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Gold-catalyzed (4 + 2)-annulations between a-alkyl
alkenylgold carbenes and benzisoxazoles with

reactive alkyl groupst
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This work reports new (4 + 2)-annulations of a.-alkyl vinylgold carbenes with benzisoxazoles to afford 3,4-
dihydroquinoline derivatives with high anti-stereoselectivity. The annulations are operable with carbenes in
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both acyclic and cyclic forms. This reaction sequence involves an initial formation of imines from a-

alkylgold carbenes and benzisoxazoles, followed by a novel carbonyl-enamine reaction to yield 3,4-

DOI: 10.1039/c8sc00986d

rsc.li/chemical-science with an external substrate.

Introduction

Metal carbenes are versatile intermediates to implement a vast
number of useful reactions including cyclopropanation, X-H
insertion (X = C, N and O), skeletal rearrangement and annu-
lation reactions (eqn (1))." Despite their widespread applica-
tions, applicable metal carbenes, derived from diazo
precursors, are mainly restricted to donor/acceptor (D/A) types I
(R = H, aryl and alkenyl; EWG = CN, ketones and esters)
whereas highly desirable a-alkyl metal carbenes II are less effi-
cient because of a competitive 1,2-hydrogen shift to form olefins
(eqn (2)).* This side reaction is particularly serious for gold
carbenes because their LAu = C" carbons are highly cationic.?
Few intermolecular reactions involving Ar-Pd(u) catalysts
focused on a-alkyl metal carbenes of D/A types.® The limited
utility of a-alkyl carbenoids features an unsolved and chal-
lenging task in metal carbene chemistry. We seek new a-alkyl
carbenoids beyond commonly used D/A carbenes II, aiming at
two objectives: (i) suppression of a 1,2-H shift and (ii) an alkyl
C-H reaction with an external substrate.

Interest in the reactions of benzisoxazoles is rapidly growing
in gold catalysis because of their various annulation modes with
gold m-alkynes.*® To explore the reactivity of benzisoxazoles
toward gold carbenes,” we first tested the reactions with D/A-
type benzyl a-oxogold carbene II' (R = Ph and EWG = CO,Et),
yielding an olefin product III' efficiently (eqn (3)). We envisage
that D/D type carbenes such as a-alkyl alkenylgold carbenes IV
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dihydroquinoline derivatives. This system presents the first alkyl C—H reactivity of a-alkyl gold carbenes

Currently used carbenes: D/A types

)le\ + substrates R = H, alkenyl and aryl cyclopropanation, X-H insertion, 1
rearrangement, annulation
" ! e / products
M
R\)J\ + substrates ——M8M > RJ\EWG 2
EWG
n n
M = Rh(ll), Au(l), Cu(l), EWG = CN, ketone, ester
Ag(l), Zn(ll), Pd(ll)
Our initial tests:
N2 LA en,
Ph P CO,Et 3
\ﬁj\coza €O
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C[/b I (>70%)
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This work: «<-alkyl alkenylgold carbenes (D/D
types)
H

H
R/\(;,\ -~ R/A\n/\ "
AuL V' *AuL o

-

reactive alkyl C-H bonds; no 1,2-hydrogen shift
novel (4+2)-annulations; high anti-stereoselection

might be viable species to achieve new annulations with ben-
zisoxazoles because their gold-stabilized allyl cation character
IV is unfavorable for a 1,2-H shift. According to this hypothesis,
this work reports novel intermolecular (4 + 2)-annulations
between a-alkyl vinylgold carbenes and benzisoxazoles, thus
manifesting an unprecedented C-H reactivity of a-alkyl metal
carbenes.

Results and discussion

As shown in eqn (5), we further tested the reaction of acyclic
alkylgold carbenes A that were generated in situ from cyclo-
propene derivatives 1a-1b and gold catalysts.®* With IPrAuCl/
AgSbF,, quinoline derivatives 3a and 3b were isolated in satis-
factory yields (72-75%), together with enones 1a-O and 1b-O in
minor proportions (17-19%). A 1,2-hydrogen shift was

This journal is © The Royal Society of Chemistry 2018
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effectively suppressed with vinylcarbenes A, supporting our
hypothetic role of gold-stabilized allyl cations A.

