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Electronic paramagnetic resonance analysis of
point defects in lithium niobate: progress
and prospects

Huaize Qin,® Xu Chen,? Jiankang Zhang,? Yukun Song,® Longxi Zhang,® Qilu Liu,?
Fulei Wang,*® Dongzhou Wang, ©2 *° Yuanhua Sang 2 ** and Hong Liu @2°

Lithium niobate (LiINbO=z) crystals, renowned for their exceptional piezoelectric, electro-optic, and
nonlinear optical properties, are indispensable in photonic applications such as optical communication,
integrated optics, and laser technology. However, the performance of LiNbOsz-based devices is
fundamentally limited by point defects. Consequently, elucidating the mechanisms underlying point
defect formation and achieving precise control over defect engineering have emerged as critical
research priorities. Although conventional characterization techniques face inherent limitations in directly
resolving the microstructures of point defects, electron paramagnetic resonance (EPR) spectroscopy has
proven to be a pivotal analytical tool for the non-destructive characterization of paramagnetic defects,
driving significant advancements in LiNbOs defect research. This article summarizes the intrinsic and
impurity defects that significantly affect the optoelectronic properties of LiNbOsz crystals. Firstly, it
elucidates the primary types of point defects, their microstructural characteristics, and their impacts on
material properties. Subsequently, it highlights the advancements in EPR technology for studying point
defects and provides an in-depth analysis of its advantages in defect analysis. Finally, it proposes the
future concerns of studying point defects in LiNbOs3 crystals using EPR technology.

1. Introduction

Lithium niobate (LiNbO;) crystals, as a multifunctional crystal
material,’ exhibit the piezoelectric effect, electro-optic effect,
nonlinear effect, photorefractive effect, photo-elastic effect, and
acousto-optic effect” (Fig. 1). Various bulk and thin film devices
based on LiNbO; crystals are widely used in fields such as
optical frequency combs,** optical communication, integrated
optics,” and lasers.® Owing to its excellent optical-electrical
properties, LINbO; is regarded as “‘optical silicon” in the optics
field. Due to the significant advantages of single-crystal thin-
film LiNbO; in integrated optics, Professor Burrows at Harvard
University proposed “Now entering, Lithium Niobate Valley”.
Single-crystal defects can be classified into four categories’
based on their spatial dimensions: point defects, line defects,
planar defects, and bulk defects. In LiNbO; crystals, the main
types of defects include bulk defects (e.g., inclusions), planar
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Fig. 1 Properties of LINbOsz crystals.
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defects® (twinning boundaries), line defects® (dislocations), and
point defects'® (vacancies). Notably, advancements in crystal
growth techniques coupled with improved microscopic charac-
terization methodologies have enabled substantial progress in
elucidating the formation mechanisms of the first three defect
categories, along with effective suppression of their occurrence
density. Nevertheless, atomic-scale characterization limitations
persist in obscuring the generation dynamics and microstruc-
ture of point defects, becoming a critical bottleneck in optimiz-
ing the functional performance of LiNbO; crystals. As is well
known, the performance of LiNbO; crystals is closely related to
point defects. However, the formation mechanisms and elim-
ination methods of point defects in LiNbO; crystals have been
scarcely researched.

The investigation of point defects requires the integration of
multi-scale characterization techniques, primarily encompassing
magnetic resonance spectroscopy (e.g., electron paramagnetic
resonance’ and nuclear magnetic resonance'?), spectral analysis
(photoluminescence' and X-ray absorption fine structure'®),
atomic-level microscopy techniques (scanning transmission elec-
tron microscopy'>'®), synchrotron radiation characterization, and
computational simulations (density functional theory'’). Among
these, electron paramagnetic resonance (EPR) spectroscopy
enables non-destructive acquisition of critical defect information,
including local symmetry, coordination environment and charge
state through the detection of spin resonance signals from unpaired
electrons.” This technique is widely recognized as the central
methodology for establishing comprehensive point defect models
in materials science.'® Although significant experimental efforts
have been devoted to analyzing the point defects in LiNbO; crystals
by EPR spectroscopy, systematic reviews about point defect char-
acterization in LiNbO; crystals remain strikingly limited. Notably,
existing review articles’®”" predominantly focus on the electronic
structure and localized environmental analysis of extrinsic defects,
while systematic investigation of the EPR spectrum signatures and
defect dynamics in intrinsic defect systems remains notably scarce.
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Firstly, this review reviews the pivotal advancements facili-
tated by EPR spectroscopy in characterizing point defects
within LiNbO; crystals, systematically describing the analysis
results of EPR spectroscopy for intrinsic and external defects.
Secondly, we also noticed that EPR spectroscopy has more
important analytical application in stoichiometric lithium nio-
bate (SLN) crystals. Lastly, the future application of EPR
spectroscopy in defects analysis is proposed.

2. Point defects in LINbOz

The ideal crystal structure of an LiNbO; crystal consists of oxygen
octahedra stacked in coplanar arrangements, with their shared
planes perpendicular to the trigonal symmetry axis (i.e., polar axis).
These different stacked units interconnect through edge-sharing
coordination, forming an oxygen-octahedral framework>*>?
(Fig. 2a). As a ferroelectric material with a Curie temperature
of approximately 1483 K (1210 °C), it exhibits distinct para-
electric and ferroelectric phase structures. Its ferroelectric phase
structure arises from the cooperative displacement of Li" ions
and Nb>* ions along the crystallographic c-axis, generating spon-
taneous polarization through ionic rearrangement (Fig. 2b). At
this point, cations in the +c direction fill the oxygen octahedron
in the form of “~Li Nb-[J-Li Nb-[-", where “[J” represents
vacancies.”® This structure would be one of the key factors
causing LiNbOj; crystals to be plagued by defects.

