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The emerging field of quantum life science combines principles from quantum physics and biology to
study fundamental life processes at the molecular level. Quantum mechanics, which describes the
properties of small particles, can help explain how quantum phenomena such as tunnelling,
superposition, and entanglement may play a role in biological systems. However, capturing these effects
in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence
caused by the surrounding environment. We overview the current status of the quantum life sciences
from technologies and topics in quantum biology. Technologies such as biological nano quantum
Received 29th June 2024 sensors, quantum technology-based hyperpolarized MRI/NMR, high-speed 2D electronic spectrometers,
DOI: 10.1039/d4cs00650] and computer simulations are being developed to address these challenges. These interdisciplinary fields
have the potential to revolutionize our understanding of living organisms and lead to advancements in
rsc.li/chem-soc-rev genetics, molecular biology, medicine, and bioengineering.

1. Introduction
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photosynthesis, respiration, and magnetoreception at the molecular
level. It explores how quantum phenomena, such as the tunnelling
effect, quantum superposition, and quantum entanglement, may
play a role in biological processes and systems. However, capturing
such quantum effects is still challenging because the surrounding
environment quickly causes dissipation and decoherence of the
quantum system in warm and wet living systems. Quantum
mechanics is the fundamental theory that can describe the proper-
ties of small particles such as electrons, atoms, and even molecules.
All living systems are made up of molecules, and fundamentally, all
molecules are described by quantum mechanics. However, there is
a remarkable size and time scale gap between the system in which
quantum mechanics operates and the living system. The technolo-
gies that will help solve these problems include biological nano
quantum sensors, quantum technology-based hyperpolarized MRI/
NMR, and molecular dynamics simulation.
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Quantum sensors are quantum devices that respond to
external stimuli. Quantum sensors possess three characteris-
tics: (1) discrete energy levels; (2) initialization, coherent
manipulation, and readout; and (3) interaction with physical
quantities. In particular, the nitrogen-vacancy-center (NV cen-
ter), a fluorescent lattice defect that exists only slightly in
diamond crystals, is attracting attention as a biological nano
quantum sensor that functions at room temperature and
pressure because of its high affinity to cells and living organ-
isms. Quantum technology-based hyperpolarized MRI/NMR is
the only method that employs quantum phenomena based on
nuclear spin manipulation as the detection principle to detect
the relaxation process among the various available medical
diagnostic imaging techniques. This signal is expected to make
it possible to monitor molecular and structural changes in
many metabolites derived from cells and living bodies using
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the nuclear frequency of the NMR-positive nuclei as the
chemical shift alteration at arbitrary magnetic field strength.
In addition, practically and effectively, molecular dynamics
simulation with the atomic model based on biomolecules’ 3D
structures has contributed a lot to understanding how they
function to achieve biological processes based on classical
molecular mechanics. However, classical molecular mechanics
cannot treat quantum effects because they employ empirical
force fields that define fixed covalent bond topologies and
typically fixed atomic charges. An open quantum systems
(OQS) approach was recently applied to study proton tunnelling
in the base pair of DNA." The OQS suggests that the proton
transfer rate between the G-C base pair is several orders of
magnitude larger than that calculated d by the classical
mechanics, indicating DNA base mutation is more likely to
occur in the living system.

These interdisciplinary fields in quantum life sciences have
the strong potential to revolutionize our understanding of
living organisms and will lead to advancements in genetics,
molecular biology, medicine, and bioengineering (Fig. 1).
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2. Biological nano quantum sensors

