data is
split in training, validation and testing set. For each zeolite, the
different congurations are split in an 80 : 10 : 10 between the
three sets. Using this test set, we can evaluate how well the
model understands the effect of the aluminium distribution
within each topology.

In our dataset, there is a large class imbalance, with MOR
having 4300 samples present in the dataset, and EUO having
only 78. To avoid the model overtting on more prevalent
structures, we over- and under-sample the congurations of
different zeolites, to ensure the model has seen 250 samples per
zeolite during an epoch. The number of structures for each
zeolite topology can be found in the ESI.‡
4. Symmetry-informed graph neural
networks

Several existing GNN architectures36,37 have leveraged crystal
symmetries to enhance their performance. These models make
use of symmetry-based parameter sharing, where unique node
and message update functions are assigned to each set of
This journal is © The Royal Society of Chemistry 2025
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Fig. 3 Loading values for all datapoints with isotherms as a function of the aluminium proportion, at varying pressures.
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equivalent nodes and edges that belong to the same orbit. This
approach increases the model's expressiveness, as a distinct set
of parameters is learned for each (abstract) spatial relationship.
This is analogous to how a convolutional neural network learns
separate parameters for each pixel within a kernel.

However, when trained on a specic set of topologies, these
models generally cannot be transferred to a new topology due to
the lack of a clear mapping between sets of atomic orbits in
different crystals. In Kaba and Ravanbakhsh,36 this challenge
was addressed by dening symmetries between unit cells,
allowing themodel to be fully transferable. This was achieved by
constructing a 2 × 2 × 2 supercell, which enabled the model to
recognize equivalent relationships across unit cells. However,
symmetries within the unit cell itself were not explicitly lever-
aged, meaning the approach does not take full advantage of all
available symmetry information. As a result, while the model
generalizes across different crystal topologies, it may not be as
efficient or expressive as a model that fully incorporates intra-
unit-cell symmetries. Furthermore, the use of a supercell
makes training signicantly more challenging, as porous
materials like zeolites oen contain a very large number of
atoms, making the process nearly impossible with standard
computational resources.
4.1. Symmetry-informed message passing

To address these limitations, we introduce symmetry-informed
message passing, which explicitly incorporates the generators
of the set of symmetry operations into the node update func-
tion. By doing so, the model is directly informed about how
symmetries act within a given structure, allowing it to distin-
guish between equivalent and non-equivalent atomic environ-
ments in a way that generalizes across different topologies.
Unlike previous approaches, which either lack transferability or
fail to fully utilize symmetry information, our approach ensures
that the model can recognize and leverage shared symmetries
while maintaining the exibility to adapt to new crystal
structures.

The overall message-passing scheme is dened in eqn
(13)–(15). Here, hi

l represents the embedding of node i at layer l,
while eij denotes the embedding of the edge connecting nodes i
and j. The set of generators associated with node i, denoted as
Gi, encodes the local symmetry properties of the structure. Each
message mij

l is computed from neighboring nodes and edges
using the message function fe, while node embeddings are
updated through fh, the node update function. Unlike standard
This journal is © The Royal Society of Chemistry 2025
message-passing approaches, fh is explicitly conditioned on Gi,
allowing it to capture symmetry-aware representations and
adapt its updates based on the geometric context of each node.

mij
l = fe(hi

l,hj
l,eij) (13)

mi
l ¼ 1

jN ij
X
j˛N i

mij
l (14)

hi
l+1 = fh(hi

l,mi
ljGi) (15)

To condition the node update layer on the generators, we
utilize feature-wise linear modulation (FiLM),49 as described in
eqn (16) and (17). In the rst step, we apply a standard weight
multiplication for the node update. Then, we introduce g and b,
which allow the model to adjust the feature values based on the
symmetry information of the node. These parameters act as
dynamic scaling factors, enabling the model to emphasize or
suppress features according to the symmetries inherent in the
crystal structure. To compute g and b, we embed the set of
generators using a DeepSets-inspired model.50 Each element of
the set of generators is represented by attening its rotation
matrix and concatenating it with the corresponding translation
vector. This approach captures the relationships between the
generators in a permutation-invariant manner and provides the
necessary modulating parameters for the node update.

gi,bi = DeepSets(Gi) (16)

fh(hi
l,mi

ljGi) = gi�W(hi
lkmi

l) + bi (17)

Fig. 4 compares the utilization of symmetries in symmetry-
informed message passing and symmetry-based parameter
sharing. While symmetry-based parameter sharing introduces
a greater number of distinct parameters, these assignments are
specic to each topology and cannot be transferred between
zeolites. Consequently, a new model must be trained for each
topology. In contrast, symmetry-informed message passing
enables certain generator sets to be shared across different
zeolites. Furthermore, even when generator sets differ, they may
still contain common symmetry operations, further enhancing
parameter transferability.
4.2. Model architecture

To address the challenges of predicting adsorption properties in
zeolites, we introduce SymGNN, a graph neural network that
J. Mater. Chem. A
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Fig. 4 Comparison of parameter sharing in symmetry-informed message passing (top row) and symmetry-based parameter sharing (bottom
row) across five different zeolite topologies. In the top row, nodes with the same generators are assigned the same color, while in the bottom
row, nodes with the same node-update parameters (belonging to the same orbit) share a color. Notably, while symmetry-based parameter
sharing results in more distinct colors, symmetry-informed message passing allows certain generator sets to be shared across different zeolites,
enabling better transferability.
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makes use of symmetry-informed message passing. This
approach allows the model to efficiently predict the CO2 heat of
adsorption and adsorption isotherms across different zeolite
structures by leveraging the inherent symmetries within the
zeolite topologies.

Since the adsorption isotherm is a function rather than
a scalar, and is monotonically increasing with pressure, our
model does not predict the loading at a given pressure directly.
Instead, it predicts the derivative of the loading with respect to
the pressure. Furthermore, rather than predicting the derivative
of the loading at discrete pressures, our model predicts the
isotherm function itself, similar to the approach used in neural
operators. The model takes the nal hidden state of the GNN,
concatenates it with the pressure and predicted heat of
adsorption, and passes it through a multi-layer perceptron
(MLP) to produce the loading derivative predictions. To obtain
the full isotherm for a given structure, the MLP is evaluated at
different pressures. The resulting loading derivatives are then
integrated to obtain the true loading.§ The precision of the
predicted isotherm can be controlled by adjusting the number
of pressures at which the MLP is evaluated.

A full overview of the SymGNN architecture is provided in
Fig. 5. The model consists of 5 symmetry-informed message
passing layers, each with hidden states of size 64. Nodes are
§ For numerical stability, both the calculation of the loading derivative and the
integration process are performed with respect to the logarithm of the pressure.

J. Mater. Chem. A
embedded using a single linear layer, while edges are
embedded using radial basis functions (RBF)18 with 64 bins,
followed by a linear layer. Messages are self-importance
weighted, and aggregated using mean pooling. All linear
layers in the message and node update steps are followed by
layer normalization.51 The DeepSets modules, which provide
the parameters for FiLM in the node update, have an internal
hidden state of 32. Throughout the model, the ELU activation
function is used. To predict both the heat of adsorption and the
loading derivative, mean aggregation is used to obtain a graph-
level representation, as adsorption properties are independent
of the number of atoms in the unit cell.
4.3. Experiments

As described in Section 3.3, we use two dataset splits: general-
ization and interpolation. In the generalization split, the model
is trained on all topologies except ITW and CHA, which are
reserved for evaluation. This experiment assesses how well the
model can learn the inuence of different zeolite frameworks
with varying topological features. ITW has a channel-like
structure, while CHA contains cages. The interpolation split,
on the other hand, evaluates the model's ability to capture the
effect of different aluminium distributions on CO2 adsorption.
In both cases, we compare SymGNN against a standard GNN
with identical hyperparameters, where the FiLM layer is
replaced by a conventional linear layer. In addition, we evaluate
our models against ALIGNN20 and Matformer,22 adapting both
This journal is © The Royal Society of Chemistry 2025
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architectures to also predict the isotherms by replacing their
output modules with the same one used in our models (Fig. 5).
Due to the large size of zeolite graphs, we reduce the hidden
dimensions of these models relative to their default congura-
tions. A detailed summary of all model hyperparameters is
provided in the ESI.‡

