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During the process of peripheral nerve repair, there are many complex pathological and physiological

changes, including multi-cellular responses and various signaling molecules, and all these events

establish a dynamic microenvironment for axon repair, regeneration, and target tissue/organ

reinnervation. The immune system plays an indispensable role in the process of nerve repair and

function recovery. An effective immune response not only involves innate-immune and adaptive-

immune cells but also consists of chemokines and cytokines released by these immune cells. The

elucidation of the orchestrated interplay of immune cells with nerve regeneration and functional

restoration is meaningful for the exploration of therapeutic strategies. This review mainly enumerates the

general immune cell response to peripheral nerve injury and focuses on their contributions to functional

recovery. The tissue engineering-mediated strategies to regulate macrophages and T cells through

physical and biochemical factors combined with scaffolds are discussed. The dynamic immune

responses during peripheral nerve repair and immune-cell-mediated tissue engineering methods are

presented, which provide a new insight and inspiration for immunomodulatory therapies in peripheral

nerve regeneration.

1. Introduction

Peripheral nerve injury (PNI) is commonly caused by accidents,
war, natural disasters, and other factors that may result in the
dysfunction of motor and sensory neurons in communicating
with the central nervous system (CNS). Serious clinical issues
impair the quality of life of patients and result in an enormous
social burden.1,2 Distinct from the central nervous system, the
peripheral nervous system shows spontaneous regeneration
ability in response to injury. This process involves dynamic
complex pathological and physiological changes and elaborates
on the cooperation of various cell-molecular events to establish
an optimal microenvironment for regeneration and motor
reinnervation.3–5 The dynamic biochemical microenvironment
homeostasis is balanced by the extracellular matrix network,
blood vessels, and lymphatic vessels in connective tissues
from the macroscopic level, as well as cell adhesion molecules,

cytokines, chemokines secreted by Schwann cells (SCs), fibro-
blast cells, endothelial cells, and various immune cells at the
microscopic level.6–9 The anatomical structure of the peripheral
nerve consists of bundles of longitudinal axons with or without
myelinated glial cells (known as SCs) that are surrounded by
three-layer membrane structures, namely, the endoneurium,
perineurium, and epineurium, from the inside to the outside,
respectively (Fig. 1(A)). The endoneurium is a matrix structure
around the axon units. There are grouped nerve fibers called
‘‘fascicles’’ covered by fibroblast-like cells inside the perineur-
ium, and single or multi-fascicles together with blood vessels,
lymphatic vessels and some adipose tissues are wrapped by the
epineurium that constitutes the peripheral nerve. As the out-
ermost layer structure of the nerve, the epineurium is further
divided into two layers, with the inner layer consisting of
collagen bundles and elastic fibers, and the outer layer includ-
ing areolar connective tissue and collagen bunches.10,11

According to the classification of injured nerve by Seddon
and Sunderland, PNIs are classified in three types, and five
types, respectively. Neuropraxia, axonotmesis, and neurotmesis
are described by Seddon. Sunderland subdivided axonotmesis
into three types based on the integrality of the epineurium
structure.12 Wallerian degeneration (WD) and the formation
of Büngner bands are major and indispensable events for

a Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of

Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for

Research and Evaluation of Tissue Engineering Technology Products, Nantong

University, 226001, Nantong, P. R. China. E-mail: yangpengxiang@163.com,

yangpengxiang@ntu.edu.cn, yangym@ntu.edu.cn
b Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong

University, 226001, Nantong, P. R. China. E-mail: jiejing1103@126.com

Received 28th October 2023,
Accepted 27th January 2024

DOI: 10.1039/d3tb02557h

rsc.li/materials-b

Journal of
Materials Chemistry B

REVIEW

Pu
bl

is
he

d 
on

 3
0 

 2
02

4.
 D

ow
nl

oa
de

d 
on

 0
6.

11
.2

02
5 

05
:1

3:
37

. 

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0003-2777-7533
https://orcid.org/0000-0002-7390-5842
http://crossmark.crossref.org/dialog/?doi=10.1039/d3tb02557h&domain=pdf&date_stamp=2024-02-12
https://rsc.li/materials-b
https://doi.org/10.1039/d3tb02557h
https://pubs.rsc.org/en/journals/journal/TB
https://pubs.rsc.org/en/journals/journal/TB?issueid=TB012009


2218 |  J. Mater. Chem. B, 2024, 12, 2217–2235 This journal is © The Royal Society of Chemistry 2024

successful nerve repair and regeneration. The process of WD
includes the collapse of discontinuous axons, the breakdown of
myelin, disarrayed microtubules/neurofilaments, and disas-
sembly of the cytoskeleton. The axon of the proximal stump
sprouted a growth cone that explored the microenvironment of
the target tissue.13–15 Following the nerve injury, as the major

glial cells in the PNS, SCs undergo dedifferentiation, prolifera-
tion, and migration, and finally organize into a bridge along the
basement membrane named Büngner bands. The reprogram-
ming of mature myelinating and non-myelinating SCs is
complex and several reviews have summarized this
process.6,16,17 The repaired SC play an essential role in the

Fig. 1 The anatomy structure of the peripheral nerve (A) and the illustration of the main steps in the invasion of immune cells after peripheral nerve injury
(B). The dominant immune cells and their special contributions to peripheral nerve repair (C). (A) A schematic of the peripheral nerve system and the
orchestrated Schwann cells in the PNS. Reproduced from ref. 19 with the permission of Elsevier, copyright 2023.19 The nerve architecture is organized by
mature SCs that ensure the functional axonal domains. The nerve fibro consists of three layers (the endoneurium, perineurium and epineurium) along
with blood vessels and lymphatic vessels to perform physiological functions. Electron micrographs exemplify the different developing stages of SCs,
including SC precursors (SCP), immature SCs (iSCs), myelinating SCs (mSC) and Remak SCs (RSC) (labelled in white). (B) Following the peripheral nerve
injury, the SCs dedifferentiation to repair SCs further proliferate and release factors to recruit immune cells to the injury site within 24 h. Immune cells
cooperate with non-immune cells and the cytokines/chemokines to establish a local dynamic microenvironment that regulates the inflammatory
response and axon regrowth. Finally, SCs undergo remyelination and encompassment of the regenerated portion of the axon; at this position, myelin is
thinner than the uninjured axon. (C) This schematic diagram highlights the special roles of various immune cells (innate and adaptive immune cells)
following the PNI. The functions of macrophages and T lymphocytes are described in detail.
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clearance of axonal and myelin debris as well as the recruit-
ment of immune cells to the damaged site. The other pathways
of SC-mediated nerve repair include the up-regulation of a
group of neurotrophic growth factors to promote axonal regen-
eration, up-regulating the expression of cytokines to recruit
macrophages and providing guidance cues for axon regenera-
tion. Ultimately, SCs re-myelinate newly regrown axons and
accomplish the restoration of nerve function.18,19