2.1. Quantum sensing and quantum systems

Quantum sensing harnesses quantum properties, including
coherence, interference, and entanglement, to measure physi-
cal parameters with unparalleled precision and sensitivity.>™
These quantum sensors often outperform their classical coun-
terparts, enhancing accuracy across multiple applications. Tra-
ditionally, quantum sensors are built using superconductive
devices,® OPM,” and trapped ions.® However, these systems
come with challenges. They demand extreme conditions, such
as ultra-low temperatures and near-perfect vacuums, making
them less feasible for biological measurements. Solid state
spins such as NV centers in diamonds have emerged as brilliant
solutions for applying quantum sensing to biological
applications.”'® Wide bandgap materials are perfect hosts for
these spin states, producing isolated energy levels within solid-
state crystals. Consequently, this results in electron spin states
with coherence times spanning several microseconds, which
are manipulable even at room temperature. The creation of new
color centers has gained significant traction over the past decade,
with researchers identifying over 500 such centers in materials
like diamond,"" silicon carbide (SiC),"*> hexagonal boron nitride
(h-BN),"* aluminum nitride (AIN)'* and gallium nitride (GaN)."
Owing to its low spin-orbit coupling and the optimal photo cycle
for spin state initialization and readout, the NV center in the
diamond exhibits an extended coherence time and pronounced
contrast. Moreover, a notable advantage of diamond NV center-
based quantum sensors is their photostability'® and single-spin
sensitivity.'” Conventional biological sensors, such as those using
fluorescent dyes or proteins, require ensembles of molecules to
achieve a reliable signal. This, in turn, demands larger measure-
ment volumes, often in the micrometer range, due to optical
instability. In contrast, NV centers in diamonds exhibit excep-
tional photostability and can function as highly sensitive sensors,
even as individual lattice defects within molecular-sized
particles.'® This enables fluorescent nanodiamonds to serve as

Dr Yoshinobu Baba received PhD
degree from Kyushu University.
He is now a Director General of
Institute  for Quantum  Life
Science, QST and a Professor of
Nagoya University. He has been
admitted as a Fellow of the Royal
Society of Chemistry and received
over 100 awards, prizes, and
Medal. He is the author or co-
author of 1160 publications and
also an inventor of over 131
patents. He has delivered more
than 1112 plenary and invited
lectures. His work has been cited
on 522 occasions by newspapers
and television.

Yoshinobu Baba

Chem. Soc. Rev,, 2025, 54, 3293-3322 | 3295


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4cs00650j

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 2025. Downloaded on 04.02.2026 10:04:04.

(cc)

Review Article

Biological tissue
Animal individual

Radical

Temperature

View Article Online

Chem Soc Rev

Magnetic field

Diffusion

1’\-vv_
N

Electric field .‘. ‘/ \

Biomarker

Biomolecule

Fig. 1 Conceptual diagram of biological nano quantum sensors. Realization of nanodiamond quantum sensors to measure physicochemical parameters
such as temperature, pH, magnetic field, and electric field in cells and living organisms.

nanoscale sensors, allowing precise measurements of physical
and chemical parameters in biological microenvironments like
mitochondria’ or membrane proteins.>® Consequently, it has
been increasingly recognized as a color center for biological
application, finding applications in areas such as in vivo
thermometry”® and in-cell organelle measurements.’® The NV
center’s precise positioning is pivotal for advancing biological
applications. Advancements like single-protein NMR (Fig. 2a—c)*>
and single-molecule ESR (Fig. 2d-f)** owe their success to accu-
rately positioning an NV center nanometers away from the target
spin. Upon integration into biological systems, quantum sensors
can detect a range of physical attributes - magnetic** and electric
fields,” temperature,*® pressure,” and molecular diffusion®®*°
with a groundbreaking sensitivity.

2.2. Sensitivity of quantum sensors

The sensitivity of a quantum sensor is fundamentally governed
by spin projection noise. The sensitivity of the NV center in
diamond is distinctively characterized by its optical readout.*"
This is quantitatively represented by the shot-noise limited

sensitivity, dB(t) Here T represents the coherent

1
N yC\/]W )
duration of a singular measurement. y is the linear rate at
which the spin state population changes concerning the unit
target signal. N signifies the number of quantum sensors
deployed in the measurement. The choice of measurement
protocol directly influences the value of T. For instance, T is
derived from T, when employing the Ramsey measurement,
whereas the Hahn-echo measurement necessitates deriving T

3296 | Chem. Soc. Rev., 2025, 54, 3293-3322

from T,. Coherence enhancement achieved predominantly by
mitigating spin noise sources like surrounding electrons and
nuclear spins can augment the value of T. The parameter C is
contingent upon the NV center’s orientation within the diamond
crystal lattice and its charge state. Conversely, N is influenced by
the density of the diamond’s NV centers and the optical excita-
tion volume. The latter can be modulated by varying the optical
excitation techniques, transitioning from, for example, confocal
to bulk excitation methods. Subsequent sections will elucidate
processes tailored to augment the intrinsic quality of the host
crystal, methodologies for producing NV centers in diamond, and
protocols for diamond surface treatments, all aimed at optimiz-
ing the parameters mentioned above.