All models are trained for 400 epochs, using the AdamW52

optimizer with default weights and a batch size of 128. The
models were trained using mean-squared error loss for both the
heat of adsorption and loading derivative. During training of
GNN and SymGNN, edge dropout53 with a probability of 0.5 is
used to regularize the network. Due to the limited amount of
isotherm data, the network is initially trained using only the
heat of adsorption objective for the rst 100 epochs. This
approach mimics pre-training strategies used in elds like
natural language processing (NLP), where models rst learn
general patterns before ne-tuning on specic tasks. This phase
allows the model to establish the relationship between
adsorption properties and framework geometry. In the
following 25 epochs, the coefficient for the loading derivative
loss is linearly increased from 0 to 1. For loading predictions, we
evaluate at 100 logarithmically spaced pressures, ranging from
0.01 kPa to 10 000 kPa. A random window of 25 pressures for
each structure is used to calculate the loss to reduce overtting.

To construct a graph representation of a zeolite, we use
a binary node encoding, where silicon is represented as 0 and
Fig. 5 The SymGNN architecture. , denotes the layer input, k denotes
activation function, s is the sigmoid activation and sp is the Softplus activa
following which symmetry-informed message passing takes places. In t
adsorption (y). By combining the final hidden state, the predicted heat o
loading.

This journal is © The Royal Society of Chemistry 2025
aluminum as 1. This approach is similar to the one used in
other crystal GNNs, where each atomic species is assigned
a specic embedding to distinguish them in the graph. Undi-
rected edges are drawn between atoms within a radius of 8 Å,
while ensuring periodic boundary conditions are respected.
Each edge is further annotated with the Euclidean distance
between the connected atoms.

We calculate the generators for each atomic position within
a given topology. Since the goal is to leverage symmetry opera-
tions to inform the GNN about the crystal geometry, atom types
are not considered in the calculation. Including them would
cause most structures to belong to the least symmetric space
group, which would remove any geometric information the
generators carry. To determine the generators, we rst obtain
space group information from the GENPOS program of BCS,39

then algorithmically identify the generators for each atomic
orbit within the topology.

4.4. Structure characterization

In experimental settings, the precise atomic structure of
a zeolite is oen unknown. Determining key structural prop-
erties, such as the Si/Al ratio or the specic atomic arrangement
within the unit cell, can provide valuable insights into a mate-
rial's adsorption behavior. To address this, we employ an
optimization-based approach to infer likely structures based on
adsorption data.
concatenation and � denotes elementwise multiplication. f is the ELU
tion. In themodel, atoms and distances between atoms are embedded,
he output module, the final hidden state is used to predict the heat of
f adsorption and the pressure, the model predicts the derivative of the
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Table 1 Performance of ALIGNN, Matformer, SymGNN and a regular
GNN for both the generalization and interpolation tasks

Task Model

Heat of
adsorption Isotherm

Isotherm
sat.

MAE MSE MAE MSE MAE MSE

Generalization ALIGNN 2.07 7.20 0.23 0.10 0.32 0.15
Matformer 2.46 9.45 0.38 0.35 0.95 1.34
GNN 2.17 7.39 0.33 0.19 0.76 0.63
SymGNN 1.44 3.94 0.31 0.16 0.16 0.04

Interpolation ALIGNN 3.01 15.13 0.16 0.08 0.29 0.21
Matformer 1.18 2.95 0.09 0.02 0.14 0.03
GNN 1.45 3.96 0.07 0.01 0.12 0.02
SymGNN 1.36 3.59 0.07 0.01 0.09 0.01
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We adopt a genetic algorithm (GA)-based approach, where
the genes represent the Si and Al atom assignments within the
framework.30 Since we work with xed framework topologies
and do not optimize atomic positions, our GA operates exclu-
sively on the distribution of Al and Si atoms within the frame-
work. The algorithm starts with an initial population of 200
candidate structures, initialized randomly. At each iteration,
the top 25 structures (elite selection) are preserved, while
mutations are applied to both the best 25 and the second-best
25 structures, resulting in 50 structures undergoing modica-
tions per generation. Mutations include local swaps of approx-
imately 5% of the atoms, full permutations of the atom types,
and changes that add or remove a single Al atom. The pop-
ulation is ltered to remove symmetrically equivalent structures
(structures which can be transformed into one another by
a symmetry operation from the space group of the topology),
with a 90% probability, allowing high-tness congurations to
appear multiple times while still limiting redundancy. The
population is then replenished to 200 candidates to maintain
diversity. We do not include crossover operations, as our gene
representation, where each gene directly corresponds to an Al
atom, does not benet from traditional crossover mechanisms.
In this context, crossover would largely resemble random
resampling, a role already fullled by our existing mutation
strategies. In total, the GA runs for 50 generations, following
which we extract the 25 best performing structures.

The tness function follows the approach from Petković
et al.,30 where candidates are evaluated based on their agree-
ment with the experimental isotherm. In addition, the tness
function penalizes unnecessarily introducing aluminium
atoms. However, to mitigate potential biases in the model, we
introduce an additional term that explicitly evaluates how well
the predicted isotherm captures the overall shape of the
experimental data. This adjustment helps rene the search
towards physically meaningful solutions.

To assess the model's performance in structure character-
ization, we apply this method to several experimental isotherms
from the literature. Specically, we consider two MFI,54 two
MOR,55,56 and one LTA4A57 zeolite, with varying Si/Al ratios. We
analyze how well the algorithm can recover the correct struc-
tural parameters from the adsorption data. For this experiment,
we used the SymGNN model trained on the interpolation data
split.
5. Results
5.1. Model performance

To evaluate the performance of the different models in both
interpolation and generalization experiments, we calculate the
mean absolute error (MAE) and mean squared error (MSE)
across various quantities. These include the heat of adsorption,
the full adsorption isotherm, and the isotherm near saturation
pressure (the nal 10% of the pressure range). The last metric
provides insight into how well the model captures variations in
loading caused by the framework structure and aluminium
distribution. These metrics are summarized in Table 1.
J. Mater. Chem. A
In the interpolation experiment, we observe that ALIGNN
performs poorly, likely due to its limited scalability to larger
graphs. Matformer achieves higher accuracy than the GNN-
based models for predicting the heat of adsorption but under-
performs in the isotherm prediction. SymGNN and the regular
GNN show more balanced performance across both properties.
Since all models have been trained on every topology present in
the test set, the focus shis away from the inuence of the
zeolite framework and more toward learning how aluminium
distribution affects adsorption. As a result, explicitly modeling
symmetries provides limited additional benet in this setting.
As shown in Fig. 6, SymGNN performs slightly better than the
regular GNN in both heat of adsorption and isotherm
predictions.

In contrast, the generalization experiment reveals a decline
in performance for all models, especially in terms of full
isotherm prediction, where errors increase substantially.
However, SymGNN outperforms all baselines across tasks,
achieving the lowest mean absolute and mean squared errors
for both heat of adsorption and isotherm predictions. Notably,
it maintains high accuracy in the saturation region, with
a substantial margin over the other models. This indicates that
incorporating symmetry information enables better general-
ization to unseen topologies. To further analyze this, we
compare the distributions of the true and predicted isotherms
for both SymGNN and the standard GNN, as shown in Fig. 7a
and b. The symmetry-informed model captures the overall
behavior of the isotherm but increases the loading too early. In
contrast, the standard graph neural network predicts isotherms
with little variance, producing almost the same isotherm for
each structure and severely underestimates the loading at
higher pressures. This reduced variability can lead to lower
average errors, but at the cost of missing the structure-specic
features that are critical for realistic adsorption modeling.

We further evaluate the GNN and SymGNN in the general-
ization experiment on MOR, MFI, MEL, and ITW, as presented
in the ESI.‡ Both models maintain good predictive performance
for isotherms across most structures, but do not always capture
the full inuence of topology on the heat of adsorption. In
particular, we observe a drop in isotherm accuracy for
This journal is © The Royal Society of Chemistry 2025
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Fig. 6 Comparison of SymGNN and regular GNN on the interpolation experiment. (a–e) True adsorption isotherms (black), SymGNN predicted
isotherms (blue) and GNN predicted isotherms (red), for a high Si/Al ratio structure (dashed) and low Si/Al ratio structure (dotted) for each
topology. (f and g) Parity plots for the heat of adsorption prediction. (h and i) Parity plots for the loading predictions. For all parity plots (f–i), darker
blue indicates a higher count, and increases in log-scale.

