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Doping a Cr;Zn molecular nanomagnet into a diamagnetic and iso-
structural host allows pulsed X-band EPR on single crystals, including
relaxation and nutation experiments on the S = 3/2 ground state.

The study of coherent electron spin dynamics in molecular nano-
magnets (MNMs) has recently become the subject of intense
research.'® This is inspired in part by proposals for quantum
information processing,'® exploiting, for example, the large total
spins and molecular size, intra-molecular excitations, and the ability
to make more complex structures via supramolecular approaches."" It
is also important generally in the study of how such molecules
interact with their environment.® Pulsed EPR allows direct measure-
ment of spin coherence; the first such studies for MNMs, on Cr;M
heterometallic rings, revealed phase memory times (7;; quantifying
the rate of loss of quantum phase information to the environment) of
the order of ps at a few kelvin." This and subsequent®® studies were
performed on dilute solutions, or doped into nanoporous silicon,” in
order to minimise decoherence due to intermolecular dipolar inter-
actions. However, the sample is then an ensemble of randomly
oriented molecules. Various proposals for MNMs depend on coherent
manipulation of an anisotropic spin multiplet."” Since transition
energies depend on orientation, the lack of alignment limits the
range of quantum information experiments that may be performed.

The obvious way to address aligned samples is in single crystals.
This requires alternative strategies to overcome inter-molecular
driven decoherence. Takahashi et al. reported pulsed 240 GHz EPR
on crystals of Feg under very high magnetic fields that quench
electron spin flip-flop relaxation.”® The alternative is to dilute the
MNM in an isostructural and diamagnetic host. This is straightfor-
ward for monometallic complexes,® but for high nuclearity d-block
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clusters it is rarely possible to prepare the diamagnetic equivalent.
Here we present single-crystal pulsed X-band EPR studies on
(Me,NH,)[Cr,ZnFg(0,C'Bu),6] (Cr,Zn), achieved by doping into the
diamagnetic Ga,Zn analogue.

Cr;Zn and Ga;Zn were prepared by adaptations of methods for
other M’;M (ESIt).”* The metal ions in each molecule define a planar
octagon, with each edge bridged by a fluoride and two pivalates, giving
a complex anion which is centred on a Me,NH," cation (Fig. S1, ESI}).
Single crystals of Cr,Zn (0.3% by mass) doped in Ga,Zn (Cr,Zn@
Ga,Zn), isostructural with the parent compounds, were grown from
toluene. CW EPR (Fig. S2, ESIT) shows the Cr,Zn dopant is incorporated
without scrambling of Cr™ and Ga™. Cr,Zn has a well defined total spin
S = 3/2 ground state, as characterised by INS™ and CW EPR," because
the hetero-ion prevents complete cancellation of spin despite the
antiferromagnetic coupling. At 5 K over 90% of the population (>99%
at 2 K) is in the ground state, which therefore dominates the EPR, with
the remainder in the S = 1/2 and 5/2 lowest excited states which lie at
6.7 and 15 cm ™, respectively, in zero-field."* The ground state has axial
and rhombic zero-ield splitting (ZFS) parameters of D = —0.4186 and
E=—0.0489 cm ™, respectively [spin Hamiltonian (1) with gi,, = 1.96; B
is the applied magnetic field]. The ZFS is largely dominated by the
single ions, but with important contributions from anisotropic
exchange."* The principal direction of the D tensor (the molecular z
axis) is normal to the Cr;Zn plane (the xy plane).