Quantitative analysis of the sensitivity of an NV center in
diamond was achieved by applying an AC magnetic field
synchronized with quantum manipulation pulses. The sensi-
tivity was quantified by measuring the amplitude of the signal
as a function of measurement time, and analyzing the resulting
Allan deviation, as illustrated in Fig. 2g. An Allan deviation
corresponding to a sensitivity of 0.9 pT/ VHz at a frequency of
20 kHz was obtained.

2.3. Host crystal

The quality, inherent, and purity of the host material are pivotal
in enhancing the coherence time of the NV center. Historically,
the synthesis of diamond crystals has been challenging due to
the greater stability of sp>-bonded carbon compared to sp-
bonded carbon at both atmospheric and lower temperatures.
Consequently, it is difficult to produce diamond without the

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Measurement of a single NV center. (a) Schematic depicting the experimental setup of ubiquitin proteins covalently tethered to the diamond’s
surface above a single NV center. (b) Pulse sequence for quantum sensing for detection of nuclear spin from single protein. (c) NMR spectra of 1*C
originating from a single ubiquitin protein. (d) Schematic depicting the experimental setup of MAD2 proteins labeled with nitroxide spin labels above a
single NV center. (e) Pulse sequence for quantum sensing for detection of electron spin from a single protein. (f) Single spin ESR spectra under ambient
conditions. (g) AC magnetic-field measurement scheme with pulsed sensor readout (h). Magnetic measurement of the test field with varying field
amplitude retrieving sensor response A (i). Scaling of magnetic sensitivity (standard deviation over time) of signal SB (blue line) and SD (green line). The
slope of the black line again indicates the aspired scaling behavior with /7. Reproduced from ref. 22, 23 and 30 with permission from AAAS and APS.
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concurrent formation of sp>-bonded carbon, such as graphite.
This distinction was notably illustrated in the Bachmann dia-
gram during the early phases of diamond research.*> Industrial
synthetic single-crystal diamonds are primarily synthesized
using the high-pressure-high-temperature (HPHT) method.
While diamonds produced via HPHT exhibit low strain, this
technique grapples with issues related to precise impurity
concentration control.® Furthermore, managing the thickness
and exact positioning of the quantum sensor remains a chal-
lenge with HPHT. An alternative approach, plasma-enhanced
chemical vapor deposition (CVD), facilitates the homoepitaxial
growth of diamond on HPHT substrates using CH, as a carbon
source. H, serves as a carrier gas, producing a plasma that
preferentially etches sp> carbon formed during growth, ensur-
ing the retention of sp® carbon for premium diamond synth-
esis. Commercially, diamonds produced through CVD growth
are available with nitrogen and boron concentrations of less
than one part per billion.>® Further advancements include the
isotopic purification of diamond crystals. Here, the naturally
occurring 1% of **C is refined to levels approaching 99.999%
using highly isotopically purified gases.>®> Employing high-
quality diamond substrates, especially those with extreme iso-
topic purity, has resulted in record-setting coherence times of
~1 ms for single NV centers in diamond (Fig. 3a-c).*®