Fig. 7 Comparison of SymGNN and regular GNN on the generalization experiment. (a and b) True loading (black) distribution at all simulated
pressures compared with loading distribution obtained from SymGNN (blue) and GNN (red). (c–e) True adsorption isotherms (black), SymGNN
predicted isotherms (blue) and GNN predicted isotherms (red) for ITW structures with varying Si/Al ratios. (f and g) Parity plots for the heat of
adsorption prediction. (h and i) Parity plots for the loading predictions. For all parity plots (f–i), darker blue indicates a higher count, and increases
in log-scale.

This journal is © The Royal Society of Chemistry 2025 J. Mater. Chem. A
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Table 2 Comparison of model efficiency. Training time is averaged
per epoch for the interpolation experiment. Inference time is averaged
for a batch of 32 zeolite structures. All experiments were run on Nvidia
A100 GPUs

Model
Parameters
(K)

Train/epoch
(s)

Inference
(ms)

ALIGNN 790 212 338
Matformer 702 85 120
GNN 156 11 79
SymGNN 190 12 82
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frameworks like TON, whose adsorption behavior differs
substantially from the training distribution. These results
indicate that while the models generalize well overall, capturing
subtle topological effects may require additional training data
or further architectural improvements.

Parity plots for the heat of adsorption are shown in Fig. 7f
and g. For the SymGNN, we observe a slight overestimation of
the heat of adsorption for lower values, whereas the regular
GNN tends to underestimate lower values and overestimate
higher values. This behavior may be attributed to the distribu-
tion of training data, where lower heat of adsorption values are
underrepresented, potentially leading to underprediction by the
model in those regions. Despite this, SymGNN successfully
captures the underlying trends and generalizes well, effectively
learning the inuence of unseen zeolite topologies on the heat
of adsorption.

In the parity plots for loading (Fig. 7h and i), a distinct trend
emerges. SymGNN primarily overestimates the loading,
whereas the regular GNN overestimates lower loadings but
underestimates higher ones. Examining the isotherm predic-
tions for ITW structures with varying Si/Al ratios (Fig. 7c–e), we
nd that SymGNN accurately captures the overall trend and the
correct loading near saturation pressure. In contrast, the
regular GNN increases the loading too early and fails to reach
the correct saturation pressure. Additionally, SymGNN better
captures the inuence of aluminium distribution across
different pressures (Fig. 8), accurately modeling both the initial
increase and subsequent decrease in loading, whereas the
regular GNN only captures the decreasing trend. Overall, these
results demonstrate that incorporating symmetry improves
generalization to unseen zeolite structures, particularly in
capturing adsorption trends across different frameworks,
despite the model being trained on isotherms from only four
other topologies.

Table 2 summarizes the computational efficiency of the
evaluated models. While ALIGNN and Matformer are signi-
cantly more expensive in both training and inference time, the
regular GNN and SymGNN offer substantially faster runtimes.
SymGNN introduces only a small overhead compared to the
regular GNN, with a marginal increase in training and inference
time, despite incorporating symmetry-aware message passing.
The generator calculation required for SymGNN adds approxi-
mately 100 ms per topology, but this step is performed only
Fig. 8 True (black) and predicted distribution of loading values as
a function of the aluminium proportion for the symmetry informed
(blue) and regular GNN (red) at different pressures.

J. Mater. Chem. A
once and can be further optimized. Overall, SymGNN provides
a favorable trade-off between computational cost and improved
accuracy, particularly in generalization tasks.
5.2. Symmetry utilization analysis

While incorporating symmetry information into the model
improves its performance, it is essential to determine whether
the model has genuinely learned to leverage these symmetries
or if the observed improvements arise from other factors. To
this end, we examine whether the generator embedding
network assigns distinct g and b parameters to different sets of
generators, indicating that the model differentiates between
symmetry elements. Additionally, we analyze how the model's
predictions change when substituting the true generators of
atoms in a zeolite with an alternative set, testing whether the
learned symmetry representations meaningfully inuence
adsorption behavior. These experiments are carried out on the
SymGNN model used in the generalization setting.

