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The enantioselective ring-opening polymerization of O-

carboxyanhydride (OCA) has been demonstrated for the first time.

Utilizing a cinchona alkaloid derivative featuring a confined chiral
pocket, the asymmetric kinetic resolution polymerization (AKRP) of
racemic OCA was achieved with a kinetic resolution coefficient (kiel)
up to 9.0, expanding the application scope of AKRP.

Stereoselective polymerization of monomers with chiral centers
is a crucial approach for controlling the micro-stereosequence
structure of polymers.! It has been extensively studied in the
ring-opening polymerization (ROP) of racemic monomers such
as epoxides, lactide, and cyclic diolides, et al.? These processes
primarily follow two mechanisms (Scheme 1A): chain-end
control (CEC) and enantiomorphic-site control (ESC).> Under
CEC, the chirality of the chain end determines the chirality of
the next monomer to be incorporated. When the preferred
chirality of the incoming monomer matches that of the chain
end, isoselective stereoblock polymers tend to form, whereas
syndiotactic polymers are favored when the chiralities are
opposite (Scheme 1A(a)).* In the ESC mechanism, the catalyst
preferentially recognizes and polymerizes monomers of a
specific chirality, a process also referred to as asymmetric
kinetic resolution polymerization (AKRP). Depending on the
degree of chiral discrimination, isotactic or stereogradient
polymers can be obtained (Scheme 1A(b)).> In the above
catalytic processes, the structure of the catalyst plays a decisive
role. Therefore, developing catalytic systems for highly
stereoselective polymerization remains a significant demand in
AKRP.

Among various chiral monomers, O-carboxyanhydrides
(OCAs) represent a class of important cyclic monomers worthy
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Scheme 1 Stereoselective ROP of rac-OCA.
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of special attention. OCAs can be directly synthesized from a-
hydroxy acids or amino acids, making their
environmentally friendly.® The variety of monomeric
substituents also endows diverse side-chain structures to
polymers. Researchers have developed multiple efficient
catalytic systems for the ROP of OCAs, enabling good control
over polymer molecular weight, dispersity, topology, and
suppression of racemization during the process.” However,
when it comes to controlling the stereoselectivity in the
polymerization of racemic OCAs, current studies have primarily
relied on the chain-end control mechanism to produce
stereoblock or syndiotactic polyesters (Scheme 1B).2 For
instance, Tong’s research group reported a Ni/Zn/Ir photoredox
catalytic system, which could catalyze ROP of OCAs with
different substituents to obtain highly isotactic stereoblock
polyesters.®2 Wu’s group reported Zr or Hf-alkoxides with
aminotris (phenolate) ligands enabling syndiotactic-selective
polymerization of OCA monomers.8d Nevertheless, studies on
achieving AKRP of OCAs via chiral recognition have not been
reported in the literature.

In this study, we aim to achieve the AKRP of racemic OCAs
(Scheme 1C). Towards this goal, an OCA monomer with a

sourcing

Table 1 ROP of chiral OCA catalyzed by cinchona alkaloids.

phenethyl substituent was selected as the model, menomer,
which can be easily prepared from hoRfdpHEWAHRINESTRE
AKRP of this substituent-modified glycolide has been
thoroughly investigated by our group.® Here, organocatalysis
was considered due to its advantages of being metal-free and
environmentally friendly. Hence, cinchona alkaloids and their
derivatives attracted our attention. As an important class of
chiral organic base catalysts, they are widely used in asymmetric
catalysis.’® In this work, they were introduced into the study of
catalyzing the enantioselective ROP of OCA. The correlation
between catalyst structure and enantioselectivity was
systematically investigated. Through catalyst optimization, a
highly enantioselective ROP for OCA was demonstrated for the
first time, further expanding the application scope of AKRP.
Guided by the above research idea, the polymerizations of
chiral OCA with two different configurations (R and S) were first
investigated. The reactions were conducted in toluene at room
temperature, with an initial ratio of [Monomer]o / [Cat.]o = 100
/ 1. The structurally simple, hydroxyl-protected dihydroquinine
(Singel-S, Table 1, entry 1) was initially considered. When it
catalyzed the polymerization of S-OCA, the reaction reached 97%
conversion after 340 min. Kinetic studies indicated that the
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Single-S Dual-5-1 Dual-5-3 Dual-R-3
Entry @ Cat. Monomer Time (min) Conv. (%) ® M, pc (KDa) © [oXa k (mint)d Ktast / Ksiow