2.1. Intrinsic defects

LiNbO; crystal is a typical non-stoichiometric crystal, and its
high-quality single crystal is usually grown from a congruent
melt (Li: Nb = 48.6: 51.4) using the Czochralski method, which
is called a congruent lithium niobate (CLN) crystal. Due to the
absence of Li', intrinsic defects mainly consisting of Li vacancy
(Vi) and anti-site Nb (Nby;) appear in the lattice. The existence
of these intrinsic defects significantly affects the electro-optical
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(a) Ideal structure of LINbOs, (b) ferroelectric phase (left) and paraelectric phase (right) structure of LiINbOs.
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and nonlinear optical properties of the crystal, thereby limiting
their applications in optoelectronic modulators, surface acous-
tic wave devices, and related fields. Therefore, the regulation of
these intrinsic defects and their effects on material performance
remains a critical research focus in the field of LiNbO; crystals.

Over the past few decades, substantial research efforts have
been devoted to developing intrinsic defect structure models in
LiNbOj; crystals. However, due to inherent theoretical limitations
and inconsistencies among various defect models, many have been
subsequently abandoned. This chapter focuses on four representa-
tive defect models that have demonstrated particular significance
in understanding the structural properties of LINbO; crystals.

Fay et al. (1968) first proposed the oxygen vacancy model,**
postulating that the absence of Li in crystals generates Li
vacancies, while requiring the concomitant formation of oxygen
vacancies to maintain charge neutrality. The structural formula
of this model is [Li; 5,V ]Nb[O3_,V,], where V represents a
vacancy. Based on this model, a positive correlation between
crystal density and Li content would be expected. However,
precise experimental results demonstrate that the crystal den-
sity decreases with an increase in Li/Nb ratio.”® This discrepancy
between theoretical predictions and experimental observations
ultimately led to the rejection of the oxygen vacancy model.

The Nb vacancy model was proposed,*® wherein excess Nb
occupies octahedral vacancies lacking lithium, forming Nby;, with
charge compensation achieved by niobium vacancies (V)
(Fig. 3a). At this time, the crystal chemical structure formula is
[Li;_5,Nbs,[Nb[O; _4,V4,]Os. However, based on the niobium
vacancy model, it was calculated that there are 5.9 mol% Nby;
and 4.7 mol% Vi in the CLN crystal with Li/Nb = 0.942. From an
energy perspective, these high concentrations of high valence Nby;
is unstable. Therefore, the ilmenite structure formed by the partial
exchange of Li* and Nb>* was proposed (Fig. 3b). This localized
ilmenite structure can transform high-charged Nb;i and V3, into
simple Vi;, thereby significantly improving the overall energy
stability of defect structures based on the niobium vacancy model.

Based on the differences in density and cell parameters of
LiNbO; crystals with different Li/Nb ratios, the Li vacancy
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model was proposed in 1968. This model suggests that excess
Nb in CLN crystals occupies the Li sites to form Nby;, with
charge compensation achieved through the formation of Li
vacancies (Vy;), as illustrated in Fig. 3c. The structural formula
is [Li;_5,V4xNb,]NbO;. Both the lithium vacancy model and
niobium vacancy model fundamentally exclude oxygen vacan-
cies in the LiNbOj; crystal, instead proposing the presence of
Nby; defects. The concentration of Nby; in the lithium vacancy
model is only around 1/5 of that in the niobium vacancy model,
resulting in a more energetically favorable and stable defect
configuration. In 1992, Iyi*” measured the lattice parameters,
density, and crystal powder diffraction data of LiNbO; crystals
with different compositions, supporting the lithium vacancy
model. Subsequent experimental studies®®*° have consistently
demonstrated that the lithium vacancy model is a more accurate
defect structure model, which has gained widespread accep-
tance in the scientific community. Density functional theory is
commonly used to determine the main intrinsic defects in
crystals. According to the formation energy of different defect
structures (EVLi ~ —0.23eV,Ey  ~ —1.20 eV, Enp +av,, ~ —0.25 €V,
Esnb,ravy, ~ —1.12 eV), Xu et al. predicted that the defect cluster
composed of four lithium vacancies compensating for anti-site
niobium in CLN crystals is the most stable structure.*" Li et al.
used a mixed hybrid exchange-correlation functional to
improve the computational accuracy and obtained similar con-
clusions that for most LN crystals, their Fermi level is located in
the lower half of the electronic bandgap, and anti-site niobium
and Li vacancies coexist (i.e. Nb, + 4V} ,). Nb vacancies may

only form under specific conditions.*>

Table 1 presents a comprehensive comparison of the four
major defect models for the LiNbO; crystal. Among them, the
Nby; defect has emerged as the most widely accepted defect in
LiNbO; crystals, which means that analyses focusing on Nby;
would be the key for defect analysis. Recent studies have further
revealed that Nb;; defects exert a significant influence on the
physical properties of LiNbO; crystals, demonstrating predo-
minantly detrimental effects across various crucial material

Nb vacancy model
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Fig. 3 Defect models in LiNbOs crystals. (a) Nb vacancy model, (b) ilmenite model, and (c) Li vacancy model.