10 mol %
IPrAUCI/AgSbFg

_—

MS 5A°, DCE, rt

Ph

=
A : C[:\p
R R N

2a
(1.1 equiv)

R

1a-0 (19%)
1b-0 (17%)

R'= Et, R = Me (1a)
R'=Ph, R = n-Pr (1b)

w‘:

3a (12h, 75%)
3b (15h, 72%)

Our primary interest is to construct complicated frameworks
via cascade reactions. Fig. 1 depicts several bioactive
compounds (VI-1)-(VI-6) bearing a common tricyclic framework
VI, which can be easily constructed from cyclopentenylgold
carbene A’ and benzisoxazole. Indenoquinoline (VI-1) showed
antiproliferative activities against breast (MCF-7) and lung
epithelial (A-549) cells.** Species VI-2 and VI-3 served as 5HT2c
agonists and CRTH, receptor modulators, respectively.®”*
Compounds VI-4 and VI-5 were N-containing steroids found in
higher plants.>*® Species VI-6 is a key intermediate for the total
synthesis of naturally occurring (—)-isoschizogaline® and
(—)-isoschizozygamine.*

In this new task, we optimized the annulation cascades
between vinylallene 4a and benzisoxazole 2a in dichloro-
methane (DCM) using various gold catalysts; species 4a serves
as a precursor for cyclopentenylgold carbene A’ (Table 1).*

An initial test of IPrAuCl/AgSbFs at a 5 mol% loading
afforded a new azacyclic product 5a and cyclopentadiene 4a’
in 62% and 25% yields, respectively (entry 1); the latter was
derived from a 1,2-H shift of gold carbenes A’ that was
generated from cyclizations of gold-stabilized pentadienyl
cation A-I. Notably, an increased gold loading (10 mol%)
enhanced the yield of desired 5a up to 85%. Other gold
catalysts LAuCl/AgSbFs (L = P(OPh);, PPh; and P(¢-Bu),(o-
biphenyl)) gave 5a in 40-82% yields with L = P(OPh); being
the most effective (entries 3-5). For various silver salts as in
IPrAuCl/AgX (X = OTf and NTf,), resulting 5a was obtained in
65% and 71% yields, respectively (entries 6-7). AgNTf, was
entirely inactive (entry 8). IPrAuCl/AgSbFs in various solvents
gave 5a in the following yields: DCE 70%, MeCN 20% and 1,4-
dioxane 0 (entries 9-11). The molecular structure of
compound 5a was characterized with X-ray diffraction,"
showing an anti-configuration between the alcohol and
phenyl groups.

Au L‘

R =alkyl, aryl OMe
indenoquinoline (VI-1)

5HT2c agonists (VI-2)

R = H, steroid alkaloids (VI-4) Vi-6

CRTH, receptor modulators (VI-3) R = OMe, Azasteroids (VI-5)

Fig. 1 Suitable alkylgold carbenes to access bioactive molecules.
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Table 1 Catalytic reactions with various gold catalysts

+ HO, Hpn
©\4\ catalyst - Ph
0O — +
=N solvent, rt O P Q K
time N 4a
2a (1.1 equiv) 5a (X-ray)

yield® [%]

Entry  Catalyst [mol%] Solvent ¢t[h] 4a 5a 4a
1 IPrAuCIl/AgSbF, (5) DCM 12 8 62 25
2 IPrAuCIl/AgSbF, (10) DCM 3 — 85 12
3 (PhO);PAUCl/AgSbF, (10) DCM 3 — 82 16
4 Ph;PAuCI/AgSbF, (10) DCM 4 — 55 36
5 LAUCI/AgSbF, (10)° DCM 3 — 40 52
6 IPrAuCl/AgOTS (10) DCM 4 — 65 26
7 IPrAuCI/AgNTf, (10) DCM 4 — 71 20
8 AgSbF (10) DCM 24 95 — —
9 IPrAuCIl/AgSbF, (10) DCE 5 — 70 24
10 IPrAuCl/AgSbF, (10) MeCN 12 — 20 65
11 IPrAuCl/AgSbFs (10) Dioxane 10 — — 9

“[4a] = 0.05 M. ? Product yields are reported after purification from
a silica column. ‘L = P(t-Bu)y(o-biphenyl). IPr = 1,3-
bis(diisopropylphenyl)imidazole-2-ylidene, DCE = 1,2-dichloroethane.

Table 2 assesses the generality of these gold-catalyzed reac-
tions using various vinylallenes 4b-4t catalyzed with IPrAuCl/
AgSbFs (10 mol%) in DCM. All resulting products 5b-5t
assumed anti-configurations with the alcohol and R' groups
being mutually trans. We tested the reaction of trisubstituted

Table 2 Catalytic annulations with various alkenylallenes

o (10 mol %) HO, Hgt
1"
RIS o, CI\Q IPrAuCl/ AgSbF O ’ o
R? N DCM, rt, time NG ,
4(1 equiv) 2a (1.1 equiv) anti-5 R

HO, Hey
(1) R" = 4-MePh (5b, 1.5 h, 82%)>?
(2) R" = 4-OMePh (5¢, 1.5 h, 78%)

(3)R" = 4-CIPh (5d, 3 h, 88%)
(4) R" = 4-CF4Ph (5e, 3 h, 85%)

(6) X = OMe (54, 3 h, 84%)
(7) X = CI (5h, 3 h, 87%)

(8) (5i, 2.5 h, 82%)

(5)R" = n-Bu (5f, 3 h, 84%) HO, H HO, fig
' :N/: l
N
Ph (12)R" = n-Bu (5m, 2 h, 85%)

(11) 51 (1.5 h, 84%) (13)R" = i-Pr (5n, 1.5 h, 85%)
(14) R' = Cy (50, 2 h, 82%)

(15) R' = Ph (5p, 2.5 h, 80%)

(9)X =0 (5}, 1.5 h, 83%)
(10)X = S (5k, 2 h, 84%) HO, Hpy, HO, Hpn

HO, Hpp P n-Bu | P

N N
b f "
N (17) (5r. 3 h, 80%) (18) R? = Me (5s, 2.5 h, 82%)
(19) R? = n-Bu (5t, 3 h, 83%)

\ /

n-Bu
(16) (59, 3 h, 86%)

“[4] = 0.05 M. ? Product yields are reported after purification from
a silica column.
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vinylallenes 4b-4f bearing R' = 4-MePh, 4-OMePh, 4-ClPh, 4-
CF;Ph and n-Bu, yielding desired 5b-5f in 78-88% yields
(entries 1-5). For species 4g and 4h bearing 3-phenyl substitu-
ents (X = OMe and Cl), their corresponding products 5g and 5h
were obtained in 84% and 87% yields, respectively (entries 6
and 7). The reactions were extensible to other vinylallenes 4i-4k
bearing 2-naphthyl, 2-furan and 2-thiophene, further delivering
desired products 5i-5k in 82-84% yields (entries 8-10). We
tested the reaction on vinylallene 4l bearing distinct R' = Me
and R*> = Ph, which yielded compound 51 with an anti-
configuration in which the hydroxy and methyl groups are
mutually ¢rans (entry 11); this configuration was established by
the "H NOE effect. Additional alkyl-substituted vinylallenes 4m-
4p yielded desired 5m-5p in satisfactory yields (80-85%, entries
12-15). Variations of the R* group with an n-butyl group as in
species 4q gave expected product 5q in 86% yield (entry 16). We
prepared species 4r bearing varied R> = Ph and R® = n-butyl,
producing compound 5r in 80% yield (entry 17). For 1,3-
disubstituted vinylallenes 4s and 4t (R> = H), their resulting
compounds 5s and 5t were obtained in 82-83% yields (entries
18 and 19).