Since the immune–neuro interaction has been discovered,
nascent research has validated the neuroprotective and neuro-
destructive effects in the process of immune responses, which
are crucial to injured environment homeostasis.20,21 The func-
tional recovery following PNI has two periods, namely, inflam-
mation and regeneration. Cytokines, chemokines, secondary
messengers, and immune cells such as macrophages, neutro-
phils, natural killer cells (NK), and T lymphocytes, are the
major mediators of the inflammatory response.22,23 Monocytes,
neutrophils, and lymphocyte cells infiltrate the nerve lesion site
in a time-dependent manner (Fig. 1(B)). It should not be
ignored that the pro-inflammatory immune response remodels
the distal stump microenvironment to accelerate the disinte-
gration of nerve fibers and phagocytize tissue debris by non-
neuronal cells, macrophages, and neutrophils in this process.24

In the period of anti-inflammatory response, macrophages are
polarized into the M2 phenotype, which upregulates transcrip-
tion factors such as Mcf/c-maf, Mafb/MafB, and Tgfb to pro-
mote axon regeneration. In the meantime, there is almost an
absence of natural killer cells and lymphocytes, and T-cell
activation is suppressed.22,25 If the transition from pro-
inflammatory to anti-inflammatory response is a failure, a state
of chronic inflammation will occur and eventually lead to
neuropathic pain. Therefore, the immune response following
PNI should be precisely controlled to provide a better micro-
environment for functional recovery.26,27 Notably, macrophages
make a significant contribution to the nerve repair process,
such as interacting with SCs, axons, neurons, fibroblasts, and
endothelial cells. They release neurotrophic factors to regulate
the optimal environment for axon regeneration and functional
recovery, as reviewed by many researchers.23,28,29 Other
immune cells, including neutrophils, NK and T cells, also act
as an indispensable part of the effective immune response
during peripheral repair and functional recovery (Fig. 1(C)),
although the reciprocal interaction mechanism of these
immune cells with nerve repair and regeneration is relative
poorly understand.30

Given the intimate relationship between immune response
and nerve repair, efforts to direct immune cell behavior or
indirect methods to administer the immune microenvironment
for better nerve repair and functional recovery have been widely
explored.31–34 In this review, we have systematically enumer-
ated the general immune cell responses to peripheral nerve
injury and their contributions to nerve repair. Tissue
engineering-mediated strategies to regulate macrophages and
T cells through physical and biochemical elements with/with-
out scaffolds are discussed. The most recent data in dynamic
immune responses during peripheral nerve repair and immune-

cell-mediated engineering strategies are presented herein, which
we hope will provide new insight and inspiration for immunomo-
dulatory therapies in the peripheral nerve injury field.

2. The innate immune system
especially highlights the functional role
of macrophages in the pathological
process following PNI
2.1 Neutrophils

Neutrophils are one of the first inflammatory cells to infiltrate
the lesion site within hours to days post-injury in the peripheral
nervous system (PNS).35 Their positive markers are detectable
on both days 3 and 9 post-injury in the injured sciatic nerves of
mice, and the Csf3r gene was confirmed as a reliable marker
gene to identify mature neutrophils in the distal nerve
stump.36,37 They are innate immune cells that originate from
bone marrow stem cells with a life span of 24–48 h and can be
extended during inflammatory reactions. Neutrophils are ver-
satile and their roles include recruiting macrophages and other
immune cells to the injury site by secreting pro-inflammatory
cytokines (such as IL-8) and anti-inflammatory cytokines (such
as IL-10), as well as various chemokines, inducing initial
inflammatory reactions.38–40 Moreover, granules released by
neutrophils can promote the differentiation of invaded mono-
cytes to macrophages, highlighting the role of neutrophils in
functional macrophage polarization.41 Following sciatic nerve
injury, the myelin debris clearance is conducted by neutrophils
and its depletion substantially inhibits myelin clearance in
male wild-type mice and Ccr2�/� mice (C–C motif chemokine
receptor 2, CCR2, which is expressed by macrophages and is
necessary for monocyte recruitment), highlighting the phago-
cytosis role of these cells in WD.42 In another study, the authors
created a sciatic nerve crush injury model and histological
evaluation indicated that the neutrophils accumulated at the
epineurium in the WD area at 6 h after injury and reached a
peak at 12 h, eventually disappearing by 1 d after injury.
Neutrophil extracellular traps (NETs) formed by neutrophils
restricted the macrophage infiltration into the parenchyma, further
influencing the repair process in WD. The reduction of neutrophil
accumulation promotes the repair process in WD by the migration
inhibitory factor MIF-CXCR4-NETs axis.43 These two distinct phe-
nomena of neutrophils in WD may be caused by different animal
and injury models. Accumulated neutrophils equally lead to hyper-
algesia after nerve injury and a reduction in the recruitment of
these cells will reduce mechanical hyperalgesia in post-surgical
pain although its cytotoxicity in PNI remains unclear.44 Several
studies have shown that the crosstalk between neutrophils and
macrophages can contribute to macrophage-mediated tissue repair
as summarized by Bouchery et al.45

2.2 Macrophages and monocytes

Macrophages are mononuclear phagocytes that exist in all
tissues where they act as phagocytic antigen-presenting cells
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and have key roles in phagocytosing heterologous pathogens,
dead cells, cellular debris, maintaining homeostasis, as well as
other functional profiles, and have been well-studied over the
past decades.46–48 There are two species of macrophages in PNI,
namely, tissue-resident macrophages derived from the yolk sac
during embryogenesis, and monocyte-derived macrophages
that originate from hematopoietic stem cells in the bone
marrow, which can be recruited to the injury site by
cytokines.49 A large body of evidence has demonstrated that
macrophages are the key mediators of tissue repair and provide
a suitable microenvironment for regeneration in the process of
peripheral nerve repair (PNR).23,28,50 The resident macrophages
along with SCs or neutrophils are the major cells that respond
to nerve injury at first. The recruitment of circulating blood
monocytes requires the help of chemokines or other signaling
proteins, including inflammatory cytokines such as tumor
necrosis factor a(TNFa), IL-1a, IL-1b expressed by SCs, mono-
cyte chemotactic protein 1 (MCP-1, also known as CCL2)
leukemia inhibitory factor (LIF), and pancreatitis-associated
protein III. This event starts from 2 to 3 days after injury and
peaks at about 7 days.28,51 Interestingly, the removal of degener-
ated myelin by SCs and macrophages can be independent since
macrophages may be recruited to the injury site in the absence of
SCs.52 Besides the important role of macrophages in the phago-
cytosis of myelin debris and axon fragments for balancing the
dynamic microenvironment in nerve lesion sites, they also con-
tribute to driving the PNR by simulating SC migration and
maturation, remodeling extracellular matrix (ECM) organization
in the injury site, promoting angiogenesis, preventing ectopic
axon growth and accelerate axonal outgrowth (Fig. 1(C)).23 Herein,
we have summarized the dual functions of macrophages in pro-
inflammatory and anti-inflammatory programs and highlighted
their distinct effects in PNR.