2.4. Fabrication of NV center

The fabrication of the NV center in diamond requires the
precise introduction of nitrogen atoms and adjacent vacancies.
This process is particularly challenging due to the extreme hard-
ness of diamond, which complicates the insertion of impurities in
close proximity*° to vacancies and necessitates specialized fabrica-
tion techniques. Conventional methods employ ion implantation
to introduce nitrogen, electron irradiation to induce vacancies, and
thermal annealing to promote the diffusion and consequent
formation of the NV center within the diamond lattice.*" Through
ion implantation, one can exert meticulous control over the spatial
positioning of the introduced nitrogen, choose between the **N or
N isotopes, and regulate the concentration of NV centers formed
in the host crystal.*? Leveraging this technique, a singular NV
center has been successfully positioned as close as 10 nm from the
diamond’s surface,” proving invaluable for single protein and
single electron spin detection applications. The distinctiveness of
the incorporated nitrogen isotope further aids in the unequivocal
identification of the introduced species.”® To achieve precise
spatial control over NV center location, integration with nanofab-
ricated masks,** focused ion beams,*® or nanometric apertures in
AFM tips*® has been pursued. However, the exact depth control
remains constrained to an approximation of 10 nm, a limitation
arising from ion scattering and channeling phenomena.”” An
alternative technique, laser writing, has demonstrated potential
in generating vacancies and enabling three-dimensional localiza-
tion of NV centers.*® Nevertheless, its in-plane accuracy remains
tethered to the average inter-nitrogen spacing due to inherent
challenges with vacancy diffusion.

CVD growth is a prominent technique for precisely control-
ling the position, isotope, and alignment of the NV center

3298 | Chem. Soc. Rev,, 2025, 54, 3293-3322
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within the diamond. Given that the nitrogen-to-carbon ratio
can be adjusted by varying the gas ratio of nitrogen (N,) to
methane (CH,), CVD offers unparalleled control over the NV
center’s density and nitrogen incorporation into the diamond
matrix. The most substantial NV center densities within the
diamond have been achieved by combining CVD growth, which
introduces a high nitrogen concentration into the diamond, with
electron irradiation at either the MeV range or 200 keV using an
electron source from TEM.'>”® A lower acceleration voltage
introduces vacancies more gently, resulting in enhanced coher-
ence times and favorable NV center generation ratios. Recent
innovations have facilitated the creation of high-density NV
centers in diamonds, enabling the observation of spin interac-
tions between adjacent NV centers. Furthermore, controlling the
timing of gas introduction during CVD growth affords precision
over the thickness and location of the resulting NV center.
Through delta doping of nitrogen gas, CVD growth can confine
the formation of an NV center within a tight 1-2 nm region.>"

In the process where electron irradiation is paired with
nitrogen implantation, the formation of the NV center in a
diamond generally assumes a random orientation among the
four possible [111] directions ([111], [111], [111], [111]). To date,
CVD growth remains the sole method allowing for the deliberate
alignment of the NV center in the diamond crystal towards one of
these four directions, enhancing the NV center’s contrast to an
optimal photo-cycle limit of approximately 30%. Alignment of the
NV center within the diamond lattice via step-flow growth using a
reduced methane concentration has been experimentally demon-
strated by T. Fukui et al.,>® with corroborating theoretical calcula-
tions by T. Miyazaki et al.>® Subsequent research has pursued
objectives like achieving a high-density ensemble of perfectly
aligned NV centers,”* precisely aligned shallow NV centers sui-
table for nanoscale NMR measurements,” and a 100 pm-thick
diamond crystal tailored for high sensitivity applications.>® Incor-
porating tert-butylphosphine as a gaseous precursor during CVD
growth has been explored to enhance the coherence time of these
perfectly aligned NV centers.’” Furthermore, phosphorous dop-
ing via CVD growth has been employed to optimize the charge
state of the NV center in diamonds, setting new benchmarks for
the T, and T, values observed in individual NV centers.*®

2.5. Nanodiamond

Nanodiamonds have been fabricated through many approaches,
encompassing the detonation technique,’ high-pressure high-
temperature (HPHT) synthesis,*® laser ultrasound cavitation,®*
ablation,®* and microfabrication.®® The key metrics of interest
for NV centers in nanodiamonds encompass the NV center’s
stability (attributed to charge state management), the quantity
of NV centers, and the coherence time of the NV center within
the diamond. This review delineates the distinctions between
nanodiamonds synthesized via the detonation technique and
HPHT synthesis, as these methods dominate commercial nano-
diamond production.