S 340 97 13.6 1.32 0.00917

1 Single-S 2.9
R 570 82 11.8 1.27 0.00316
S 150 93 11.1 1.41 0.01224

2 Dual-S-1 2.8
R 480 87 7.1 1.35 0.00437
S 70 97 17.4 1.31 0.05543

3 Dual-S-2 6.7
R 360 93 15.3 1.20 0.00823
S 160 98 25.3 1.46 0.02217

4 Dual-S-3 9.9
R 1410 96 14.5 1.23 0.00225
S 1380 91 18.1 1.37 0.00190

5 Dual-R-3 7.1
R 145 82 9.8 1.60 0.01342

6 Single-S Rac 285 46 9.2 1.22 / 2.6¢

7 Dual-S-3 Rac 115 48 11.4 1.28 / 9.0¢

9Conditions: reactions were carried out under a dry nitrogen atmosphere, [Monomer]o / [Cat.]o= 100 / 1, 0.5 M in toluene, R.T. ’Determined by 'H NMR
spectra. ‘M,s and Ds were determined by GPC in THF against polystyrene standards. ¢ Rate constant is the slope of the In([M]o/[M]:) versus time relationship
graph. ¢For rac-OCA, kel = In[(1 = conv.) / (1 - ee)] / In[(1 - conv.) / (1 + ee)], with the monomer conversion (conv.) and enantiomeric excess (ee) of unreacted monomers.
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Fig. 1 (a) Kinetic study for Single-S catalyzed the ROP of R/S-OCA. (b) Kinetic study for Dual-S-3 catalyzed the ROP of R/S-OCA. (c) Kinetic study for Single-S catalyzed the
ROP of rac-OCA. (d) The plot of the ee value of the unreacted monomer and k.| versus conversion for Single-S catalyzed the ROP of rac-OCA. (e) Kinetic study for Dual-
S-3 catalyzed the ROP of rac-OCA. (f) The plot of the ee value of the unreacted monomer and ke versus conversion for Dual-S-3 catalyzed the ROP of rac-OCA.

reaction followed first-order kinetics with a rate constant (ks) of
0.00917 minL. In contrast, when R-OCA was empolyzed as the
monomer, the reaction time extended to 570 min, achieving
only 82% conversion, with a rate constant (kg) of 0.00316 min™.
The calculated rate difference (ks / kg) was 2.9-fold (Fig. 1a),
suggesting that the cinchona alkaloid Singel-S possesses chiral
recognition towards chirality-matched S-OCA.

In our previous researches, a dual-ligand strategy was
proposed to construct a confined chiral space, thereby
enhancing the chiral matching between the catalyst and the
monomer.>!! Inspired by this approach, structural modification
of the catalyst through bridged dual-cinchona alkaloids was
considered to achieve better chiral recognition towards OCA.
Consequently, Dual-S-1, featuring an anthraquinone linker
structure, was first evaluated (entry 2). However, the rate
difference for catalyzing the two chiral OCAs was only 2.8,
showing no improvement compared to the single-sided
cinchona alkaloid. Further modification involved changing the
linker to a diphenylpyrimidine structure (Dual-S-2). In this case,
S-OCA reached 97% conversion in just 70 min, whereas R-OCA
required an extended reaction time of 360 min to achieve 93%
conversion. Analysis of the
improved value of 6.7 (entry 3), demonstrating the feasibility of
optimizing catalyst structure to enhance chiral matching
between the catalyst and the monomer.

Encouraged by these results, a linker based on phthalazine
(Dual-$-3) was further considered (entry 4, Fig. 1b). When
catalyzing S-OCA, it achieved 98% conversion after 160 min,
with a ks of 0.02217 minl. For R-OCA, there is an induction
period in the early stage of the reaction, may be attributed to

rate difference obtained an

the catalyst’s inability to effectively activate the mismatched
OCA. Then, it reached 96% conversion after a prolonged time of
1410 min, with a kg of only 0.00225 min.
significantly higher rate difference of 9.9-fold was calculated,

Remarkably, a

fully illustrating the excellent enantioselectivity of Dual-S-3. The

This journal is © The Royal Society of Chemistry 20xx

higher chiral recognition of the phthalazine linker suggests that
the chiral cavity constructed by this bridged skeleton exhibits
stronger chiral matching with the OCA in terms of size, rigidity,
and electron distribution. Especially, as previously reported, the
nitrogen atoms in the phthalazine linker can interact with the
transition state via hydrogen bonding, thereby enhancing
stereoselectivity.1?