2.3 Heterogeneity and plasticity of macrophages

It is considered that macrophages in different tissues have
specific subpopulations, for instance, Kupffer cells in the liver,
splenic macrophages in the spleen, osteoclasts in the bone, and
microglia in the brain; the heterogeneity may explain the
functional diversity.29 The advances in single-cell transcrip-
tomics enable the identification of the specific cell subsets of
the tissues. Based on this technology, a recent study by Ydens
et al. uncovered that the harbored macrophages are distinct in
the epineurium and endoneurium with specific spatial char-
acterization in the PNS. In response to the sciatic nerve crush
injury, these diverse subgroups of macrophages have differ-
ences in the signature gene expression pattern, ranging from
the PNS to the CNS.53 Moreover, resident macrophages in the
PNS allow prolonged monocyte-derived macrophages to be
recruited following sciatic nerve injury. Further exploration
showed that recruited monocyte macrophages are mainly
responsible for effective debris clearance, while the resident
macrophages participate in axon regrowth, confirmed by the
depletion of resident macrophages, which will lead to the
complete failure of axon regeneration.54 According to specific
bioactivities, macrophages can be divided into two classic

groups, namely, M1 and M2 phenotypes as the pro-
inflammatory and anti-inflammatory macrophages, respec-
tively. M1 macrophages are pro-inflammatory contributors
induced by lipopolysaccharides (LPS), toll-like receptor (TLR)
ligands and interferon g (IFN-g), TNFa, and CCL2, which can
aggravate inflammatory responses and the elimination of
apoptotic cells and debris by secreting inflammatory factors
such as IL-1a, IL-1b and IL-6.28 In contrast, M2 macrophages
can be further classified into four subtypes, namely, M2a, M2b,
M2c and M2d, based on differential activation pathways. They
are mainly associated with the anti-inflammatory response or
pro-healing phenotype. Additionally, the stimulating factors are
specific in M2 subsets as M2a is induced by IL-4 and IL-13, M2b
is induced by the immune complex, M2c is induced by IL-10
and transforming growth factor-beta (TGF-b), M2d is induced
by the A2AR agonist.55–57 These subsets of M2 macrophages
play anti-inflammatory roles by producing growth factors,
removing apoptotic cells (M2a), promoting angiogenesis
(M2b/d) and ECM synthesis (M2b/c) (Fig. 2).58 M1 and M2
macrophages are maintained in a dynamic balance with the
changes in the microenvironment during the PNI. One study
explored the local delivery of IFN-g or IL-4 in a rat model and
confirmed that the pro-healing phenotypes M2a and M2c
macrophages are in regenerative bias.59 Given that the distinct
subpopulations of macrophages have different effects on repair
and regeneration following PNI, it will be helpful to elucidate
the specific mechanism of macrophage polarization.

Macrophage plasticity in the orchestration of inflammatory
and tissue damage has attracted much attention from research-
ers since incorrect polarization will lead to dozens of
diseases.60,61 Following PNI, M1 macrophages are dominant
in WD and increase within 2 days post-injury, while M2
macrophages have a prominent action in the subsequent
anti-inflammatory response and gradually replace the M1 phe-
notype from 3–7 days. Most studies have analyzed macrophage
polarization during nerve repair and regeneration, which were
mixed macrophages. The different techniques used to deter-
mine the marker genes of M1 or M2 are concomitant with
distinct results, which can be seen in previous reports.62,63 A
recent study by Zhang et al. applied RNA sequencing technology
and identified the gene profiles in dorsal root ganglions and
the expression pattern of macrophages at different time points
after sciatic nerve injury. Macrophage-associated miRNAs were
screened and up-regulated miRNAs (miR-18a, miR-19b, miR-21,
miR-29) may take part in macrophage polarization and provide
an understanding of microenvironment remodeling after
PNI.64 Although the pro-regeneration capacity of M2 macro-
phages is well investigated, strategies always tend to attribute
the macrophage fate to the M2 phenotype. The role of M1
subsets should not be ignored; particularly, elucidating the
dynamic equilibrium relationship of M1 and M2 in PNR will be
valuable for nerve regeneration in future investigations.

2.4 Natural killer

NK cells are innate lymphoid cells that lack antigen-specific
receptors and have a crucial role in inflammation and adaptive
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immunity, producing a much faster immune reaction.65,66 They
play roles in both tumor immune supervision and induction of
cascades of immune reaction synchrony with other immune
cells. Depending on functional cell receptor classification, NK
cell-activating receptors mainly contain killer cell immunoglo-
bulin receptors (KIR-2DS, KIR-3DS), the NK group 2D (NKG2D,
NKG2C), natural cytotoxic receptor (NCR), 2B4, and CD226;
inhibitory receptors mainly contain KIR-2DL, killer cell lectin-
like receptor (KLR, CD49/NKG2), and T cell immunoreceptor
with Ig and ITIM domains (TIGIT).67,68 The cross-regulation of
NK cells and other immune cells, especially macrophages and T
cells, has become popular in recent years. Pro-inflammatory
cytokines (IL-12, TNF-a, IFN, IL-18) are secreted by macro-
phages that may stimulate NK cells and, in turn, promote M2
macrophages polarized or switched to the M1 phenotype,
which increases the activation of NK cells. Bidirectional cross-
talk between NK cells and T lymphocytes highlights that IFN-g
secreted by NK cells may mediate naive T cells to the Th1
phenotype.67,69 Following PNI, NK cells also infiltrated the
injury site in adult animals and proliferated more on day 9
than on day 3. Compared to neutrophils, NK, T, and B cells had
fewer interactions with other cell types on day 3 and, similarly,
on day 9 post-injury.36 Interestingly, Davies et al. proposed that
within days of PNI, cytotoxic NK cells infiltrate the lesion site
and respond to retinoic acid early inducible protein 1 (RAE1),
which is the NK group 2D (NKG2D) ligand expressed by injured
sensory axons. NK cell interactions complement WD and
accelerate damaged axon clearance to accomplish the function

recovery of the PNS.70 Although there is less research on NK
cells, their immune-modulating role in damaged peripheral
nerves should also be investigated.