H = ugBgS + D[S,> — S(S+ 1)3] + E(S.> — 5,2 (1)

Cr,Zn@Ga,Zn crystallises in the tetragonal 4 space group (ESIT),
with the molecules lying on the C, axis such that the M',Zn rings are in
the crystal ab plane (Fig. 1). Crystals can be conveniently mounted
(Fig. S3, ESIY) to allow EPR measurement in the bc plane (Fig. 2). The b
and ¢ axes (which we define as 6 = 90 and 0°, respectively) are readily
identified from the turning points in the resonance field road map
(Fig. S4, ESIT). The coplanarity of the rings in the unit cell means there
is only one magnetically distinct molecule when B is parallel to ¢ (hence
the molecular z axis). However, because the Zn ion is disordered over
all sites of the Cr;Zn octagon, when B is off the ¢ axis there are
magnetically distinct molecules: if ¢ is the projection of B onto the
molecular xy plane then these correspond to ¢, ¢ + 45° ¢ + 90° and
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Fig. 1 Unit cell of Cr;,Zn@Ga;Zn viewed down the crystal c axis: Ga/Cr/Zn
(green), F (yellow), O (red), N (blue), C (black), Me groups omitted for clarity.
See Fig. S1 (ESI}) for full molecule.

¢ + 135° (further rotations about ¢ are equivalent). Hence we should
observe four sets of resonances from distinct molecules in the bc plane,
collapsing to one set at c. We have calculated'® the single orientation
spectra with this model, using the S = 3/2 parameters above; Z.e. with no
free variables other than a molecular azimuthal angle ¢ which defines
all four magnetically distinct molecules by symmetry. Good agreement
is found for ¢ = 16° (Fig. 2 and Fig. S4, ESIt). The simulations use a
natural linewidth of 4 mT with a D-strain of 15% and a crystal
mosaicity"® of ca. 2%.

The splitting of the spectrum into four inequivalent sites is most
clearly resolved in the low-field transitions (Fig. 2), which have much
narrower linewidths. This latter phenomenon is a result of the states
involved in the transitions, as shown by calculated Zeeman diagrams
for the S = 3/2 multiplet with B orientated just off the ¢ axis and along
b (Fig. 3). The low-field transitions are within a single Kramers
doublet, while the high-field transitions are between the mixed
|£1/2) and |+3/2) doublets. Hence, the former transitions are
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Fig. 2 Single crystal CW X-band EPR of Cr;Zn@GayZn in the bc plane at
5 K: experimental (thick) and simulated spectra (thin; summation over four
molecular orientations, see text). Crystal orientations from 6 = 0 (top) to
90° (bottom); high-field regions x20 for clarity. [The sharp feature at g =
1.96 (342 mT) is due to the S = 1/2 excited state.]
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Fig. 3 Top: Zeeman diagrams for the S = 3/2 ground state and X-band
EPR transitions calculated for 0 = 8° (left) and 90° (right; different colours
represent the four molecular orientations, see text). Bottom: experimental
(black) and simulated (red) CW, and FSED (grey) spectra at 5 K. [The peak at
330 mT, marked *, is intrinsic to the resonator.]

independent of the ZFS and are unaffected by D-strain."* In contrast
the latter transitions are significantly broadened by strain effects.

The doping reduces intermolecular effects sufficiently to allow
single crystal pulsed EPR: we observe spin echoes with a standard
Hahn sequence (n/2-t-m-1-echo) at temperatures below ca. 8 K. X-
band field-swept echo-detected (FSED) spectra were measured on a
polycrystalline sample (Fig. S5, ESIt) and on a single crystal at 0 = 0
and 90° (Fig. 3 and Fig. S5, ESIt) by integration of the echo intensity
at various static applied fields (16 ns n/2 pulse with fixed delay 7 =
200 ns). There is a clear correspondence of the S = 3/2 ground state
resonances between the CW and FSED spectra.