Detonation nanodiamonds (DNDs) derive from the detona-
tion process. Specifically, the explosion of trinitrotoluene (TNT)
and hexogen (RDX) blend within a confined metal chamber,

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4cs00650j

Open Access Article. Published on 28 2025. Downloaded on 04.02.2026 10:04:04.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

View Article Online

Chem Soc Rev Review Article

a d

x104

2nm Bulk

30

-
e

— | Liquid

Pressure (GPa)
3

Graphite

0
b 2,000 3,000 4000 5000
[}
o
989% 2C = 98.8% 12C Temperature
g (natural (K)
35 e abundance) e . "
o 997%2C 8 I =210 kHz Mu:rouamon
= : &
< 99.7% 12C p=—g | )
5 I =55kHz {
(s} ' v
w
0 2 4 6 8 0 12 1 2 3 4 3
Free precession time (us) Frequency (MHz) u
C

milling
- 4

7-10GPa, 1500-2200°C, 5}5 “

n/2 -—| : l—. n o—-l : I__<n/2 Catalyst (Fe, Ni) &«
=S Sy I o Smallest:

v W N W

W Y ] 10-20nm %

/ \ / 101 E RN | RN | MERELRRLLN | T ""':
2 F CW-ODMR — ]
\\ e — H " Bulk-size ]
10°F Ulimit
I E 0 0o Apoptical g 3
Fit: ~exp[-(21/T,)] = o'k o I ]
T,=182+016ms F 0 M '
3 < r Pulsed-ODMR & ]
2 > 107 4 ¢ E
3 s g E
g 2 10° MNP +ODMR | 3
g $ F O Pulsed ODMR ' E
£ [ ® m-pntODMR I ]
o 10*L A MNP+ m-pnt ODMR ; -
E v pNIPAM + CW-ODMR I
[ O Al-optical | ]
Lol Lol sl NIRRT

0 1 2 3 2 0.01 0.1 1 10 100

21t (ms) Diamond size [um]

Fig. 3 Spin coherence time of single spins in isotopically engineered diamond. (a) Fluorescence microscopy image of high-purity CVD diamond
containing single nitrogen-vacancy defects. (b) FID signal measured on a single nitrogen-vacancy electron spin for diamond with a natural abundance of
13C isotope (black) and isotopically engineered crystal (red). And Fourier-transform spectra of FID signals. The satellites indicated by asterisks are related
to the hyperfine interaction with the nitrogen and carbon nuclei. (c) Spin coherence time of single spins in isotopically engineered diamond measured
using a two-pulse electron spin echo. (d) Detonation NDs produced by the detonation of carbon-containing explosives. The phase diagram shows that
the most stable carbon phases for graphite and diamond are at low and high pressures, melting at temperatures above 4500 K. The phase diagrams for
nanoscale carbon shows liquid phase at lower temperatures. In detonation, the pressure and temperature rise instantaneously, reaching the Jouguet
point (point A), which falls within the region of liquid carbon clusters of 1-2 nm in size. As the temperature and pressure decrease along the red line, the
growth of the diamond is replaced by the formation of graphite. (e) NDs produced by the HPHT methods. (f) Plots of temperature sensitivity versus
diamond size Reproduced from ref. 36—-39 with permission from Nature Portfolio, AIP Publishing and IOP Publishing Ltd.

leading to the high-pressure, high-temperature formation of 4-
5 nm nanodiamonds (Fig. 3d and e).*” The hallmark of this
method is its consistent yield of uniformly sized 4-5 nm
nanodiamonds. However, DNDs often manifest as polycrystal-
line or ultra-nanocrystalline diamonds, typified by a patchwork
of minute crystalline domains interspersed with sp* carbon
(such as graphite) grain boundaries. This results in elevated

This journal is © The Royal Society of Chemistry 2025

surface tension.®® The nitrogen concentration (P1 center) in
DNDs, at approximately 1000 ppm, markedly exceeds that of
HPHT-derived nanodiamonds, which hover around 100 ppm.
This trait appears to favor the generation of NV centers in DNDs
relative to HPHT nanodiamonds.®® Despite their high NV
center content, DNDs are frequently sheathed in graphitic
layers, necessitating rigorous cleaning protocols, such as acid
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treatments supplemented with sonication, to ensure stable
emission of NV centers,"®%4 ¢

