Engineering indium phosphide quantum dots for solar-driven energy conversion applications
Abstract
Colloidal indium phosphide (InP) quantum dots (QDs) have emerged as a compelling class of heavy metal-free nanomaterials due to their low toxicity and size-tunable optoelectronic properties, showing great potential in solar-driven energy conversion applications. Here, a variety of synthetic techniques for preparing high-quality InP QDs, including hot-injection, heat-up, cluster-mediated growth, and cation exchange, are thoroughly reviewed. To realize enhanced photocatalytic (PC) and photoelectrochemical (PEC) performance, diverse strategies such as core/shell engineering, hybrid ligand modification and elemental doping of InP QDs are discussed in detail, which are beneficial to build various efficient QDs-based systems for hydrogen evolution, CO2 reduction, ammonia synthesis, and H2O2 production. Moreover, the main challenges and future research directions of InP QDs are briefly proposed, providing guidelines to achieve future low-cost, eco-friendly, scalable and high-efficiency QDs-based solar energy conversion technologies.
- This article is part of the themed collection: Recent Review Articles

Please wait while we load your content...