6650 | Mater. Adv., 2025, 6, 6648-6663

1lmenite model

® Nb;

Li vacancy model

Vi @ Vy

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ma00721f

Open Access Article. Published on 13 8 2025. Downloaded on 2026/02/14 14:35:39.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

Table 1 Comparison of defect models for LiNbO3

O vacancy Nb vacancy Ilmenite Li vacancy
Model model model model model
Li vacancy J — — N
O vacancy N — — =
Nb vacancy — N, N, —
Anti-site Nb ~ — J J J

characteristics. For example, Nb;; defects act as photorefraction
centers®® between energy levels (Fig. 4a), greatly reducing the
optical-damage resistance threshold of the crystal. The electro-
optic coefficient, ye;, of the LINbO; crystal decreases with a
decrease in Li content from a stoichiometric ratio to the
congruent component, which was also assigned to the increase
in Nby; defects®® (Fig. 4b). Furthermore, the pinning effect of
Nby; defects hinders domain inversion,** substantially increas-
ing the domain inversion voltage in CLN crystals compared to
near stoichiometry lithium niobate (NSLN) crystals (Fig. 4c). In
addition, Wang et al. confirmed that the piezoelectric coeffi-
cient, ds, and electromechanical coupling coefficient, k/s, of
NLSN crystals are superior to that of CLN crystals at operating
temperatures in the range of 0-650 °C, which is also attributed
to the contents of Nby; defects®® (Fig. 4d).

2.2. Extrinsic defects

The incorporation of various doping elements significantly
enriches the properties and broadens the application prospects
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LiNbOs crystals, where X, represents the Li content in the LiNbO3 crystal.34
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of LiNbO; crystals*®™*® (Fig. 5). For instance, hydrogen atoms
typically exist in oxide crystals as OH ions,””"*® and the presence
of unexpected H ions can alter the refractive index of LiNbO,
crystals. Elements such as Mg,**' zn,** In,>*”* Sc,>® Sn,*®
Hf°7% and Zr,*>°%° which possess stable valence states and
optical inertness, are employed to enhance the optical damage
resistance in LiNbO; crystals. Conversely, Cu,®'"® Mn,** Fe,*>°°
Ni and Ce®”*® were used to enhance the photorefractive effect
by introducing the impurity defect energy levels in the crystal
bandgap. Additionally, rare earth ions such as Er,**””' Nd,”>"?
Yb,**”* Tb,”” Dy,’® Ho’”’® and Tm’® serve as active ions,
imparting laser properties to LINbO;.

However, doping engineering also introduced external
defects due to the different radii and ionic valence of the
dopants. When the doping concentration of Mg exceeds 6
mol%, the optical damage resistance threshold of the Mg:CLN
crystal significantly decreases, which is caused by the Mgy
defect formed by Mg occupying the Nb sites. Lanthanide
elements such as Nd and Yb have large ionic radii, which cause
severe lattice distortion in LiNbO; crystals, making them prone
to cracking during the growth process. In addition, the segrega-
tion effect causes a concentration gradient of doping elements
along the crystal axis, which changes the thermal expansion
coefficient of the crystal and may lead to cracking during
cooling. Obviously, micro defects serve as critical determinants
governing the physical properties of LiNbO; crystals. Conse-
quently, the application of advanced characterization techni-
ques is essential to systematically investigate the formation
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(@) Nby; acts as a photorefractive center in CLN crystals. (b) Dependence of the electro-optic coefficient, y¢1, on the crystal composition in pure
Reproduced from ref. 34 with permission from AIP Publishing, copyright 1998.

(c) Ferroelectric hysteresis loop of NSLN measured at room temperature.>” Reproduced from ref. 37 with permission from Elsevier, copyright 2022. (d)
Variations in electromechanical coupling factors and piezoelectric coefficients as a function of temperature for NSLN (red) and CLN (green) crystals.*®
Reproduced from ref. 36 with permission from the American Chemical Society, copyright 2024.
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Fig. 5 Application of dopants in the LiNbOj3 crystal.*®*° Reproduced from ref. 38 with permission from the Editorial Office of Opto-Electronic Journals
Group, Institute of Optics and Electronics, copyright 2022. Reproduced from ref. 39 with permission from the Optical Society of America, copyright 2011.

mechanism of defects and their influence on the physical
properties of crystals.

Lithium niobate on insulator (LNOI) is completely changing
the lithium niobate industry, with advantages such as higher
performance and new equipment and applications.®*" It not
only maintains the excellent optical properties of bulk crystals,
but also enables photonic devices/circuits to be easily scaled
down to the sub-micron scale.®* However, processing methods
such as ion implantation, ion beam etching, and ion irradia-
tion can cause lattice damage and introduce new defects.®?
Current research on LNOI primarily focuses on fabrication
quality, with the use of high-resolution X-ray diffraction to
verify the ordering of single crystals®* and Raman spectroscopy
to evaluate the quality of lattice arrangement.*® There are few
reports on the analysis of defects in LNOI, and aberration
corrected electron microscopy can be used to directly observe
the atomic occupancy. However, EPR technology has not yet
been applied to the analysis of defects in LNOI The defects or
damages have a significant impact on the various physical
properties of LN crystals. Post-annealing treatment is an effec-
tive method for restoring these damages and defects. Usually, H
ion implantation into waveguides requires annealing at a
temperature of 200-300 °C to reduce optical absorption and
improve the waveguide performance. Ashley et al.®® injected a
high dose of Ti into LN to form a planar waveguide, and the ion-
implanted region was completely amorphized. After annealing
at 1000 °C for 1 h, its electro-optic coefficient, y;3, was measured
to be 29 pm V', which is close to that of bulk crystals. High-
temperature annealing helps to restore the electro-optic proper-
ties of ion-sliced LN films.*”®® Moreover, SHG experiments