3. T cells in adaptive immune response
display diverse effects on nerve repair

T lymphocytes are adaptive immune cells that infiltrate the
lesion site of PNI in 3 days and subsequently reach a peak level
in 14–28 days.71,72 In RAG2�/� (recombination activating gene
2) mice with a femoral nerve injury model in which mature T-
and B-lymphocytes are absent, better motor recovery and
enhanced myelination have been observed.73 In another study,
lymphocytes injected at the injury site during the acute phase
of WD could improve nerve regeneration and sensory recovery.
Further analysis demonstrated that in the early phase of sciatic
nerve injury, lymphocyte therapy showed positive effects on
regenerative processes by improving debris clearance.74,75 The
regenerative role of T cells in PNI was also verified by using
acellular nerve allograft (ANA) in an athymic rat model; the axonal
regeneration and recovery were significantly diminished when T
cells were absent.76 These studies indicated that T lymphocytes
had an immunomodulating impact on injured nerves. Moreover,
T cells also participated in the neuropathic pain following the
nerve injury.71,77 However, the role of T cells in PNR is far from
resolved and the exact functions of different T cell subsets that
accumulate at injury sites are largely unknown.

Fig. 2 The profiles of macrophages in response to the injury of the peripheral system. The monocyte macrophages originating from the myeloid stem
cell are recruited to the injury site by cytokines or chemokines secreted by other immune cells and nonimmune cells. Together with resident
macrophages, they can be polarized into M1 (pro-inflammatory response) or M2 (anti-inflammatory response) phenotypes. M2 macrophages are further
divided into four subsets that endow macrophages with diverse roles. According to the local environment, M2 macrophages change their phenotypes
with specific roles, including phagocytosis in WD, interaction with other immune cells, initiation of vascularization, ECM remodeling and so on. Moreover,
the dynamic polarization balance of M1 and M2 phenotypes plays an indispensable role in nerve function recovery. IC: immunocomplex; TLR: Toll-like
receptor; A2AR: adenosine A2A receptor.
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According to the differences in cell surface cluster differ-
entiation antigen (CD), T cells are divided into CD4+ and CD8+

T cells. The TCD4+ T cells subpopulation contains T-helper cells
(Th1, Th2 and Th17) and regulatory T cells (Treg), and these
cells are essential for maintaining homeostasis after nerve
injury (Fig. 1(C)).78,79 Generally, the Th1-mediated immune
response can activate macrophages polarized into the M1
phenotype by secreting IFN-g. They also interplay with SCs that
improve the neurotrophic factor expression and promote cell
proliferation. Moreover, Th2 cells could release IL-4, IL-5, and
IL-13 and regulate macrophages towards the M2 phenotype to
form an anti-inflammatory environment. Th17 cells are
involved in neurological disorders but their role in PNI is rarely
reported.74,80 Bombeiro et al. used lymphocyte therapy to
improve nerve regeneration in traumatic injuries. Compared
to the control group, Th1 in the recipient groups revealed a
higher frequency at 7 days but not 21 days, and Th17 cells also
reached an early peak in the experimental groups. These
phenomena imply that boosting the inflammatory response
during WD could improve the conducive microenvironment for
axon regeneration. Notably, compared with the control group,
the recipient groups revealed higher expressions of brain-
derived neurotrophic (BDNF) at 7 days and 21 days. Behavioral
experiments revealed better sensory functional recovery in
recipient groups by the von Frey test.74 Additionally, Treg cells
make a great contribution to maintaining immune homeosta-
sis and regulating the inflammatory response by suppressing
the activation of other immune cells.81 They play a crucial role
in the resolution of the inflammation and functional recovery
after PNI by direct interaction with other cells or intermediate
mediators through secreting anti-inflammatory cytokines IL-10
and TGF-b. Moreover, they can regulate neutrophil migration to
the injury site, indirectly promote macrophage M2 polarization,
control the activity of conventional T cells, resist neuropathic
pain and shut down the overactive immune response.82–84 In
PNI, Treg-related IL-10 signaling is an intrinsic mechanism in
the resistant pathophysiology of neuropathic pain, which pro-
vides a possible approach to reducing suffering after PNI.85

4. Immune cells-based
immunoengineering strategies for
repairing injured nerves

Clinical peripheral nerve injury can be caused by crushing,
transection, stretching, neurological tumors or combined
damage. It usually requires end-to-end epineural tension-free
suturing after surgical treatment for short-distance gaps of
injury. When irreducible damage happens, nerve grafts (auto-
grafts or allografts), nerve transfer (bridge the proximal nerve to
target the motor endplate to accomplish earlier reinnervation)
and nerve conduits can be introduced. Although autografts are
the gold standard for the treatment of nerve injury due to their
non-immunogenicity, this microsurgical procedure has some
disadvantages, including causing secondary damage to the
donor site, a limited supply of donor nerves, and mismatching

between the donor and recipient sites.86 Tissue-engineered
nerve grafts provide an alternative strategy for nerve repair
and have achieved significant progress. The ultimate purpose
of tissue engineering strategies is to gain better nerve tissue
regeneration and functional recovery. More importantly, the
nerve conduits are used in clinical practice to help more people
heal from injury. Recently, artificial nerve conduits with parti-
cular designs have been widely developed to improve the
regeneration of the microenvironment, which further promotes
the functional recovery of nerve tissue. They are scaffold-based
materials that can be combined with physical properties
(mechanical, surface topography, fibers/hydrogel filled in con-
duits lumen, bio-inspired hierarchical structure) and chemical
factors (specific functional groups, immobilizing peptide, poly-
saccharide modification, small molecular drugs, neurotrophic
factors), thus providing a suitable microenvironment for nerve
regeneration.87,88 For scaffold-free strategies, the aim is gener-
ally to reprogram a specific cell population by the direct
transplant of the engineered cells or indirect delivery of a
therapeutic gene into living cells at the injury site in order to
promote regeneration.89 There are already some commercial
nerve conduits that have been approved by the US Food and
Drug Administration (FDA) for clinical use in peripheral nerve
injury, such as collagen conduits: NeuraGens Nerve Guide
(Integra LifeScience Co.) and Neuroflex (Collagen Matrix),
chitosan conduits: REAXONs DIRECT (KeriMediacal).90 As
mentioned above, immune response has an indispensable role
in peripheral nerve injury and functional recovery. Thus, reg-
ulating immune cells by tissue-engineering strategies will pro-
vide a new vision for nerve regeneration. It has been
demonstrated that implantable materials with diverse designs
could modulate the immune cells (neutrophils, macrophages,
dendritic cells et. al) and further regulate the healing/regenera-
tion process.91 Herein, we review recent efforts and immunoen-
gineering strategies in charging immune response in
peripheral nerve injury and functional recovery, and we discuss
the potential applications of immune cell modification in
clinical treatment.