We tested these new annulations on distinct substrates such
as enynyl acetates 6a-6g, bearing varied phenyl (R = 4-XCgHy,
X = H, Cl, Br, Me, and OMe), 2-thienyl and isopropyl substitu-
ents; these enyne acetates can be catalyzed with the same gold
catalyst to yield distinct a-alkylgold carbenes A’ (see Table 3).*>
To our pleasure, new alkylgold carbenes A’, generated from
these enynyl acetates, were trapped efficiently with benzisox-
azole 2a to afford the desired (4 + 2)-annulation products 7a-7g
in satisfactory yields (61-74%), further manifesting the reaction
generality (entries 1-7). For unsubstituted propargyl acetate 6h
(R = H), its reaction led to a 68% recovery of initial 6h (entry 8).
Even if the reaction is successful, a dehydration of compound
7h would occur to give quinoline products. The molecular
structure of compound 7a (R = Ph) was confirmed with

Table 3 Annulation reactions with enynyl acetates

3 mol % R
IPrAuCl/ AngFs

- crb- |
N
)\( ﬂ LAU
a (1.1 equiv) 7 (anti) OAc

DCM rt, time

HO, HPh
OAc HO
) 7a (48 h, 74%, X-ray)

OAc OAc
(2) 7b (X =ClI, 48 h, 67%) (4) 7d (X = Me, 46 h, 71%)
(3)7c (x Br, 48 h, 66%) (5) 7e (X = OMe, 45 h, 73%)

HO, Hy,
N

OAc

(8) 7h (48 h, 0%)°

OAc OAc
(6) 7 (50 h, 74%) (7) 79 (47 h, 61%)

%6 = 0.05 M. ” Product yields are reported after purification from
a silica column. © A 68% recovery of initial 6h is found in entry 8.
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Table 4 Catalytic annulations with various benzisoxazoles

1
X R
R? N

2 (1.1 equiv)

4a (1 equiv)

R3 (10 mol %)
IPrAuCl/ AngFG

DCM rt, time

R

8 (antl)

R HO, Her,
[§! }
N
(1) 8b (R" = Me, 1.5 h, 84%)2°

(2) 8¢ (R = OMe, 1.5 h, 84%)
(3)8d (R" = Br, 2.5 h, 90%)

Jeses

(6) 89 (R2 = Me, 4 h, 88%)
(7) 8h (R?=Br, 3 h, 86%)
(8) 8i (R2=Cl, 3 h, 92%)

(9) 8j (2.5 h, 82%)

(4)8e (R'=Cl, 2.5 h, 85%)

(5) 8f (R" = OCO,EY, 3 h, 80%)
“ 42 = 0.05. ” Product yields are reported after purification from a silica
column.

X-ray diffraction analysis that revealed an anti-configuration
(Table 3).**

The scope of these catalytic reactions is further expanded
with various applicable benzisoxazoles 2b-2j substituted with
the C(3), C(5) and C(6) carbons. Other C(5)-substituted benzi-
soxazoles 2b-2f (R' = Me, OMe, Br, Cl, and -OCO,Et) main-
tained high efficiencies to deliver anti-configured products 8b-
8f in 80-90% yields (entries 1-5). High reaction efficiencies were
maintained also for C(6)-substituted benzisoxazoles 2g-2i that
furnished products 8g-8i in 86-92% yields (entries 6-8). A final
applicable reaction with a C(3)-substituted benzisoxazole 2j
enabled the production of a tertiary alcohol 8j, reflecting the
reaction feasibility (entry 9). "H NOE spectra were recorded to
verify the stereochemistry of compound 8j (Table 4).