The research also comparatively examined the influence of
catalyst chirality within the skeleton structure. Therefore, Dual-
R-3, containing a dihydroquinidine unit, was evaluated (entry 5).
Experimental results showed that the matched monomer
chirality was reversed (entry 4 vs. entry 5). The polymerization
rate for R-OCA was k = 0.01342 min’1, while for S-OCA, it was
only k = 0.00190 min. The calculated rate difference in this
case decreased to 7.1. This intriguing outcome indicated that
the multiple chiral centers within this catalyst structure act
synergistically to construct a confined chiral space. The opposite
configurations of the chiral centers at C8 and C9 of the quinine
and quinidine units result in opposite enantioselectivity in
catalysis. As diastereomers, their subtle spatial structural
differences also lead to variations in the strength of
enantioselectivity.

Furthermore, the stereo-discrimination was verified through
the polymerization of rac-OCA. When catalyzed by Singel-S, the
reaction reached 46% conversion after 285 min (entry 6).
Analysis of the enantiomeric excess (ee) of the remaining
unreacted monomer by chiral high-performance liquid
chromatography (HPLC) gave a value of 28.3%. The kinetic
resolution coefficient (krel), calculated using the Kagan equation
(kret = In[(1 — conv.) / (1 - ee)] / In[(1 - conv.) / (1 + ee)]), was
determined to be 2.6. This result aligns with the earlier
conclusion that Singel-S exhibited chiral recognition towards S-
OCA. Due to this relatively low stereoselectivity, the reaction
kinetics still adhered to a well-defined first-order kinetic model
(Fig. 1c). Analysis of the ke at different conversion revealed a

J. Name., 2013, 00, 1-3 | 3
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slight increase at the initial stage of the reaction, which
subsequently stabilized around 2.5 (Fig. 1d). In contrast, when
Dual-S-3 was employed, the reaction kinetics revealed a distinct
inflection point, characterized by a noticeable decrease in the
reaction rate (Fig. 1e). This phenomenon is attributed to the
rapid consumption of the preferentially polymerized S-OCA
enantiomer in the early stages of the reaction. In the later stage,
the majority of the matched S-OCA had been consumed, and
the remaining monomer pool became dominated by the less
reactive R-OCA, leading to an observed decrease in the overall
polymerization rate. The high ee value of the remaining
unreacted monomer also confirmed the preferential
consumption of S-OCA (Fig. 1f, Table S7). Furthermore, it can be
inferred that the resulting polyester possesses a stereogradient
microstructure, evolving from a chain segment predominantly
derived from the matched (S) enantiomer to one with gradually
increasing incorporation of the less matched (R) enantiomer.
Analysis of stereoregularity demonstrated that, in contrast to
the atactic polyester obtained with the Single-S catalyst, the
Dual-S-3 catalyst yields an isotacticity-enriched polymer (Fig.
S$18), further underscoring the high stereoselectivity of Dual-S-
3. Besides, analysis of the kel throughout the reaction revealed
a noticeable increasing trend before conversion up to
approximately 50% (Fig. 1f). At 115 min, with a conversion of
48%, the calculated kre reached 9.0 (entry 6). Subsequently, the
ke experienced a slight decline. The observed chiral
amplification during the initial phase of the reaction suggests
that as the polymerization proceeds and the polymer chain
grows, improved chiral matching among the catalyst, monomer,
and the growing polymer chain occurs. However, after 50%
conversion, the increasing relative concentration of the non-
preferred enantiomer (R-OCA) leads to a decrease in chiral
discrimination. This study provides further evidence for the
AKRP achieved by the cinchona alkaloid-based catalyst system.

In summary, the chiral recognition and enantioselective
polymerization of a phenethyl-substituted OCA monomer was
achieved for the first time using chiral cinchona alkaloid
catalysis. Through catalyst structural optimization, a
polymerization rate difference of up to 9.9-fold between the
two chiral OCA monomers was attained. The asymmetric kinetic
resolution polymerization of rac-OCA was successfully realized,
with a ki reaching 9.0, leading to the preparation of
stereogradient polyester materials. This work inspires further
research into the stereoselective polymerization of other chiral
OCA monomers, advancing the synthesis of chiral polymeric
materials.
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