6652 | Mater. Adv., 2025, 6, 6648-6663

showed the recovery of the nonlinear coefficient of a LN thin
film after annealing at 600 °C.%°

3. Application of EPR in defect
characterization

3.1. Introduction of EPR spectroscopy

EPR spectroscopy is sensitive high-resolution spectrum tech-
nology for the detection of unpaired spins, which has been
widely used in fields such as physics, chemistry, biology, and
materials. Briefly, when EPR spectroscopy is used to study
unpaired electron spins in solid materials, Hamiltonian para-
meters can be used to describe various possible interactions,
which generally take the following form:

Hgpin = Hez + Hurp + Her + Hg t Hnz

where Hgy is the electronic Zeeman interaction, representing
the interaction between the effective spin, S, and the applied
magnetic field, B. As long as there are unpaired electrons, there
must be electron Zeeman interactions, which are an essential
component of the Hamiltonian parameter. Hg, can be repre-
sented by a g-tensor, which can reflect the local point symmetry
of defects. Hyr is a hyperfine interaction, representing the
interaction between the magnetic moment of unpaired elec-
trons and the magnetic moment, I, of nearby atomic nuclei.
When I > 0, hyperfine splitting occurs, dividing the spectral
lines into (27 + 1) lines. Obtaining an effective spin, S, and
magnetic moment, 7, through EPR spectrum analysis can help
us quickly determine the types and charge states of impurity

© 2025 The Author(s). Published by the Royal Society of Chemistry
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elements. Due to the influence of the electrical crystal field,
additional interactions called fine structure interactions (Hcr)
can occur in paramagnetic defects with S > 1/2, which will
result in 28 splitting of the EPR spectrum lines. Hg and Hyg are
the nuclear quadrupole interaction and nuclear Zeeman inter-
action, respectively, which are small compared to the Zeeman
energy and not stated here. For more details, readers can refer
to textbooks on EPR spectroscopy, as well as the recent article
by Rudowicz,”® in which the current situation in this area is
reviewed and discussed.

3.2. Application of EPR spectroscopy in defect analysis of

The formation of defect structures in crystals is fundamentally
governed by the charge states of impurity ions occupying lattice
sites and their corresponding charge compensation mechan-
isms. Excessive Nb occupies the Li sites in CLN crystals to form
Nby; defects, whose concentration and structure have not yet
been determined. Due to the complexity of the CLN crystal
structure and the limitation of experimental equipment resolu-
tion, it is usually difficult to directly observe the structural
information of Nby; defects. Furthermore, the substitution
mechanisms of doping elements in CLN crystals, particularly
concerning site occupancy preferences and charge compensa-
tion, remain poorly understood and require further systematic
investigation.

Fortunately, these defects in the crystal are originally para-
magnetic or after specific treatment, which can be detected by
EPR spectroscopy very accurately. EPR spectroscopy exhibits
exceptional sensitivity, and different elements with determined
nuclear spin numbers and abundances produce characteristic
spectral splitting patterns, which can serve as a “fingerprint”
for identifying defect identities.”® Additionally, ENDOR spectro-
scopy can probe the surrounding environment of defects,
providing crucial insights into their charge compensation
mechanisms. Therefore, some progress has been made by
EPR and ENDOR technology in analyzing defects in LiNbO;
crystals over the past few decades.

3.2.1. EPR spectrum analysis of intrinsic defect. In LINbO;
crystals, the Nby; defect has been widely recognized as the most
critical intrinsic defect. It was believed that due to the lower
content of Li in the CLN crystal, the higher strength of Nb-O
bonds compared to Li-O bonds, the small difference in ionic
radius between Li* (r = 0.76 A) and Nb°* (r = 0.69 A) and their
similar spatial environment, Nb tends to occupy the Li sites to
form Nby;.'® Peterson discovered two types of lattice environ-
ments for Nb>" in the CLN crystal lattice through **Nb nuclear
magnetic resonance experiments, which implied the existence of
Nby;.*® Therefore, extensive research has been conducted using
EPR spectroscopy to analyze the structural information of Nby;.