Gold-catalyzed reactions of 3,5-dimethylisoxazole 2a’ with
vinylallenes 4a and 4u delivered 2-aminocyclopentadienes 9a
and 9b in 72% and 64% yields, respectively (eqn (6)).°***'* The
molecular structure of compound 9b was characterized with X-
ray diffraction.’* Cyclizations of compounds 9a and 9b with
a gold catalyst were unsuccessful because of the two different
forms of the enol imines (eqn (6)). To rationalize the origin of
the stereoselectivity, compound 5a was treated with Zn(OTf),
(20 mol%) in refluxing DCE to examine the hydroxyl epimeri-
zation that turned out to be slow. An equilibrium, anti/syn =
4:1, was attained for species 5a after reflux in DCE for 48 h

(eqn (7).

/’ \ (10 mol %) Ar
/% IPrAuCl AgSbFs AT "
2a' DCM, t, time Hoy = 0o 6

AN 7
r = Ph (9a, 8 h,72%)
r = Ph (4a) Ar = 4-BrPh (9b, 8 h, 64%, X-ray)
Ar = 4-BrPh (4u)
OHpy 20 mol %
Zn(OT!

O e ’
N/ DCE reflux
" 48 h, 95%

anti-5a anti/syn = 4:1 anti-5a syn-5a

Scheme 1 shows the stereoselective functionalizations of

anti-5a via NaBH, reductions and m-CPBA oxidations,

This journal is © The Royal Society of Chemistry 2018
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OH
H OH OH
g = Ph (1.5 equiv) Z Ph
m-CPBA NaBH,
% A G- O
N w0 DCM, rt,2h N MeOH NE
5a-0 (76%) sa 50°C, 48 h H A
H (909
AczO, EtN 5a-H (90%)
DCM, rt, 3h 0Ag
Ph
"%
DCM 60 °C N\ Itte]
5a-OAc (ss%) 4 min 5a-0; (85%)
X-ray
OH

4N NaOH

= Ph
(} /
THF/MeOH 2/1 N

7a* (88%) ©

Scheme 1 Chemical functionalizations.

R‘/\

Rl
R3 Q \ AL
a L ref[10] Y ) Ul B
R‘
R!
enamine- 5) _ R®
carbony\ -— N
R® « C R
D R 0

ant|-5 R2

Scheme 2 A plausible reaction mechanism.

respectively yielding compounds 5a-H and 5a-O as single dia-
stereomeric products. The stereochemistries of compounds 5a-
H and 5a-O were established with 'H NOE spectra. Likewise, the
acetate species 7a was readily removed under basic conditions,
yielding the enol form 7a' as shown by its NMR in CD;COCD;
and CDCl;. We also studied an Oz-induced oxidative cleavage of
the acetate derivative 5a-OAc to cleave the olefin group, yielding
the peroxide 5a-O; in 85% yield. The molecular structure of
species 5a-O3 has been characterized by X-ray diffraction.™

As depicted in Scheme 2, we postulate an initial formation of
imines between alkylgold carbene A and benzisoxazole, yielding
2-iminoyl benzaldehyde C. This hypothesis is supported by our
observation of 3,5-dimethylisoxazole, depicted in eqn (6). A
tautomerization of imine species C is expected to form
enamines D bearing an NH---O=C hydrogen bond. We believe
that this enamine form, unlike other enamine-carbonyl
couplings,* is stabilized with the NH---O=C bond to enable
a concerted process, analogous to the well-known carbonyl-ene
reactions. A boat-like conformation D is favorable to yield anti-5
stereoselectively.

Conclusions

This work reports novel gold-catalyzed (4 + 2)-annulations
between alkylgold carbenes and benzisoxazoles 2 to form 3,4-
dihydroquinoline derivatives. Gold carbenes in cyclic and
acyclic forms are both applicable. In this reaction sequence, the
gold complex catalyzes an initial formation of imines between
alkylgold carbenes™'* and benzisoxazoles; the resulting inter-
mediates bear an enamine moiety that is bound to an aldehyde
via a hydrogen bond to induce a carbonyl-enamine reaction.
Control experiments with 3,5-dimethylisoxazoles supported this
postulated mechanism. This new synthetic design involving o-

This journal is © The Royal Society of Chemistry 2018
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alkyl metal carbenes of D/D types will attract growing interest
because of its distinct utility.
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