4.1 Tissue engineering scaffold-based materials to regulate
the macrophage behavior

As the dominant cells in WD and nerve regeneration, it is
necessary to explore strategies for controlling macrophage
polarization towards an anti-inflammation phenotype and
promote the restoration of function after PNI.92,93 The
scaffold-based engineering implants focused on biomimetic
architecture design and microenvironmental factor modifica-
tion by targeting macrophages in transection injuries. Physical
(material composition, surface topological structure, roughness
and hydrophilicity of implants, and degradation), chemical
(functional groups/peptides or polysaccharide modification)
and biotical (delivery of cytokines, antibody or chemokines)
signals can have a synergetic effect on the biological behavior of
macrophages.94,95

4.1.1 Physical signals. In terms of the physical design of
implants, the small pores, low roughness, and high substrate
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stiffness of biomaterials can stimulate macrophages into pro-
inflammatory M1 subtypes, whereas scaffolds with a smooth
shape, low stiffness, high roughness and hydrophilicity tend
to trigger macrophages to polarize into anti-inflammatory M2
phenotypes.39,96 The composition, mechanical properties,
degradation, and drug-loading characteristics of scaffolds can
also modulate macrophage phenotypes. For example, in terms
of natural materials, our laboratory has demonstrated the
degradation products of chitosan, which are known as chitoo-
ligosaccharides (COS) that stimulate CCL2 expression. CCL2
further induce macrophage migration at the injury site to
reconstruct the microenvironment.97 In another study, chito-
san biomaterial without modified surfaces can specially sup-
port the PNR process by promoting macrophages polarized into
M2 phenotypes.98 Similarly, ECM and polysaccharide materials
such as hyaluronic acid (HA), alginate, and heparin have been
shown to modulate the plasticity of macrophages.99,100 The
physiological and anatomical structure of peripheral nerves,
mainly paralleling neuron fibers, and the electrical signal
conduction of nerve fibers are crucial factors of neurological
recovery. The popular design of implants for peripheral nerve
restoration is a topological microstructure with oriented micro-
grooved topography, physical fields, and conductive materials.
External stimulation, such as magnetic, electrical and optical,
is applied to improve the functional recovery of the nerve.101,102

Aligned poly(L-lactic acid-co-e-caprolactone) (P(LLA-CL)) nano-
fibers fabricated by the electrospinning technique have demon-
strated a better repair effect, at least partly, via modulating
the higher level of the M2/M1 ratio in a rat sciatic nerve defect
model as compared to random fibers (Fig. 3(A)).103 Luo and co-
authors demonstrated that the multifunctional biodegradable
conductive hydrogel could establish a biomimetic electrical
microenvironment to facilitate macrophage polarization
towards an anti-inflammatory phenotype that enhances nerve
tissue repair.104 Biodegradable waterborne polyurethanes
(WPUs) and polydopamine-reduced graphene oxide (pGO) con-
ductive nerve guidance scaffolds (NGSs) have been used for
peripheral nerve repair by regulating the macrophages to M2
subsets (Fig. 3(B)).105 In another work, poly(D,L-lactide-co-
caprolactone) (PLCL) films with micropatterns of diverse
sizes and surface-coated electrostatic adsorption of graphene
oxide (GO) nanosheets were established. In particular, the
micropatterns with GO film of 30 mm dimensions tend to
induce macrophages into the M2 phenotype by a higher expres-
sion of arginase 1 and IL-10, thus promoting nerve repair
(Fig. 3(C)).106 A similar phenomenon was also observed by
Dong et al. They showed that a graphene-based conductive
fibrous scaffold and exogenous electrical stimulation effectively
promoted PNR, partly by modulating the macrophage pheno-
type to M2.107 Several reviews have summarized the materials

Fig. 3 Examples of tissue engineering scaffold-based materials to regulate macrophage behavior. (A) Representative macrophage morphology on
random and aligned P(LLA-CL) nanofiber membranes under SEM, rhodamine–phalloidin staining and quantitative analysis of macrophage elongation
from top to bottom. Reproduced with the permission of Elsevier, copyright 2019.103 (B) Biodegradable waterborne polyurethanes (WPUs) and
polydopamine-reduced graphene oxide (pGO) conductive nerve guidance scaffolds (NGSs) for peripheral nerve repair. A schematic of the WPUs/
pGO NGSs for better nerve regeneration by regulating the macrophages to M2 subsets and stimulating axonal formation. Reproduced with the
permission of the publisher, copyright 2023.105 (C) The fabrication of the PLCL/GO film with micropatterns; this specific design of conduits can promote
the regeneration of PNI in rats by inducing the differentiation of macrophages into M2 phenotypes and directing SCs migration along the micropatterns.
Reproduced with the permission of the publisher, copyright 2020.106
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for regulating macrophage behavior. Generally speaking, micro-
patterns, stiffer substrates, a combination of biomaterial compo-
sition, alignment and stiffness, as well as the precise conductivity
of NGCs are factors that can induce macrophage polarization to
M2 phenotypes, which further provide a positive microenviron-
ment for nerve regeneration (Table 1).31,108–110 The mechanism
regarding the physical properties of biomaterials for regulating
immune cells/systems remains elusive. A deeper understanding
will be meaningful for designing a functionalized immunoregula-
tion scaffold for better peripheral nerve recovery for in vivo
applications.

4.1.2 Biochemical signals. Chemical modifications involve
specific functional groups (such as hydroxyl (–OH), carboxyl
(–COOH), amine (–NH2), sulfhydryl (–SH)), crosslinking with

agents (e.g., genipin, carbodiimides and glutaraldehyde),
immobilizing functional peptides or cytokines, and polysac-
charide modification. The crosslinking agents are applied to
biomaterials and can regulate the mechanical properties and
stiffness of the material. Functional groups/proteins/polysac-
charides connected to the scaffold can also influence the
interface between the material and cells, consequently modu-
lating macrophage response (Table 2).126–128 For instance,
genipin or formaldehyde crosslinking was performed on col-
lagen/chondroitin sulfate nerve guide conduits (NGCs). The
nerve regeneration effects were evaluated and it was shown
that the genipin crosslinked group produced increased
amounts of IL-10, whereas formaldehyde groups with higher
levels of TNFa regulated macrophages towards a pro-repair

Table 1 Physical signals for regulating macrophage polarization

Physical signals Results: immune response and underlying mechanisms for regeneration Ref.

Nanofiber/topography/
materials

1. Aligned poly(L-lactide) nanofibers could downregulate the proinflammatory M1 phenotype and upregulate the
pro-healing M2 phenotype of macrophages

111

2. Inhibition of M1 polarization by JAK-STAT and NF-kB pathways
1. Aligned nanofibers induced a pro-healing phenotype of macrophages and random fibers induced M1 subsets. 103
2. A higher ratio of M2 types and further infiltration of SCs
1. HA-coated collagen nanofibers were co-cultured with macrophages and an elongated shape of macrophages
was observed.