Schinner®” firstly obtained a nearly equidistant 10-line EPR
spectrum in CLN crystals after laser irradiation (Fig. 6a). This
was attributed to the hyperfine interaction between unpaired
electrons and **Nb nuclei (I = 9/2). The relevant Hamiltonian
parameters were calculated to be g, = 1.90, g, = 1.72, A| =
0.011 em " and A, = 0.023 em . Its hyperfine splitting and

© 2025 The Author(s). Published by the Royal Society of Chemistry
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g-shift are typical features of Nb*" in a distorted oxygen
octahedral environment.’>%® Based on the axial symmetry of
the spectrum, they attributed this signal for the first time to the
electron self-trapping of the Nb lattice, i.e. Nb, + e~ — Nbyp,.
However, Miiller et al. proposed an alternative interpretation by
analyzing the angular dependence of the Nb** signals. Their
fitting of the anisotropic g-tensor and A-tensor (Fig. 6b) sug-
gested a reduction in local symmetry around the Nb** center.”*
The observed symmetry reduction arises from the formation of
a charge compensation structure induced by the excess positive
charge of Nby;. This distortion of the local coordination environ-
ment provides compelling evidence that the EPR signals originate
from the Nb ions occupying the Li sites. Faust® noticed that the
intensity of EPR spectrum of Nbyy, is lower in thermally reduced
CLN crystals doped with 6 mol% MgO (Fig. 6¢). The reason for
this may be that high concentration Mg doping eliminates the
Nby; defects in CLN crystals, resulting in the disappearance of the
EPR spectrum belonging to Nb{{. Zheng et al’® provided
the calculated Hamiltonian parameters for Nb;; defects, demon-
strating excellent agreement with experimental data. Their ana-
lysis further revealed the structural configuration of the defect
center, showing that Nby; is displaced from the ideal Li site by Az
~ 0.19 A along the polar axis, while the coordinating oxygen ions
in the plane between Nbjj and Nby, exhibit a lateral displace-
ment of Ax ~ 0.30 A away from the C; axis. The reason for the
offset is that when Nb;; captures electrons to form Nbii, the
decrease in electrostatic repulsion causes Nby; to shift towards
the center of the oxygen octahedron. Meanwhile, due to the
overlap of electron clouds, the oxygen ions between Nbf; and
Nby, are far away from the oxygen triangle center. Regrettably,
the underlying mechanisms responsible for the enhanced Nbi}
signal in annealed CLN crystals following Xe lamp irradiation
remain unclear. In particular, the local charge compensation
structure associated with Nby; defects has not been fully
elucidated.

LiNbO; crystals exhibit darkening when heated to 500 °C
under a vacuum, hydrogen, or argon atmosphere, with progres-
sively intensified coloration as the temperature increases.”” UV-
vis absorption spectroscopy shows that annealed samples gen-
erate a broad absorption band centered at approximately 500 nm,
which shifts to 760 nm after xenon lamp irradiation (optical
bleaching).”®*° The proposed mechanism®®' is that the oxygen
vacancy introduced during reduction initially traps two electrons
to form neutral F-centers, which are responsible for the 500 nm
absorption peak. Upon optical bleaching, the F-centers release
one electron to become F'-centers. The unpaired electron in the
F'-centers interacts through hyperfine coupling with adjacent Nb
ions neighboring the oxygen vacancy, manifesting as a 10-line
EPR spectrum. Although other intrinsic defects such as lithium
and niobium vacancies may exist, they have not yet been experi-
mentally confirmed through spectroscopic characterization.

3.2.2. EPR spectrum analysis of extrinsic defects. The
deliberate introduction of extrinsic defects by dopants during
crystal growth serves as a crucial strategy for tailoring the
properties of materials. Thus, to elucidate the impact of doping
elements on the physical properties of crystalline materials, a

Mater. Adv., 2025, 6, 6648-6663 | 6653
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b4+
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LiINbOs3 crystals after vacuum reduction for the magnetic field parallel to the crystal c axis. (d) Defect structure of Nb;" center in LiNbO3.°® Reproduced

from ref. 96 with permission from Elsevier, copyright 2008.

comprehensive understanding of their lattice occupancy beha-
vior and chemical states is essential. The paramagnetic nature
of most dopant species in the LiNbO; crystal makes EPR
spectroscopy particularly advantageous for analyzing these
extrinsic defects. Among the various dopants, transition metal
ions and rare earth ions represent the primary extrinsic species
in LiNbO; crystals, consequently receiving the most extensive
attention in EPR-based defect studies.

(1) Transition metal ions

Transition metal ions are widely used to enhance the
photorefractive ability of LiNbO; crystals. Because their
unstable valence states can form defect energy levels in the
energy band of LiNbO; crystals, they serve as photorefractive
centers. The typical transition metal ions used are Fe, Cu, and
Mn, with Fe being the most extensively studied due to its
superior ability to improve the photorefractive performance.

For example, five different lattice sites of Fe have been
identified in LiNbO; crystals, namely Fe,, Fe,, Fez;, Fe,, and
Fes, respectively. The Fe; center with C; symmetry in Fe-doped
CLN crystals has been found, and several studies'®*™'° have
consistently reported a zero-field splitting (ZFS) parameter of
b3 ~ 0.1680 cm ' (Fig. 7a). Zhao'"” calculated the ZFS para-
meters D and ap of Fe’" at the Li (D = 0.860 cm™", ap =
0.03 cm™ ") and Nb (D = 1.054 cm ™, ap = 0.114 cm™ ) sites in
Fe**: LiNbO;. The ZFS parameters for Fe** at Nb sites closely
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match experimental (D = 1106 cm™ 7, ap =
0.128 cm™ '), indicating that the impurity ion Fe*" substitutes
Nb®*, rather than Li" in the LiNbO; lattice.

