Exploring the effect of water chemistry regulation on the ultrafiltration performance of a new membrane with multi-walled carbon nanotube modification: based on real source water tests

Abstract

Membrane fouling hinders ultrafiltration applications of polyvinylidene fluoride (PVDF). Besides membrane modification, water regulation is another promising strategy. However, limited information is available on regulating water quality from actual field water with specific organic compositions, especially when using a modified membrane. We explored the influence of pH values, ionic strength (Na+), and water hardness (Ca2+) on filtration performance, including the removal of dissolved organic matter and anti-fouling ability. Alkaline conditions hindered hydrophilic removal of organic matter and led to severe fouling in the nascent membrane. In contrast, the modified membrane demonstrated effective hydrophilic organic removal and improved fouling mitigation under the same conditions. The nascent membrane exhibited reduced organic removal and experienced severe fouling as ionic strength increased, particularly at 3 and 100 mM; the negative influence of increased ionic strength (3 mM) can be partially counteracted for the modified membrane. An increase in water hardness promoted organic removal at 1–10 mM, while aggregated macromolecules induced by Ca2+ ions caused severe fouling in the nascent membrane; such fouling was alleviated by the modified membrane, with the highest residual flux at 3 mM. According to the fluorescence results, pH values barely affected organic properties in the feed water, but organic properties mattered a lot for Na+ and Ca2+ ions. This study provides a comprehensive basis for improving filtration performance by regulating water chemistry conditions with a modified membrane as an efficient, low-energy method.

Graphical abstract: Exploring the effect of water chemistry regulation on the ultrafiltration performance of a new membrane with multi-walled carbon nanotube modification: based on real source water tests

Supplementary files

Article information

Article type
Paper
Submitted
24 ნოე 2024
Accepted
29 აპრ 2025
First published
14 მაი 2025

Environ. Sci.: Water Res. Technol., 2025, Advance Article

Exploring the effect of water chemistry regulation on the ultrafiltration performance of a new membrane with multi-walled carbon nanotube modification: based on real source water tests

Z. Yu, X. Wang, N. Liu, Z. Nie, H. Xie, X. Yang, Y. Wu and C. Cen, Environ. Sci.: Water Res. Technol., 2025, Advance Article , DOI: 10.1039/D4EW00952E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements