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Historically, the chemical discovery process has predominantly been a matter of trial-and-

improvement, where small modifications are made to a chemical system, guided by

chemical knowledge, with the aim of optimising towards a target property or combination

of properties. While a trial-and-improvement approach is frequently successful, especially

when assisted by the help of serendipity, the approach is incredibly time- and resource-

intensive. Complicating this further, the available chemical space that could, in theory, be

explored is remarkably vast. As we are faced with near infinite possibilities and limited

resources, we require improved search methods to effectively move towards desired

optima, e.g. chemical systems exhibiting a target property, or several desired properties.

Bayesian optimisation (BO) has recently gained significant traction in chemistry, where

within the BO framework, prior knowledge is used to inform and guide the search

process to optimise towards desired chemical targets, e.g. optimal reaction conditions to

maximise yield, or optimal catalyst exhibiting improved catalytic activity. While powerful,

implementing BO algorithms in practice is largely limited to interfacing via various APIs –

requiring advanced coding experience and bespoke scripts for each optimisation task.

Further, it is challenging to seamlessly link these with electronic lab notebooks via

a graphical user interface (GUI). Ultimately, this limits the accessibility of BO algorithms.

Here, we present Web-BO, a GUI to support BO for chemical optimisation tasks. We

demonstrate its performance using an open source dataset and associated emulator, and

link the platform with an existing electronic lab notebook, datalab. By providing a GUI-

based BO service, we hope to improve the accessibility of data-driven optimisation tools

in chemistry; https://suprashare.rcs.ic.ac.uk/web-bo/.
1 Introduction

Decisions lie at the core of data-driven discovery. Within any step of a discovery
process, whether searching for a new drug molecule, optimising material
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properties for a target application, or identifying new reactivities and synthetic
routes, we are faced with choices. These choices range from identifying which
experimental conditions to run a reaction in next, to determining whether to
perform a simulation rather than experiment to save experimental cost and
resources. Each of these decisions is associated with a cost; and we, as chemists,
operate under some budget, which can take several forms, including: (i) available
consumables, (ii) instrument time, (iii) high-performing computing resources,
and so on. Historically, chemical intuition via a trial-and-improvement approach
has guided our decision making in new discoveries. Yet, this traditional approach
is very resource- and time-intensive. Indeed, it is estimated to take an average of
20 years to realize a newmaterial at the industrial level.1,2 Such long timescales for
discovery are problematic considering the gravity of the current challenges facing
humanity.

The traditional trial-and-improvement approach to discovery has been acceler-
ated by signicant advances in experimental hardware, including robotics and
automation,3 which increases the rate and scale at which experiments may be
performed. While powerful, the scale at which we are able to perform experiments
is minimal compared to the search space that we are faced with. Indeed, it is
estimated that there are between 1023 and 1060 hypothetical small (drug-like)
molecules.4 Notably, this estimate does not include synthetic considerations.
Chemical intuition guiding testing choices, where one factor/variable is changed at
a time, has found success historically;5 however, this approach rarely yields optimal
parameters, incorporates researcher bias, and typically requires a large number of
experiments to identify subtle trends.6 Design of Experiments (DoE) is a statistical
approach that screens multiple variables in parallel to gain a better understanding
of the design space. In this way, DoE elucidates the interaction of a large number of
experimental variables from comparably few experiments.7,8 Yet, DoE lacks the
ability to effectively explore design spaces.9 Indeed, we require informed search
techniques that consider factors not originally present in the initial model
assumptions, to efficiently and effectively optimise towards desired features.

Recently, Bayesian optimisation (BO) has shown signicant promise for
chemical applications, from reaction optimisation9–11 to chemical and materials
design,12–15 among others.16–18 BO's foundation on Bayesian principles allows
more effective and efficient identication of optimal setup/parameters by incor-
porating accumulated measurements in a dynamic experimental planning
workow. General BO formulations feature several steps: (i) collate initial sample
of data points, (ii) t a probabilistic predictive model (termed surrogate model) to
this data, (iii) predict performance of potential design alternatives, (iv) optimise
over these alternatives through an acquisition function. It is the acquisition
function that is used to determine the most promising points to evaluate; this is
achieved by balancing exploration (sampling in data scarce regions) with
exploitation (sampling in regions most likely to yield high objective values).
Beyond that, there are many more complex forms of BO including; (i) multi-
objective BO tasks, where several parameters are optimised at once,19 and (ii)
multi-delity BO tasks, where cost and accuracy are balanced by taking advantage
of varying approximations to the objective function (e.g. calculating vs. experi-
mentally measuring a property of interest), and (iii) high-throughput (batch) BO
where several possible solutions are suggested to be evaluated in parallel.20
222 | Faraday Discuss., 2025, 256, 221–234 This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Users (green) interact with Web-BO in two capacities, defining the optimisation
task, and performing the measurements. Web-BO offers data storage (yellow) is a SQL
database, or by integrating with an electronic lab notebook (ELN). Bayesian optimisation
(BO) is facilitated by solvers on the back-end, which take the current dataset, update the
surrogate model, and select the next experiment (purple).
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To facilitate efforts to use BO in chemistry, bespoke BO packages have been
introduced to help translate chemical problems to the BO formulation, including:
Gauche,21 which provides an interface for applying Gaussian processes (GPs) to
chemistry; GRYFFIN,22,23 which provides a platform to perform BO for chemical
optimisation tasks over varying chemical landscapes; EDBO+,24 which offers a web
application to facilitate BO for chemical tasks; and OLYMPUS,25 which offers
a framework specically to aid benchmarking optimisation algorithms. While these
packages present specic tools to aid optimisation, there exist larger platforms to
facilitate experimental planning and optimisation task implementations, including
BayBE,26 soware recently released byMerck that offers a back-end to support BO in
chemistry. Yet, each of these solutions are not easily accessible to non-experts in
coding and may not be easily integrated by experimentalists via GUI-based elec-
tronic lab notebooks (ELNs). ELNs provide a digitized platform for experimental
procedures, results, and notes – allowing for ease of data distribution, processing,
and storage.27 Additional resources are necessary to bridge the gap between data-
driven optimisation techniques, namely BO, and non-computational experts.

Here, we present Web-BO, a web application offering a graphical user interface
(GUI) to facilitate the application of BO to a wide array of chemical problems (Fig. 1).
Web-BO is a modular platform that is easily integrated into existing ELN frame-
works, and can be used as a standalone database and optimiser for chemical tasks.
All of the data is stored in a searchable SQL database in an intuitive and future-
proof form, enabling efficient benchmarking of various data-driven optimisation
algorithms. Lastly, withWeb-BO no coding experience is necessary to interface with
and apply BO algorithms to chemical optimisation applications. Here, we describe
the basic working interface and organization of Web-BO (Section 2.2) and
demonstrate its application and interface with an existing ELN (Section 2.3).
2 Results and discussion

Web-BO offers an interactive GUI for applying BO to chemical problems. With our
particular focus on increased accessibility here, we also linked Web-BO to an
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 221–234 | 223
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existing open-source electronic lab notebook (ELN), datalab.28 datalab is a recently
developed ELN consisting of a Flask-based python web server paired with an
intuitive GUI for efficient and effective data storage and maintenance across
research group(s). In the remainder of this section we describe the basic version
of the BO framework (Section 2.1), the organization and use of Web-BO (Section
2.2), and demonstrate the utility of Web-BO for a reaction optimisation case study
(Section 2.3).

2.1 Bayesian optimisation overview

In this section, we offer a brief introduction to BO and its basic formulation; for
a more detailed description, we direct readers to ref. 13, 29 and 30.

BO is a model-based, derivative-free optimisation method that affords efficient
optimisation of black-box functions that are expensive to evaluate. Within the
context of chemistry, objective functions and subsequent function evaluations
can take on a variety of forms. For example, one may wish to identify optimal
reaction conditions to maximise yield; here, the black-box function inputs are the
reaction conditions and the function is evaluated by performing the experiment
and measuring the yield. As in this example, solving directly to nd the global
optimal value is infeasible because the form of the objective function is unknown
and function evaluations are expensive. Therefore, instead an iterative procedure
is implemented where the black-box function (f) is sampled in an informed
manner, as shown in Algorithm 1.29 Next, while the remaining budget (for
example nancial or number of experiments that can be practically carried out) is
greater than the expended resources, the next data-point (x) to be sampled is
determined based on the optimisation policy. The suggested experiment is then
performed to yield the objective function measurement (y), and the dataset (D) is
updated with the results. This procedure is repeated until the budget is expired or
user-dened optimisation criteria are met.
To demonstrate the procedure outlined in Algorithm 1, let us consider an
unknown, real-valued, objective function (f), which is dened over some real-
space domain (c). Our objective is to identify the globally maximal value, f*,
and associated point x*,

x*˛ argmax
x˛c

f ðxÞ (1)
224 | Faraday Discuss., 2025, 256, 221–234 This journal is © The Royal Society of Chemistry 2025
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where

f ðx*Þ ¼ f ðxÞ
x˛c

¼ f * (2)

since the functional form of f is unknown, we approximate it by tting a surrogate
model to the data. While there are many options for surrogate models (e.g.
random forests, tree-structured Parzen estimators, Bayesian neural networks,
among others),30 we focus on Gaussian process regression models (GPRs) due to
their demonstrated performance on sparse datasets across chemical applica-
tions.31,32 At its core, the surrogate model is a probabilistic model of the objective
function, f, which is obtained by training on the existing dataset.

The objective function value of each point within the parameter space is then
able to be predicted by the surrogate model and presented as a mean value with
an associated uncertainty. The possible set of predictions and associated uncer-
tainties are ranked by tting an acquisition function. The acquisition function
balances exploitation (sampling areas in the parameter space where uncertainty is
small) with exploration (sampling areas in the parameter space where uncertainty
is large). From this scoring function, the next set of experiments is suggested. The
suggested measurements are then performed, and the dataset is updated with the
new observations.

The BO formulation described here is the simplest, single-objective, optimi-
sation problem; this is the current formulation that is supported by Web-BO.
There are many more complex algorithms available, including algorithms
where there are multiple objectives to optimise (multi-objective optimisation) and
where function evaluations can be performed with methods of varying accuracy
(multi-delity optimisation) implementations. The implementation of Web-BO
would allow facile integration of multi-objective optimisation and multi-delity
approaches in future releases.

2.2 Web-BO overview

At its core, Web-BO offers a GUI for BO application to chemical tasks. Fig. 2
outlines the basic structure and procedure provided by the Web-BO architecture
as it relates to the BO solver back-end and integration with ELNs; this is distilled
into ve main steps:

(1) Upload dataset: datasets are uploaded by the user in one of two supported
formats: (i) csv le, or (ii) datalab collection. Table 1 presents a sample csv upload
format; here, columns are variables and datapoints are rows.

(2) Dene BO experiment: BO options are dened by the user via an interactive
web form. This is comprised of three steps: (i) dataset selection, (ii) optimisation
space denition, (iii) BO algorithm component selection (i.e. Gaussian process
kernel, acquisition function, batch size, etc.). For example, in the case of the
sample dataset presented in Table 1, ‘target’ is the optimisation objective, and the
remaining variables (solvent, temperature, and pressure) dene the optimisation
space (e.g. we are changing those values to attempt to achieve a larger target).

(3) Make recommendation: recommendations for the next measurement(s) are
made (currently by Web-BO using BayBE), which ts the surrogate model on the
existing dataset, scoring the predictions using the acquisition function, and
suggests the next candidate measurement(s) to take. Notably, the user may dene
how many experiments they would like to perform each iteration (batch size) (see
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 221–234 | 225
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Fig. 2 The role of Web-BO in a general Bayesian optimisation (BO) framework is high-
lighted in yellow. The back-end calculations are presented in green and the step involving
experimentation is displayed in blue. While this is an iterative procedure, step numbers are
added to illustrate the flow of initial cycles.

Table 1 A sample csv input where target is being optimised over the space defined by
solvents, temperature and pressure

Solvent Temperature Pressure Target

a 25 1.0 2.34
b 45 2.3 4.56
c 55 2.3 10.33
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Section 2.2.2). For example, the next candidate measurement to take in the sample
dataset presented in Table 1 would consist of a solvent, temperature and pressure.

(4) Take measurements: measurements are acquired by the user; this may
involve either laboratory work, simulations, or a combination of both.

(5) Update dataset: users update the dataset with measurements (e.g. new
measurement(s) are appended to the end of the dataset) and the process is started
over again, if the termination criteria have yet to be reached. In cases where the
dataset is hosted by an ELN, changes to the dataset are reected in the Web-BO
database and the ELN database.

Fig. 3 highlights features associated with each of the steps of the workow
provided by Web-BO. The iterative procedure described above and shown in Fig. 2
and 3 is afforded by the underlying database architecture, Fig. 4. Web-BO is
structured such that datasets and optimisation experiments are stored indepen-
dently; this allows multiple BO algorithms to be tested for one dataset, thereby
enabling researchers to select the best-performing BO algorithm formulation for
their specic task. Indeed, this is important considering that there is not a single
226 | Faraday Discuss., 2025, 256, 221–234 This journal is © The Royal Society of Chemistry 2025
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Fig. 3 (a) The homepage displays all datasets and experiments in the database. The
‘Explore!’ button generates a sample optimisation task and dataset, “sample-Reizman-
dataset”. (b) Datasets may be uploaded from datalab, which is the currently integrated
electronic lab notebook (ELN). (c) Experiments are defined in several steps; here, two
examples are shown: (i) dataset options are pre-populated from the database, (ii) the
variable types for each parameter in the dataset must be defined. After the type is selected,
the page dynamically queries for user input. Input validation is offered to ensure that the
parameter space is accurately defined (i.e. format of categorical/chemical variable options
are acceptable, and continuous/integer variable ranges fit within the constraints of the BO
solver). (d) Running experiments involves generating new recommendations and: (i)
adding measurements to the dataset. Recommendations are pre-populated in the form
for ease of use, (ii) optimisation progress is visualised.

Fig. 4 The entity relationship diagram for the database for Web-BO consists of three
parts: (i) researcher, (ii) dataset, and (iii) experiment. The links between the entities denote
the specific relationships; a single researcher can have many datasets and experiments,
and a single dataset can be associated with many experiments.
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ideal algorithm that is best suited to all (chemical) tasks.33 Next, we describe the
dataset formats (Section 2.2.1) and BO formulation options (Section 2.2.2) sup-
ported by Web-BO.
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 221–234 | 227
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2.2.1 Dataset options. Datasets may be uploaded in a csv le format or
datalab collection. This allowsWeb-BO to be adapted to many different workows
withminimal user modications. Specic format requirements are detailed in the
Web-BO documentation.34,35 Briey, datasets are assumed to include a set of
experimental variables to be tuned, and the associated measurements of the
variable to be optimised; Table 1 provides a sample input format. Each dataset is
stored as a separate entry in the Data database associated with each unique user,
Fig. 4. Dataset entries are dened by: (i) id (primary key), (ii) name, (iii) data
stored in a json format, (iv) variable list generated from the data upload, and (v)
user id.

To support the use of ELNs in chemistry, Web-BO offers a modular platform
that may be extended to support data structures offered by existing ELN plat-
forms. Indeed, several ELN solutions specic to the chemical sciences have been
introduced; including LabTrove,36,37 Indigo-ELN,38 OpenEnventory,39 Chemotion
ELN,40 and datalab. Here, we demonstrate this utility by integrating datalab –

a recent, open source addition to this space that supports a wide array of chemical
applications. Datalab's modular architecture allows for customised organisation
and data formats to be implemented. Fig. 3b outlines the information necessary
to query a datalab instance using its API, including the API key, the domain name
of the datalab repository, the variable names of the dataset, as well as two vari-
ables that describe the exact data to be collected (collection ID and block ID). The
latter two are specic to the structure of datalab, they refer to the name of
a collection of data in the repository and exact parts of the data to be collected,
respectively.28

2.2.2 Experiment options. Within Web-BO, each BO task is called an
“Experiment” and is dened by several optimisation parameters; these are out-
lined in the experiment database structure description in Fig. 4 and fall under
three categories: (i) unique experiment identiers (id, name), (ii) dataset and
parameter space denition (dataset, variables), and (iii) optimisation hyper-
parameters (kernel, acquisition function, optimisation type, and batch size).
Fig. 3c presents two screenshots of the form used to dene an experiment on
Web-BO; this is comprised of three steps.

(1) Select dataset: dataset options are pre-populated from the datasets con-
tained in the database.

(2) Dene optimisation space: the type of variable needs to be dened for each
optimisation parameter. The supported options are: (i) integer, where variables
take on integer values between user-dened minimum and maximum values (e.g.
number of units of a reagent); (ii) continuous, where variables represent
measurements between user-dened minimum and maximum values (e.g.
solvent ratio, temperature, pressure); (iii) categorical, where variables may be
selected from a user-dened list of options (e.g. candidate solvents); and (iv)
chemical, where variables are chemical structures represented as SMILES
strings41 (e.g. reagents, products, etc.). When one of the variable types is selected,
the user is queried for additional information. In the case of continuous and
integer variables, the user is asked for miminum and maximum values. In the
case of categorical and chemical values, the user is asked for a list of candidates to
select from, which are uploaded as a csv le. Categorical candidates are one-hot
encoded. Users are able to select from varying chemical encodings for chemical
228 | Faraday Discuss., 2025, 256, 221–234 This journal is © The Royal Society of Chemistry 2025
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candidates, including Mordred, Morgan molecular ngerprints, and one-hot
encoding. Web-BO offers the option to validate the optimisation space.

(3) Select BO components: there exist several parameters used to fully dene
the BO algorithm. First, the optimisation type describes whether the objective is
to be minimised or maximised. The batch size describes how many experiments
are performed in one iteration. The parameter to optimise is selected from a pre-
populated dropdown menu. The GP kernel, which effectively indicates the simi-
larity between two datapoints, is dened; options currently include Matern, and
Tanimoto. Finally, the acquisition function is selected; options currently include
Expected Improvement, and Probability of Improvement.

It is important to note that, while there are many surrogate models that may be
implemented in BO, Web-BO currently only supports Gaussian processes (GPs) as
surrogate models. GPs are non-parametric models that offer quantitative uncer-
tainty, allow for exact Bayesian inference and are known to work well for sparse
datasets.21,42 Due to these factors, they have demonstrated success across chem-
ical applications.31 Presently, the back-end of Web-BO is supported by BayBE.26 In
the future, we envisage integrating features that allow users to upload and inte-
grate bespoke solvers, as well as offer support for alternative BO soware plat-
forms, including BOTorch,43 and BOFire.44
2.3 Case study

To facilitate ease of use and to help users acquaint themselves with the Web-BO
framework, we offer a case study involving reaction condition optimization to
maximize yield; the initial data and results are pre-loaded in the Data and
Experiment databases for each new user account and accessed by selecting the
‘Explore!’ button on the homepage (Fig. 3a). Full demonstration of ELN integra-
tion requires a datalab account and webserver, detailed in Fig. 3b; therefore we
offer detailed documentation on Github to support end users in this endeavour.35

Determining the ideal reaction conditions (e.g. temperature, time, solvent
ratio, etc.) that maximise yield, is a common optimisation task encountered in
chemistry.45 Indeed, catalytic reaction optimisation is more complex; even for
systems whose mechanism is well-understood, such as Suzuki–Miyaura cross-
coupling reactions, selecting the ideal catalyst–ligand system for a particular
reaction is nontrivial. This was recently highlighted by Reizman et al., who
screened and optimised several Pd-catalyzed Suzuki–Miyaura cross-coupling
reactions.46

The case study that is integrated in Web-BO concerns optimizing the coupling
of 3-bromoquinoline with 3,5-dimethylisoxazole-4-boronic acid pinacol ester in
the presence of 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) and THF/water, Fig. 5,
originally presented by Reizman et al.46 The objective of this optimisation case
study is to maximise the reaction yield, given ve optimisation parameters,
Fig. 5c. While the original study also optimised towards turnover number, to
maintain simplicity in the case study, we elect to reformulate the optimisation
task into a single-objective problem, where we want to maximise yield.