When the doping concentration of Mg exceeds the thresh-
old, the Fe, center'® emerges in Fe, Mg co-doped CLN crystals
(Fig. 7b). The angle dependence of the EPR spectra indicates that
this center exhibits low symmetry.'® Boker'®> proposed that Fe**
preferentially occupies the Nb’' sites, forming stable charge
compensation structures (Mgj; — Fexp). The reason for this is that
the smaller ZFS parameter D corresponds to the geometric posi-
tion of Fe’* occupying the Nb sites, making this configuration
energetically favorable in heavily doped CLN crystals. The Fe;
(Fig. 7c) and Fe; (Fig. 7e) centers are distinguished in stoichio-
metric lithium niobate crystals (grown with K,O as the flux,
denoted as SLN-K) doped with 0.45 mol% Mg and 0.01 mol%
Fe.'®'° The Fe, center is observed in the SLN-K crystal with
0.001% Fe (Fig. 7d). Due to the smaller crystal field parameter b3,
Fe;, Fe,, and Fes are attributed to Fe occupying the Nb sites. The
variation in EPR spectra for Fe centers at Nb sites is closely linked
to the concentration of intrinsic and extrinsic defects in the crystal
lattice. In Mg:CLN crystals, their charge compensation structure is
completed by 2Mgj; — Fe¥p, while in SLN-K crystals, charge
compensation is achieved through protons or additional Li".

Mn:Fe:LN crystals with deep and shallow energy levels can
utilize dual color storage to exhibit non-volatile storage properties.

results

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Understanding the substitution mechanism of Mn** in LiNbOj,
crystals is essential for optimizing their performance. The larger
hyperfine splitting constant of Mn>" suggests that the Mn-O bond
tends to be highly ionic.""" Peterson''? proposed that doped ions
that do not exhibit a tendency to form covalent bonds, but
preferentially substitute at the Li" sites. This conclusion is further
supported by ENDOR studies,"® confirming the Li site as
the dominant occupancy site for Mn. However, the zero-field
splitting parameter b3 of Mn?* decreases with an increase in
temperature.'**** This trend suggests a reduction in octahedral
distortion, consistent with Mn>* shifting toward the center of the
Nb-Og octahedron. This behavior suggests that Mn>" substitutes at
the Nb>* site rather than the Li* site, contradicting earlier inter-
pretations based on hyperfine splitting and ENDOR studies.

The above-mentioned results indicate that there is still
controversy over the occupancy of Mn in LiNbO; crystals. To
resolve this inconsistency, more comprehensive EPR experi-
ments should be designed and performed to unambiguously
determine the position of Mn>" in the lattice. Some other
transition metal ions, such as Cr**, Ti**, Ni**, and Co*, in
LiNbO; crystals have also been studied using EPR spectroscopy
technology.''”'2°

(2) Rare earth ions

Rare earth (RE) ions are incorporated into LiNbOj; crystals as
optically active centers, enabling their widespread use in solid-
state lasers,'*! optical amplifiers, and wavelength converters.
The spectral properties of these dopants are critically depen-
dent on their local crystal field environment, which is closely
related to the site location of the doped ions. RE ions in LiNbO;
crystals can locate at four cation sites, i.e., three octahedral sites
(Li" site, Nb*" site and a vacant octahedron) or an interstitial

© 2025 The Author(s). Published by the Royal Society of Chemistry

tetrahedral site. However, the actual occupancy situation is much
more complex. Spectroscopic studies have shown that even if rare
earth ions occupy the same lattice sites in LiNbO; crystals, they
exhibit different spectral properties due to being surrounded by
different lattice environments. The lanthanide ions with unpaired
electrons located in their 4f orbital are usually used in LiNbO;
crystals. Emission spectroscopy”’ and EPR spectroscopy'>> have
identified multiple non-equivalent centers with different symme-
tries for these ions, suggesting that the actual incorporation
mechanism involves a dynamic interplay between dopant ions
and the defect structure of the host lattice.

Nd** defect centers (g = 1.42 and g, = 2.94) with Cs
symmetry in CLN crystals have been found."”>'*® However,
the EPR spectrum of Nd*" in CLN crystals displays exceptionally
broad lines, making it difficult to resolve contributions from
different defect centers or isotopic effects. This explains that
why the hyperfine structure was not studied in ref. 110 and 111.
The EPR spectrum lines of Nd in NSLN crystals have higher
spectral resolution (Fig. 8a). Therefore, eight non-equivalent
Nd** centers were identified in NSLN crystals and the g-tensor
values of all the centers were determined. Although all eight
centers are the Nd-occupying Li sites,'*® they exhibit different
symmetries. Nd; and Ndg exhibit C; symmetry, as evidenced by
their angle-independent EPR spectra in the xy-plane (Fig. 8b
and c), respectively. The symmetry of the other six defect
centers is relatively low, and the reason for the different
symmetries is that the defect positions used for charge com-
pensation are different (Table 2).

Earlier studies'*® suggest that the Er’" centers with gj = 15.1-
15.4 and g, = 2.1 in the CLN crystal have C; symmetry (Fig. 9a).
However, the angular dependence of the EPR spectrum in the
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T = 20 K).}2® Reproduced from ref. 123 with permission from AIP Publishing, copyright 2015. (b) Angular dependence of the EPR spectra in nearly
stoichiometric LN:Nd**. T = 19 K, v = 9.813 GHz.'?* Reproduced from ref. 124 with permission from John Wiley and Sons, copyright 2006. (c) Angular
dependence of the EPR spectra in NSLN:Nd**. T = 19 K, v = 9.813 GHz.>* Reproduced from ref. 124 with permission from John Wiley and Sons, copyright

2006.