112

2. In in vivo experiments, the scaffold promoted the recruitment of anti-inflammatory M2 macrophages thus
providing a better regeneration environment
1. Polyethylene glycol and polycaprolactone hydrophilic nanofibers were prepared with an aligned topography 113
2. An increase in the hydrophilicity of aligned nanofibers induced the M2 subsets, further demonstrating that
macrophages sense the biomaterials by inflammasome NOD-like receptor thermal protein domain-associated
protein 3 (NLRP3)
1. Biodegradable polycaprolactone scaffold with Wnt3a protein modification. 114
2. The functional materials can promote M2 macrophage subsets in in vitro experiments, promoting the early
recruitment of macrophages and increasing the proportion of M2 macrophages
1. Nanodiamond–polycaprolactone guidance channels; 20 mm nerve defects in a rat model 115
2. Inducing M1 to M2 macrophage polarization in a timely manner; activating the M2 phenotype via the Janus-
activated kinase-STAT signaling pathway
1. Scaffold fabricated by inorganic lithium–magnesium–silicon (Li–Mg–Si, LMS) bioceramics. 116
2. The scaffold could promote the high expression of neurotrophic factors in rat SCs in a b-catenin–dependent
manner, as well as promote macrophages towards pro-regenerative M2-like cells.
1. Polycaprolactone (PCL) nanofiber membranes were combined with amniotic membranes. 117
2. The scaffold promoted the recruitment of macrophages and polarized them into the M2 phenotype by
releasing various bioactive substances. The anti-inflammatory microenvironment enhanced the ability of the
nerves to regenerate.

Stiffness 1. On a stiff matrix (50 kPa), the expression of macrophage M1 markers increased, but this phenomenon did not
occur on a soft matrix (1 kPa).

118,119

2. Material-mediated stiffness-induced macrophage polarization was mainly effected by a mechanosensitive ion
channel Transient Receptor Potential Vanilloid 4 (TRPV4) through the ROS/NLRP3 pathway-regulated
mechanism.
1. Collagen-coated polyacrylamide gels with varying stiffness to direct macrophage behavior. 120,121
2. Gels (323 kPa) prime macrophages towards a pro-inflammatory phenotype, while soft (11 kPa)/medium (88
kPa) gels induced an anti-inflammatory and high phagocytic phenotype
3. On soft and medium stiffness gels, macrophages display Rho-A kinase (ROCK)-dependent migration mode.

Physical fields 1. The scaffold had gradient-magnetized iron oxide nanoparticles. High magnetic saturation produced evenly
distributed micropores and a multilayer structure.

122

2. The scaffold could facilitate macrophage immunoregulation in vivo by mechanochemical signaling to
accelerate the repair of injured nerves.
1. A conductive scaffold with multiscale filled NGC: electrospun poly(lactide-co-caprolactone) (PCL)/collagen
nanofibers as the sheath, rGO/PCL microfibers as the backbone, and PCL microfibers as the internal structure

123

2. This NGC could enhance nerve regeneration by promoting neovascularization and M2 transition.
1. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] film covered indium tin oxide planar
microelectrodes.

124

2. Electrical stimulation could up-regulate macrophages to M2 subsets by the increased expression of the M2
polarization receptor interleukin-4Ra, while the M1 polarization receptor toll-like receptor 4 was not affected
1. Ultrasound therapy for a week (1 MHz frequency, intensity of 140 mW cm�2, 20% duty cycle, 5 min per day) 125
2. Decreased the number of pro-inflammatory macrophages and promoted reinnervation in autograft model
rats.
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state.129 Apart from the crosslinking agent mediating the
materials’ mechanical properties, the major purpose of
chemical modification is to mimic the microenvironment of
cells, which will influence their proliferation, differentiation
and other biological behaviors. In our previous research, we
utilized genipin as the crosslinking agent to immobilize the
TNF-a inhibitor onto a chitosan nerve conduit and evaluated
the repair effects of functional NGC on the sciatic nerve defect
in a rat model. The accelerated axonal regeneration and func-
tional restoration effects were observed, and the scaffold could
balance the harmful inflammatory stimulation to facilitate
peripheral nerve repair.130 Moreover, the combination of pep-
tides that mimic the active constituent of ECM or bioactive
factors is another key parameter for scaffold manufacture. Yang
et al. designed an injectable hydrogel with vascular endothelial
growth factor (VEGF)-mimetic peptide-encapsulated nanolipo-
somes. In a rat model, the specifically designed material
exhibited better functional recovery effects and promoted M2
subsets that provided a pro-regenerative microenvironment for
nerve repair.131

An additional method for administrating macrophage fates
is combining biotic signals for immunomodulation. In the
delivery of IFN-g or IL-4 by polysulfone tubes, macrophages
are successfully polarized into M1 and M2 phenotypes, respec-
tively. These macrophages can affect SC migration and prolif-
eration, thus complementing the evidence of macrophage
subsets displaying diverse functions in nerve regeneration.59

In another study, the therapeutic effects were significantly
improved in rat 15-mm gap sciatic nerve defects by collagen

gels with nerve growth factor NGF and IL-4, and higher den-
sities of macrophages were recruited to the distal nerve stump.
Moreover, IL-4-activated M2 subsets directly mediated angio-
genesis in the regeneration process.132 A polycaprolactone
(PCL) electrospun conduit with the continuous release of
collagen VI played a role in the recruitment of macrophages
and promoted M2 macrophage polarization.133 Notably, the
local delivery of fractalkine or cytokines target macrophages,
thereby modulating the phenotype and may be attractive can-
didates for peripheral nerve repair. The regeneration micro-
environment of nerves is complex and multiple factors coexist.
Bio-scaffolds not only have effects on macrophages but also
regulate the neuronal cell or Schwann cell behavior. More
importantly, the accurate modulation of the M2/M1 ratio to
fit nerve regeneration by bio-scaffold should be explored in-
depth.

4.2 The strategy of directly targeting immune cells for the
functional recovery of injured nerves

4.2.1 Macrophages. Inspired by therapies in the cancer
research field and the progress of stem cells, some researchers
attempted to manipulate endogenous or exogenous cells to
promote regeneration. Importantly, these cells can be applied
by systemic injection at the nerve injury site and can regulate
innate cellular behavior.141–144 An encouraging method is the
delivery of cells or nanoparticles for immunomodulation and
gene therapy. The engineered nanoparticles have unique geo-
metric, mechanical, and immunoprotective properties that can
avoid phagocytosis by the immune system, thereby allowing

Table 2 Examples of biochemical modification to induce macrophage polarization

Biochemical signals Materials and results Ref.

Crosslinking
reagent

1. Silk fibroin cross-linking with 1-ethyl-3-(3-dimethylaminopropyl-carbodiimide hydrochloride) (EDC) and glutar-
aldehyde (GA)

134

2. Degradation products of GA-SF: pro-inflammatory macrophage phenotypes; EDC-SF enhances polarization towards
anti-inflammatory macrophages.
3. M2 macrophages further stimulate the upregulate expression of NFG, laminins and stromal cell-derived factor-1 in
SCs
1. Collagen scaffold cross-linking with EDAC and genipin to modulate the stiffness of scaffolds 135
2. THP1 macrophages respond to cross-linking agent species rather than the bulk modulus of the scaffolds
3. EDAC cross-linking promotes a pro-inflammatory and anti-inflammatory phenotype of macrophages, while genipin
cross-linking suppresses the effects.

Cytokines 1. Synergistic effect of electrical stimulation and cytokine on the regulation of M1/M2 polarization 136
2. A square waveform selectively promoted LPS/IFN-g-induced M1 polarization and affected intracellular ion
concentration
3. A sinusoidal waveform promoted both LPS/IFN-g-induced M1, and IL-4-induced M2 polarization. Similarly, affected
intracellular ion concentration and membrane receptor.
1. Sciatic nerve crush injury in male C57BL/6 mice with IL-33 treatment. 137
2. With the 50 and 25 mg kg�1 doses, IL-33 could promote the macrophages toward an M2 phenotype and increase the
mRNA expression of NGF, VEGF, and BDNF

Bionic peptides/
hydrogel

1. The multidomain peptide nanofiber hydrogel was designed to mimic various motifs of ECM components and growth
factors.

138

2. The hydrogel could enhance the macrophage recruitment to the injury site of rat sciatic nerve crush injury and
promote a multicellular pro-regeneration response.
1. Self-assembly technology to fabricate bionic peptide hydrogel and entrapping with M2-derived cytokines and extra-
cellular vesicles.

139

2. The scaffold could promote M2 transformation in situ and recruit more blood-derived M2 macrophages to promote
nerve regeneration. Remodeling the local immune environment
1. The hydrogel was fabricated by a tissue-mimetic silk fibroin network and bisphosphonate-alginate network. 140
2. Facilitated the infiltration of SCs and macrophages and regulated the polarization of macrophage, thus, providing a
positive microenvironment for nerve regeneration.
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particles to adhere to immune cells and display immunomo-
dulation effects.145–147 In Wofford’s research, poly(lactic-co-
glycolic) acid microparticles loaded with an anti-inflammatory
drug, dexamethasone (Dex), were used to target monocytes, and
effectively directed the monocyte differentiation into macro-
phages. The released drug maintained an anti-inflammatory
environment without genetic modification. In this way, macro-
phages can be reprogrammed to a pro-healing phenotype and
they have the potential for macrophage-based cell therapy for
disease and regeneration.148,149 The delivery of cells or miRNA-
mediated macrophage polarization is also considered an
important mediator.150,151 For example, Zhang et al. encapsu-
lated gingiva-derived mesenchymal stem cells (GMSCs) in the
methacrylate 3D-collagen hydrogel and cooperated with the
decellularized small intestine submucosal extracellular matrix
(SIS-ECM) to significantly accelerate functional recovery and
axon regeneration in rat sciatic nerve injury, accompanied by
an increased infiltration of M2 macrophages and decreased
infiltration of M1 macrophages at injury site.152 Likewise,
poly(lactic-co-glycolic) acid (PLGA)/ECM conduits filled with
epidermal neural crest stem cells (EPI-NCSCs) for repairing
injured rat sciatic nerve also showed an increased expression of
anti-inflammatory cytokines (IL-4, IL-13) and decreased expres-
sion levels of M1 macrophages (low expression of IL-6, TNF-a)
7 days post-injury. Thus demonstrated the EPI-NCSCs’
potential for providing a suitable inflammatory microenviron-
ment for PNI.153 N. Iwasaki et al. grafted macrophages into the
injury site in a rat crush model. The experiment consisted of
three groups: IL-4 stimulated macrophages (IL4-MF), IFN-g
stimulated macrophages and no cell grafts. They demonstrated
that IL4-MF (typical M2 subset) could stimulate axon growth by
direct interaction with axons, consequently improving the
regeneration and functional recovery after PNI.154

Exosomes are a subset of extracellular vesicles (EVs), which
have diverse constituents including nucleic acids (DNA and
RNA), lipids, metabolites, and amino acids; therefore, they have
potential in various disease treatments. Their specific character-
istics provide a strategy for delivering diverse therapeutic payloads
to desired targets; the cargo involves short interfering RNAs,
chemotherapeutic agents and immune modulators.155–158 In the
field of peripheral nerve injury, exosome therapy strategies have
become a star method for macrophage immunomodulation
(Table 3). Compared to the repair effects of macrophage-delivery
microvesicles (MVs) (M1- or M0-derived MVs and M2-derived
MVs), the M2-derived MVs significantly increased the infiltration
and axon number of SCs in vivo. Moreover, the relative expression
levels of miR-223 were higher in M2-derived MVs. This
will hamper the migration and proliferation of SCs, and
NGF and laminin protein expressions were down-regulated
when miR-223 was inhibited.159 Similarly, a study found that
SC-derived exosomes could promote M2 macrophages and facil-
itate the axon elongation of DRG neurons. Under
the ischemia-hypoxic microenvironment following PNI,
oxygen-glucose-deprivation conditions induced Schwann cell
exosomes-promoted M1 polarization. It further demon-
strated that miR-146a-5p was the major factor that mediated
the macrophage shift from M2 to M1, thereby inhibiting
regeneration.160 Recent studies using exosome strategies to
modulate the immune microenvironment, especially macro-
phage polarization in peripheral nerve injury, and potential
mechanisms are outlined in Table 3. There are also excellent
reviews that summarize the exosomal miRNA delivered to the
interior of macrophages for regulating its phenotypes.161,162

These studies highlight the central role of genetic modula-
tion and macrophage polarization for ameliorating PNR
and will be beneficial for establishing more efficient

Table 3 Recent examples of exosome-mediated immune microenvironments for PNI

Exosomes
Animal
model Immune microenvironment Mechanism and results Ref.s

Schwann cell-derived exosomes Rat; crush
injury

SC-Exos: promote macrophage M2 polar-
ization; OGD-SC-Exos M1 polarization

1. MiR-146a-5p was significantly decreased
under the ischemia-hypoxic
microenvironment

160

2. Inhibition on the TRAF6/NF-kB pathway
Lipopolysaccharide (LPS)-
preconditioned mesenchymal stem
cells (MSCs) exosomes

Rat; crush
injury

Promote M2 macrophage polarization 1. TSG-6 served as a critical mediator in
LPS pre-Exos

163

2. Inhibition of NF-kB and NOD-like
receptor protein 3 (NLRP3)

MSCs exosome cooperative hydrogel
stiffness

Rat; crush
injury

Inhibit M1 macrophage-mediated
inflammation

1. Better repair effect of injury to the per-
ipheral nerve

164

2. The stiffness of the hydrogel could reg-
ulate exosome release behavior

Human umbilical cord MSC-derived
extracellular vesicles (hUCMSC-EVs)

Rat; trans-
ection
injury

Down-regulated interleukin (IL)-6 and IL-
1b, up-regulated IL-10

Motor function and the regeneration of
axons

165

Extracellular vesicles released by DRG
neuron cell bodies

Rat; spared
nerve injury

Exosomes were phagocytosed by macro-
phages and promoted a pro-inflammatory
phenotype

1. miR-21-5p is upregulated in DRG neu-
rons following PNI.