In total, there are 61 unique sets of generators across all
nodes in the dataset. To examine whether the model has
learned distinct g and b parameters for each unique set of
generators, we calculate the cosine similarity between these
parameters for different generators. Additionally, to assess
whether the model has learned to associate similar generator
sets with similar parameters, we dene two distinct sets of
generator pairs. The rst set contains pairs (i, j), where Gi 3 Gj

and jGjj − jGij = 1, meaning one set of generators includes all
elements of the other set, plus one additional generator. The
second set contains pairs where this condition does not hold.
Fig. 9 Cosine similarity for g and b parameters from similar generators
(blue) and different generators (orange), for each message passing
layer.

This journal is © The Royal Society of Chemistry 2025
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Fig. 10 Distribution of evaluation metrics when replacing true
generators of an orbit. The vertical red line indicates model perfor-
mance when the original (correct) generators are used. Note that the
x-axis is in log-scale.

Fig. 11 Aluminium distribution of experimental structures (dashed
line) and aluminium distribution predicted by the genetic algorithm
(histogram). Structures included are MFI with a Si/Al ratio of 95 (blue)
and a Si/Al ratio of 31 (orange), MORwith a Si/Al ratio of 5.8 (green) and
a Si/Al ratio of 6.5 (red) and LTA with a Si/Al ratio of 1 (purple).

Paper Journal of Materials Chemistry A

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

6.
10

.2
02

5 
18

:3
8:

06
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
As shown in Fig. 9, the model has indeed learned distinct g
and b parameters for the different sets of generators across all
layers of the network. From the plot, we observe that the
parameters of similar generators exhibit higher cosine simi-
larity compared to dissimilar ones, which is also statistically
conrmed by the signicant difference in cosine similarity
between similar and different generators. This indicates that
the model has learned a meaningful relationship between the
generators, associating similar ones with similar parameter
values.

To analyze whether SymGNN bases its predictions on the
geometric information provided by the generators, we replace
the generators of the nodes in the test set (ITW and CHA), with
the generators of nodes from a different zeolite. More speci-
cally, for each orbit of nodes in both topologies, we replace their
generators with the same generator from a different zeolite. For
each generator replacement, we evaluate the model perfor-
mance on the modied test set.

In Fig. 10, we observe how the evaluation metrics are
impacted when an incorrect set of generators is used for a given
topology. Overall, the performance degrades signicantly,
rendering the model nearly unusable. While there are a few
instances where the performance is marginally better, this is
likely due to the use of a generator set that is similar to the
correct one. In the full isotherm, there are more incorrect
generators for which the error is lower, but this can be attrib-
uted to an inherent bias in our network when predicting
isotherms, as themodel performs notably better near saturation
pressure. From this, we can conclude that the model indeed
leverages the symmetries in the zeolite structures.
5.3. Structure characterization

To assess our model's performance in structure characteriza-
tion, we examine the aluminium distributions in the generated
structures. Fig. 11 compares the predicted distribution of
aluminium atoms per unit cell from our genetic algorithm with
the true distribution. By generating a range of possible
aluminium arrangements, our approach provides additional
insight into the material, as real crystals oen exhibit variations
in their unit cell congurations. In the case of both MFI
This journal is © The Royal Society of Chemistry 2025
structures and one of the MOR structures, the predicted
aluminium distribution is centered around the true value.
However, for the other MOR structure, the model tends to
overpredict the aluminium content, while for LTA4A, it under-
predicts it. These deviations suggest that while the model
captures key trends in aluminium placement, there is still room
for improvement in accurately modeling specic cases. One
potential reason for these discrepancies is that the experimental
isotherms used in this analysis may differ from those generated
by simulation, due to factors such as framework defects, cation
presence, or adsorbate–framework interactions not fully
captured by the training data. These real-world variations may
introduce discrepancies that the model is not yet equipped to
handle.