Table 2 Cartesian components of g-tensors for Nd** centers in crystal-
lographic axes of LINbO3.22® Reproduced from ref. 123 with permission
from AIP Publishing, copyright 2015

Center Gxx 8y &z 8zy +gox 18y
Nd, 2.995 2.995 1.448 0 0 0
Nd, 3.090 2.920 1.345 —0.040 0.015 0.240
Nd; 3.277 2.750 1.419 0.024 0.109 0.030
Nd, 3.430 2.700 1.421 0.035 0.100 0.220
Nd; 3.43 2.60 1.43 —0.13 0.18 0.20
Ndg¢ 2.915 3.06 1.454 0.008 0.043 0.025
Nd, 3.14 3.04 1.488 0.044 0.062 0.030
Ndg 2.970 2.970 1.563 0 0 0

xy-plane (Fig. 9b) confirms that the Er’* center (gy, = 0.546 +
0.110, g, = 1.356 =+ 0.024, and g, = 15.093 = 0.074) in the CLN
crystal has C; symmetry.'*”'?° The relatively large anisotropy of
the g-factor indicates that the Er** defect center may be located
in the distorted Li-O octahedron, i.e. Er*" occupies the Li site.
Th. Nolte'*° proposed that this symmetry reduction (C; — C;)
arises from the random distributions of the charge compensa-
tion structure Er**-Vy;, as illustrated in Fig. 9c. A new Er*" defect
center with g = 4.26 £ 0.05 and g, =7.8 £ 0.1 was identified in
Mg, Er:CLN crystals. The mean g value, (g, + 2g,)/3 = 6.6, is
characteristic of the Er’* center and closely matches that of the
previously reported center."*® The relatively small g-tensor ani-
sotropy in this case suggests that the Er** ions are located at the
Nb site compare to the previous one.

The tremendous narrowing of EPR spectrum in Yb (0.04
wt%):NSLN crystal (Fig. 10a) compared to Yb:CLN crystal,
enabled the resolution of nine non-equivalent Yb*" centers."
Among them, the spectral features of the Yb,, Ybs, and Ybe
centers remained invariant under rotation of the magnetic field
within the xy-plane, confirming their C; symmetry, while the
other centers exhibited lower C; symmetry. The Yb; center with
g1 =2.706 + 0.005 and g = 4.46 £ 0.01 closely resembles the
previously reported Yb** center in CLN crystals."** The ENDOR

6656 | Mater. Adv., 2025, 6, 6648-6663

experimental spectrum™®” (Fig. 10b) reveals the hyperfine inter-
action between the unpaired electrons of Yb; and Nb nuclei,
directly indicating that Nb is the nearest neighbor nuclei
(Fig. 10c). Therefore, it is reasonable to conclude that Yb, is
the Yb*" ion substituting for Li*. Due to the similarity between
the characteristics of the Yb,, Ybs, Yb,, Yb,, and Ybg centers
(Table 3) and the Yb; center, Malovichko®® proposed that all
these defect centers can be attributed to the substitution of Li"
by Yb*". This change in symmetry may be caused by the
different configurations of Li vacancies around Yb®" or the
different positions of Yb®" in the lattice.

4. Summary and prospective

In summary, EPR spectroscopy stands out as a powerful tool for
the characterization of defects in LiNbO; crystals, providing
unique insights into the formation and local structure of point
defects. Through the comprehensive analysis of EPR spectra
and determination of Hamiltonian parameters, this technology
enables the precise identification of defect types, quantification
of defect concentrations, localization of defect sites, and char-
acterization of structural modifications in the surrounding
environment. The structural information derived from Zeeman
interactions and zero-field splitting parameters, combined with
the analysis of quadrupole interactions and hyperfine cou-
plings between impurity electrons and their host/nuclear envir-
onments, provides a robust foundation for structural modeling.
These critical insights are crucial to explore the impact of
defects on the properties of crystals and how to precisely
control defects to improve the performance of crystal devices.
Over recent decades, EPR spectroscopy has undergone
remarkable progress in characterizing point defects in LiNbO;
crystals. The evolution of high-sensitivity EPR systems, com-
bined with improved control over crystal stoichiometry and the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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integration of advanced characterization tools, is expected to
provide unprecedented new insights into defect structures and
their interactions with the host lattice. These developments are
paving the way for the establishment of more sophisticated
defect models, thereby establishing a robust foundation for the
growth of high-quality crystals and the fabrication of high-
performance devices. Looking ahead, future research may focus
on the following aspects.