166

2. Contribute to sensory neuron-
macrophage communication after damage

Mesenchymal stem cell-derived
exosomes

Rats; facial
nerve injury

Facilitate M2 subsets and reduce the M1-
M2 polarization ratio

1. Decrease inflammation by p38 MAPK/
NF-kb pathway

167

2. Promote axon regeneration and
myelination.
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immunomodulatory strategies to improve peripheral nerve
repair and regeneration through understanding the immune
response mechanism of nerve repair.

4.2.2 T lymphocytes. For nerve recovery, T cell polarization,
recruitment or depletion is necessary through the effective
retention, improvement or biomimicking of the neuron regen-
eration microenvironment by biomaterials or cell therapy
(Fig. 4).168 For instance, Bombeiro et al. demonstrated that in
rat sciatic nerve injury models through dimethyl fumarate
(DMF) treatment, increased Th2 cells and reduced Th1 cells
were detected on day 7, as well as functional recovery was
improved by DMF treatment. DMF is a fumaric acid ester that
targets immune cells with anti-inflammatory, and immunomo-
dulatory properties and shifts the balance of macrophages or
lymphocytes to type II phenotypes. In this study, the authors
highlighted the role of DMF in PNI and provided new insight
into improving sciatic nerve regeneration by regulating the T
cells.75 Treg also attracted the attention of researchers as a
target for nerve injury-induced dynamic mechanical allodynia
or regeneration. In one study, the mice were treated with low-
dose interleukin-2 (ld-IL2) in the injured sciatic nerve or the
transfer of Treg to male C57BL/6J mice. The ld-IL2 treatment
group increased the ratio of Treg cells at the injury site. All
experiment groups effectively reversed the punctate and
dynamic allodynia following PNI.169 Mesenchymal stem cells
(MSC) were also available in tissue regeneration and exhibited
diverse immunomodulatory effects.170,171 The immunomodu-
latory effects of MSC on sciatic nerve regeneration revealed that
the modulation mechanism was partly associated with the
upregulation of Treg-related cytokines such as IL-4 and IL-10,
thus increasing the Treg coordination of positive or passive
inflammatory microenvironments during PNR.172 These
studies indicated that remodeling T cell populations to an

anti-inflammatory phenotype or targeting Treg may be an
effective strategy for peripheral nerve regeneration.

5. Conclusion and prospectives

In summary, the immune response plays a bidirectional role in
the repair of damaged peripheral nerves and regulates func-
tional restoration. The appropriate inflammatory response
enables the construction of a favorable microenvironment for
nerve regeneration; otherwise, excessive inflammation will lead
to neuropathic pain. Although there are lots of reviews that
summarize the neuroimmune interactions in PNI, they mostly
highlight the multi-functional roles of macrophages in the
processes of repair and functional recovery. In this review, we
have discussed in detail the different pathological character-
istics of various immune cells following nerve injury. After
axotomy, non-neuronal cells such as SCs and resident macro-
phages in the nerve stump segment express chemokines to
recruit neutrophils and monocytes. These cells coordinate with
each other and play indispensable roles in myelin and axonal
debris clearance, thus providing a better environment for
subsequent regeneration. Interestingly, the phagocytoses of
these cells are independent events, as the clearance of debris
can also proceed in the absence of SCs or macrophages. A
recent study has demonstrated that NK could also participate in
the process of WD and accelerate damaged axon clearance. It
also secretes cytokines that mediate M2 macrophage polariza-
tion and naı̈ve T cells to Th1 phenotypes. Neutrophils can not
only recruit macrophages and other immune cells to the injury
site but also promote monocytes to macrophages. It should be
emphasized that there is an immune response with spatiotem-
poral dynamic character following the PNI. Immune cells that

Fig. 4 T lymphocytes at the injury site and examples of T cell-mediated therapy for nerve repair. (A) A schematic of T cell character at the damaged site
following PNI. The green arrows represent the diverse roles of T cell subtypes with immune/non-immune cells. These interactions may be direct or
indirect ways to balance the regeneration environment at the injury site. (B) T helper cell phenotyping following the axotomized lymphocyte therapy in
the mice sciatic nerve crush model. Reproduced with the permission of Elsevier, copyright 2020.74 (C) Human Wharton’s jelly-derived mesenchymal
stem cells (hWJ-MSC) with immunomodulatory effects in promoting mouse sciatic nerve recovery and regeneration. Tregs are major contributors to
functional recovery. Reproduced with the permission of the Creative Commons Attribution CCBY, copyright r2020.172
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infiltrate the injured site can interact with other non-immune
cells and release many factors, inducing an inflammation
microenvironment. In turn, the dynamic microenvironment
remodeled by immune cells may provide appropriate condi-
tions for nerve regeneration. The underlying mechanism of the
pro-inflammatory to the anti-inflammatory response of various
immune cells should be further explored. Moreover, the diverse
subpopulations of neutrophils, macrophages, and T cells and
their specific roles in resolving inflammation, promoting axon
regrowth and improving functional recovery remain to be
determined. In general, in-depth analyses of the immune
regulation during the process of nerve repair are needed to
develop means of intervention.

Tissue engineering strategies by direct or indirect immuno-
modulatory function have been widely explored to improve the
immune microenvironment of injured nerves. Herein, we have
highlighted the macrophages and T cells-mediated scaffold-
based or scaffold-free tissue engineering tools to improve the
regeneration microenvironment. These smart biomaterials
with specific characteristics such as physical organization,
chemical composition, and biotical modification contribute
to the administration of the immune response that rebalances
the regeneration of the microenvironment for better functional
recovery. For scaffold-free strategies, the reprogramming of the
immune cellular behavior or phenotypes by the delivery of
functional nucleic acids or exosomes loaded with molecules
may be an exciting innovation in remodeling the regenerative
microenvironment. Furthermore, direct immunomodulating
approaches targeting macrophages and T lymphocytes are
important for improving regeneration. The local delivery
of the Treg subset or stem cells to target sites has been
proved. Immunosuppressive drugs, cytokine therapy, and che-
mokine therapy are gradually becoming alternative methods
for repairing injured nerves, and the immunological principles
are opening pathways for developing novel strategies for nerve
regeneration. We can anticipate that the immune-cell-mediated
tissue engineering strategies will accelerate and improve nerve
regeneration. However, we should note that microenvironment
remodeling by biomaterials is complex and regulating single
immune cells or cell therapy cannot solve all problems at
present. Instead of straightforward immunosuppression, ela-
borate immune modification is necessary. The research on
clinical translation should also be evaluated. The combination
of the intelligent engineering of biomedical materials and a
diversified delivery system of immunomodulators will provide
opportunities for effective therapeutic strategies to achieve
better peripheral nerve regeneration in the future.
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