A critical step in the BO procedure involves performing the experiment (step 4
in Fig. 2). We rely on existing experimental emulators to facilitate this case study.
Emulators are ML models trained on experimental data to reproduce chemical
response surfaces; thus, instead of performing an experiment, we can query the
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 221–234 | 229
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Fig. 5 (a) Reaction scheme for the Suzuki–Miyaura cross-coupling of 3-bromoquinoline
with 3,5-dimethylisoxazole-4-boronic acid pinacol ester in the presence of 1,8-diazo-
bicyclo[5.4.0]undec-7-ene (DBU) and THF/water. (b) The precatalyst scaffolds (P) and
ligands (L) that comprise the catalysts explored in this study. (c) The optimisation space for
this case study is composed of four parameters.
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model to predict the outcome. Here, we take advantage of the Suzuki–Miyaura
cross-coupling emulator presented by Felton et al. when querying the objective
function within the BO algorithm.47 Fig. 3 presents the main pages of Web-BO
that are involved in setting up and running the case study. For a further
230 | Faraday Discuss., 2025, 256, 221–234 This journal is © The Royal Society of Chemistry 2025
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demonstration, we encourage readers to engage with the video demonstration in
the documentation.35

3 Conclusions and future outlooks

While chemical intuition is powerful and has led to signicant advancements
across disciplines, integrating data-driven decision making into the chemical
design and optimisation process has demonstrated success covering a broad
range of applications. Here, theory is used to suggest the next parameters for
experimentation. BO is just one implementation of data-driven decision making –
and has shown signicant promise across chemical optimisation tasks. Yet,
current implementations of this powerful tool require advanced coding knowl-
edge. While coding has been increasingly integrated into chemical education,
there still exists a need for tools that allow for alternative interaction and
implementations of BO.

Web-BO offers a modular GUI for exploration of BO application to chemical
optimisation problems, enabling increased accessibility and ease of experimen-
tation. There may be instances where researchers are unsure whether BO is the
right algorithm for their task; in this case, Web-BO offers an intuitive platform
with which to easily answer this question without the need to delve into the
coding details. Indeed, this platform provides a visualisation of the steps neces-
sary to develop a closed-loop workow – where suggestions made by theory are
directly sent to autonomous platforms for experimentation. Web-BO allows for
the fact that closed-loop workows are not always feasible and human interaction
is required (human-in-the-loop);48 this is the solution provided by Web-BO.

Web-BO currently offers support for single-objective optimisation tasks using
Gaussian processes (GPs) as the surrogate model. Indeed, there exist many other
more complex BO formulations, including multi-objective BO (multiple param-
eters are optimised) and multi-delity BO (measurements possessing varying
degrees of accuracy and cost may be performed), among others, which will be
supported by Web-BO in the future. Further work will also integrate additional
dataset upload methods, including support for additional ELNs and the ability to
interface with MongoDB and SQL databases. Lastly, documentation for bespoke
solver integration will be updated, allowing users to benchmark optimisation
a range of conventional BO soware packages and algorithms beyond BO.

Improving accessibility of BO for integration in chemical optimisation prob-
lems is paramount to realizing the full power of data-driven solutions to chemical
challenges. Web-BO offers a step to realising this.
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G. Csányi, Chem. Rev., 2021, 121, 10073–10141.
32 N. Raimbault, A. Grisa, M. Ceriotti andM. Rossi,New J. Phys., 2019, 21, 105001.
33 Q. Liang, A. E. Gongora, Z. Ren, A. Tiihonen, Z. Liu, S. Sun, J. R. Deneault,

D. Bash, F. Mekki-Berrada, S. A. Khan, K. Hippalgaonkar, B. Maruyama,
K. A. Brown, J. Fisher Iii and T. Buonassisi, npj Comput. Mater., 2021, 7, 188.

34 A. M. Mroz, P. N. Toka and K. E. Jelfs,Web-BO, https://suprashare.rcs.ic.ac.uk/
web-bo/.

35 A. M. Mroz, P. N. Toka and K. E. Jelfs, Web-BO, https://github.com/austin-
mroz/webBO.

36 A. E. Day, S. J. Coles, C. L. Bird, J. G. Frey, R. J. Whitby, V. E. Tkachenko and
A. J. Williams, J. Chem. Inf. Model., 2015, 55, 501–509.

37 C. Willoughby, C. L. Bird, S. J. Coles and J. G. Frey, J. Chem. Inf. Model., 2014,
54, 3268–3283.

38 Indigo, https://github.com/epam/Indigo.
39 F. Rudolphi and L. J. Goossen, J. Chem. Inf. Model., 2012, 52, 293–301.
40 P. Tremouilhac, A. Nguyen, Y.-C. Huang, S. Kotov, D. S. Lütjohann, F. Hübsch,
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