© 2025 The Author(s). Published by the Royal Society of Chemistry

4.1. Anti-site defects need to be clarified

As the most important intrinsic defects in LiNbO; crystals,
there are still doubts about the concentration, structure, and
charge compensation mechanism of Nby; defects. Although
some studies suggest that the 10-line EPR characteristic spec-
trum produced by xenon lamp irradiation of annealed CLN
crystals originate from Nby;, there is still a lack of direct
experimental evidence. Meanwhile, due to the lack of detailed

Mater. Adv,, 2025, 6, 6648-6663 | 6657
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Table 3 Cartesian components of g-tensors for centers in LiNbOsz:Yb>*.
The sign + reflects the presence of mirror conjugated centers with g, (L) =
—xy (R), gzx (L) = —gux (R).¥*2 Reproduced from ref. 132 with permission
from John Wiley and Sons, copyright 2008

Center 8Sxx 8yy &2z &y :l:gzx igxy
Yb, 2.706 2.706 4.46 — — —

Yb, 2.84 2.48 4.56 0.22 0.45 0.02
Yb; 2.63 2.67 4.35 —-0.15 0.10 0.17
Yb, 2.65 2.44 4.56 0.21 0.38 0.08
Ybe 2.68 2.68 4.44 — — —

Yb-, 2.64 2.44 4.56 0.21 0.39 0.024
Ybg 2.71 2.765 4.36 0.11 0.14 —0.07

information about the anti-site defect structure, it is impossible
to construct an appropriate intrinsic defect model; therefore, it
is essential to conduct more systematic and in-depth research.
Firstly, anti-site Nb exhibits a positive charge state due to
charge imbalance and has a stronger attraction to free electrons
compared to Nb in the normal lattice position. It is necessary to
find a suitable testing temperature that allows electrons at the
Nbyp, site to escape, while electrons at the Nby; site remain
bound. At this point, Nb¥; exhibits an EPR-silent state, and the
characteristic spectrum of Nb*" belongs to Nbfi. Secondly,
LiNbO; crystals with different compositions were subjected to
the same treatment and their EPR spectra were detected. It can
be expected that with an increase in Li/Nb, the characteristic
spectral intensity of Nbi] decreases and that of Nb3j, increases,
which will become favorable evidence for the existence of Nby;
defects.

In addition, the thermal stability and dynamic evolution of
defects were studied by first-principal theory calculation. How-
ever, the theoretical analysis could not draw a clear map of the
defect evolution. The thermal activation energy of different
defects varies, and at a specific annealing temperature, defects
undergo migration-recombination-annihilation, resulting in a
decrease in EPR intensity. By drawing the curve of EPR signal
intensity and annealing temperature change through an iso-
thermal annealing experiment, different types of point defects
can be identified, their migration energy can be measured, and
their interactions and evolution paths can be studied.

4.2. In depth analysis of high-resolution EPR spectrum-
assisted point defects in NSLN crystals

Although the EPR signals of Nb** have been detected in CLN
crystals, there is currently a lack of sufficient evidence to
determine whether the signals originate from Nb;; or Nbyp.
Moreover, there are differences in the Hamiltonian parameters
due to spectral broadening and insufficient resolution. When
the angle between the microwave direction and the crystallo-
graphic c-axis is too large, the intensity of the split signal will
decrease, thus being masked by noise. As a result, clear spectral
signals can only be observed on the axis. The same problem also
arises in the analysis process of doped ion defect centers. It is
difficult to comprehensively detect multiple non-equivalent
defect centers of doped ions in the crystal and construct suitable
defect models. EPR spectrum simulations have indicated that the

6658 | Mater. Adv., 2025, 6, 6648-6663
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linewidth, asymmetry, and intensity of forbidden transitions in
the spectrum are closely associated with inherent defects in non-
stoichiometric crystals. This is confirmed by the EPR spectrum of
SLN-K crystals, which exhibits narrower and more symmetrical
features compared to that of CLN crystals.

Moreover, many new EPR signals have been reported in
NSLN crystals doped with lanthanide ions. The results are con-
sistent with multiple non-equivalent defect centers shown in the
emission spectra, providing theoretical guidance for the occu-
pancy mechanism of doped ions. Doping a small amount of
elements in NSLN crystals can significantly improve certain
physical properties, such as the improvement of the optical
damage resistance of 1 mol% Mg-doped NSLN crystals,"** which
is similar to that of 4.6 mol% Mg-doped CLN crystals. This low
concentration doping helps to explore the mechanism of ion
doping and achieve precise control of functional crystals. In
addition, NSLN crystals may serve as an ideal system for verifying
first principles calculations due to their low defect density and
perfect lattice structure. Therefore, using EPR spectrum to ana-
lyze the defect structure of NSLN crystals has important
research value.

4.3. Advancing high-temperature and time-resolved EPR with
Al integration

At present, most EPR spectroscopy research is focused on low-
temperature conditions, and future research can be devoted to
developing high-temperature EPR spectroscopy for defect analysis
under conditions closer to practical applications. This technique
will help to understand the defect behavior and corresponding
physical property changes in materials at high temperatures,
providing guidance for the preparation of high-temperature piezo-
electric/electro-optic devices using LN crystals. Time-resolved EPR
combined with photoexcitation can directly track the carrier
trapping dynamics (hole/electron capture rates of defects), photo-
induced defect kinetics (formation/annihilation paths of oxygen
vacancies under UV irradiation) and spin-dependent charge trans-
fer (inter-defect interactions governing photorefractive response).
These results will provide important information for understand-
ing how materials respond to environmental changes in practical
applications. These insights are vital for optimizing the carrier
lifetimes in electro-optic modulators and suppressing optical
damage in high-power lasers. The significant advancement of Al
spectroscopy can help researchers process large amounts of
complex data more quickly and efficiently, combining machine
learning and data science technology to automatically identify and
classify defect features using EPR experimental data. This will
improve the efficiency and accuracy of data analysis and promote
the intelligent development of defect research.
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