Conversely, the predominant method for producing quantum
sensing-applicable nanodiamonds entails milling HPHT micro-
diamonds. Within the HPHT reactor, metal catalysts (like Fe, Ni,
or Co) operate under extreme conditions to engender micro-
diamonds infused with nitrogen (Fig. 3f).***” Post-fabrication,
NV centers within these micro-diamonds are realized through
electron irradiation, annealing, mechanical milling, and oxida-
tion (a regimen designed to purge surface contaminants).®®
Despite its prevalence in commercial nanodiamond production,
this procedure has flaws. The mechanical milling phase tends to
diminish the count of NV centers in the resultant nanodiamonds.
Therefore, innovations that miniaturize micro-diamonds without
compromising NV center quantities are actively sought. Recent
research spotlighting HPHT diamond synthesis using molecular
diamonds, termed ‘“diamondoids” (e.g, adamantane), has
renewed the field.®” The introduction of new catalysts has
enabled reduced pressure and temperature conditions for HPHT
synthesis stemming from adamantane.”® However, this method
faces a significant challenge: adamantane, a diminutive diamond
structure with a mere ten carbon atoms, is highly susceptible to
disintegration. Any reaction undermining its structure will oblit-
erate this diamond configuration, making reactions seeded by
such a molecular diamond inherently unstable. Exploring larger
molecular diamonds, like pentamantane, might pave the way for
innovative nanodiamond production methodologies.”*

The sensitivity of nanodiamonds, as discussed in Section 2.2,
is influenced by several factors including longer coherence
times, larger contrast, and a higher number of NV centers,
which collectively enhance the measurement sensitivity of
nanodiamonds. However, substantial variations exist in the
actual values of these parameters, even when identical fabrica-
tion methods are used. Fig. 3f illustrates the dependence of
sensitivity on the size of the nanodiamonds.>® Despite the
inherent limitations in the characteristics of nanodiamonds,
various measurement techniques have been developed to
enhance sensitivity. The highest sensitivity has been achieved by
integrating Magnetic Nano Particles (MNP) with nanodiamonds, a
method that now rivals the sensitivity achieved by the MNP +
ODMR methods due to recent advancements in nanodiamond
fabrication.””

2.6. Diamond surface

Both single NV centers in diamond films and nanodiamonds
offer material interfaces beneficial for biological applications.
This is underscored by extensive research into the alteration of
surface conductivity due to changes in surface termination.”
The charge state of the NV center that determines the stability
of emission, contrast, and location of the NV center from the
target of detection is controlled by the surface termination of
diamonds. For single NV centers in diamond films, their
precise localization relative to the diamond surface could be
well defined by quantum measurement. Extensive studies have
been performed to elucidate the effect of surface termination
on location,*® contrast,”* and coherence’® of the NV center.
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Correlating quantum measurements with surface analysis via
NEXAFS has deepened our understanding of diverse oxidation
methodologies for diamond surfaces. Optimal conditions for a
single NV center on a diamond film surface have been identi-
fied: air oxidation at 450 °C, which results in an optimized
coherence time of 100 ps for centers located within 10 nm from
the diamond surface.”® In contrast, nanodiamond surfaces
often contend with contaminants like metal impurities, soots,
and sp® carbons during fabrication. These are typically removed
through oxidizing acids or air oxidation, leading to carbonyl
and carboxyl groups forming on the nanodiamonds.””””® Much
research has been dedicated to the surface functionalization of
diamond films and nanodiamonds, specifically for the conju-
gation of molecules and proteins, offering a biological interface
tailored for diverse applications.®*"®* The prevailing challenge
lies in precisely positioning the NV center within 5 nm from the
surface, all while maintaining extended coherence times. More-
over, there’s a need to accurately position biological targets on
nanodiamonds or diamond films for prospective applications.

2.7. Sensing by NV center

Nitrogen-vacancy centers (NV centers) are fluorescent lattice
defects with impurity nitrogen and vacancies next to each
other. Negatively charged NV centers have a stable triplet
electron pair a