As observed in the generalization experiment, the model
struggles to fully generalize across different zeolite structures.
While incorporating the isotherm shape into the tness func-
tion improves performance, it may not completely resolve this
limitation. A possible way forward is to increase the diversity of
training data by incorporating more isotherms from a wider
range of zeolite topologies. Additionally, ne-tuning the model
using experimental data could enhance its ability to capture
real-world adsorption behavior more accurately. Such
improvements could make the model more reliable for struc-
ture characterization and broaden its applicability to new
materials.
6. Conclusion

In this work, we introduced SymGNN, a symmetry-informed
graph neural network capable of accurately predicting adsorp-
tion properties in zeolites. Our results demonstrate that incor-
porating structural information into message passing allows for
improved generalization, enabling accurate predictions of both
adsorption isotherms and heats of adsorption, even for unseen
topologies. Despite being trained on a limited dataset, SymGNN
J. Mater. Chem. A
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exhibits strong predictive performance. The model effectively
learns adsorption trends across different zeolite frameworks
and Si/Al distributions, highlighting its robustness even when
data is sparse. This makes it a promising approach for studying
adsorption in materials where experimental data is limited.
Nonetheless, we observe that the model may struggle when
encountering adsorption patterns that deviate signicantly
from the training distribution, or when capturing more subtle
topological effects on adsorption properties. These limitations
point to potential future improvements, such as incorporating
more diverse training data or rening the model to better
encode global structural features.

A key nding of this work is that a model trained entirely on
simulated isotherms can be used to analyze real zeolite struc-
tures. By applying SymGNN to experimental adsorption data, we
demonstrated its potential for structure characterization,
showing that it can infer properties such as the Si/Al ratio from
adsorption trends. This suggests that machine learning models
trained on computational data can bridge the gap to real-world
applications.

One limitation of our study is the restricted availability of
adsorption isotherms, both in terms of the number of samples
and the diversity of zeolite topologies. While our model
performs well across the available data, expanding the dataset
to include more topologies and adsorption conditions would
likely improve generalization further.

Additionally, the model currently handles idealized zeolite
structures, and performance might vary with more complex or
larger frameworks, such as those containing defects or larger
unit cells. However, the model's design should allow it to scale
to larger structures, as the GNN considers local environments
with a receptive eld that extends periodically, resulting in the
complexity scaling linearly with the amount of atoms. While the
model may struggle with long-range effects in very large unit
cells, techniques like hierarchical GNNs could be explored. For
structures with defects, the model could be trained on single
unit cells containing defects, as the large graphs can negatively
affect the computational complexity of model training. In turn,
this model could be applied to supercells containing multiple
unit cells with varying defect congurations, as it can combine
the local patterns it learns through message passing, making its
output independent of the number of atoms in the graph.

Looking ahead, generative models offer an exciting avenue
for inverse design, allowing for the discovery of new zeolite
structures with tailored adsorption properties. However, while
such models have shown promise in MOFs,34 they only operate
on a building block level. As such, their application at the
atomic level for porous materials remains largely unexplored.
Future work could explore how generative models can be
combined with physics-informed learning to accelerate zeolite
design.

Fine-tuning SymGNN with experimental data presents
another promising direction. Incorporating real adsorption
measurements into training could further improve both
prediction accuracy and structure characterization, helping
rene our understanding of real zeolite materials. This
approach could also enhance the model's ability to generalize
J. Mater. Chem. A
beyond simulated conditions, making it even more applicable
to practical adsorption studies. Furthermore, the method is not
limited to zeolites and could be applied to other classes of
porous materials such as MOFs. Extending SymGNN to these
systems would require minimal architectural changes and
could open up broader applications in adsorption, separation,
and sensing.

Overall, this work highlights the potential of machine
learning for adsorption modeling in nanoporous materials. By
leveraging structured representations and data-driven learning,
models like SymGNN provide a powerful tool for both predictive
modeling and material characterization, paving the way for
future advances in adsorption science and materials discovery.
Data availability

Data for the zeolite structures and their adsorption properties,
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zenodo.15050435.
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