Ty was measured for the 366, 545 and 1220 mT transitions at c/lB
by monitoring the decay of the echo intensity as a function of t and
fitting to a stretched exponential function (Fig. S6, ESI; ESEEM
modulations due to 'H are observed). Ty, increases gradually from 5
to 2.1 K, reaching 0.87, 0.66 and 0.58 & 0.01 s respectively (Fig. S7,
ESIY). It should be possible to significantly enhance these values by:
(i) further dilution. A 0.3% dopant level gives a statistical range of
inter-spin separations and consequent dipolar interactions centred
round ca. 500 kHz. This frequency would put an upper limit of
ca. 2 ps on the spin-spin relaxation time 75, comparable with our Ty;
(ii) per-deuteration, reducing dipolar interactions with nuclear spins;"
(iii) using carboxylates and cation without methyl groups, reducing
spectral diffusion effects due to Me rotations and librations. We have
previously achieved ca. ten-fold enhancements of Ty for Cr;Ni in
dilute solution by these methods.® The Ty, values observed here are
similar to those measured for Cr;Ni with the same ligand set;® this
has an S = 1/2 ground state hence phonon driven modulation of the
ZFS does not appear to be a dominant relaxation mechanism. Ty,
values measured for AlIB at 4.5 K are in the range of those measured
for ¢IB (0.56 and 0.45 ps for B, = 612 and 840 mT), consistent with
observations on Cr,Mn (S = 1) in frozen solution that Ty, varies little at
different points (orientations) in the spectrum.*

Finally we show that we can perform coherent spin manipula-
tions on the Cr;Zn@Ga,Zn single crystal by nutation experiments. In
this experiment, a nutation pulse of duration ¢, tips the
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Fig. 4 Left: nutation experiment at 4.5 K measured at By = 1160 mT with clIB,
for a range of attenuation settings. Right: Fourier transforms of the nutations.

magnetisation through an angle gugB;t,/7, followed by a two-pulse
detection sequence [t,~T-n/2-t-n-t-echo, with fixed T and 4-step
phase cycling]. The echo intensity, quantifying the z-component of
the magnetisation after the nutation pulse, is measured as function
of ¢,. This experiment sets up a coherent oscillation between the two
states, corresponding to generation of arbitrary superpositions,
observed as oscillation of the echo intensity as a function of ¢,
Some authors describe these as Rabi oscillations, although this is
only strictly correct when the pulse bandwidth substantially exceeds
the EPR linewidth such that all spin packets rotate together.

We selected the highest-field and most isolated transition for cl/B,
with B, = 1160 mT, corresponding to the nominally ms = +1/2 to +3/2
transition with frequency 9.77 GHz. We find oscillations in the echo
amplitude as a function of ¢, (Fig. 4; T= 256 ns and the n/2- and n-pulses
are optimised for the power). The oscillation frequency is proportional to
the square root of microwave power (ie. to the amplitude of the
microwave field B; Fig. S8, ESIt), demonstrating that we are observing
coherent electron spin oscillations rather than other phenomena such as
ESEEM. The excitation bandwidth in this experiment is narrow com-
pared to the inhomogeneous broadening of the line, leading to a
nutation envelope that depends on oscillation number rather than time.

It has been noted in previous nutation experiments on MNMs
in frozen solutions®™ that the distribution in molecular orienta-
tions being excited (each with a different nutation frequency)
contributes to premature damping of the oscillations before the
limits placed by T\s. We have removed this factor in this single
crystal experiment and the limiting factors may include D-strain
and/or crystal mosaicity, with analogous effects.

In conclusion, we have reported the first pulsed EPR on single
crystals of doped MNMs. This opens the way for coherent multi-
frequency experiments manipulating the quantum spin state, thereby
testing proposals for their application in quantum information
processing. This work highlights the utility of the M’;M family in
testing new theories and experiments for MNMs, due to their tune-
able composition and magnetic properties.'® In this case, doping
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without scrambling of the metal ions is aided by the kinetic inertness
of the Cr(m) ion. However, the fact that an Fe,-doped Ga, material has
been synthesised (though pulsed EPR on it was not reported),"”
indicates that it is possible with more labile metal ions. Future targets
will also include doped dimers of S = 1/2 ground state MNMSs, which
we can prepare with tuneable interaction strengths,"® for potential
use in logic gates in analogy to the organic-based chemistry of Takui
and co-workers on doped single ctystals of nitroxyl dimers."
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