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Environmental signicance

Glacier ecosystems are shrinking at an accelerating rate due to changes in
climate, and additionally from increased deposition of soot, which has
resulted in darkening of glacier surfaces and subsequent changes in
absorption of light, associated heat, and altered microbial communities.
In this study, in combination with measurement of nutrients and poly-
cyclic aromatic hydrocarbons (PAHs), compositions of microbial
communities on surfaces of the Athabasca Glacier (Alberta, Canada) were
measured by use of metabarcoding and scanning electron microscopy.
Increasing deposition and accumulation of organic and inorganic
compounds on surfaces of the Athabasca Glacier could affect quality of
meltwater and might also accelerate melting of the glacier via positive
feedback loops from increased microbial biomass reducing surface
albedo. The observed processes could foreshadow that the ow of rivers
fed by this glacier, and upon which millions of people in Canada and
several threatened ecosystems rely, could fall dry in the summer much
quicker than currently predicted by climate models. Thus, it is of critical
importance to the effective management of this water resource, as well as
to the development of strategies to mitigate their impacts, to understand
the inuence of microbial activity on surface albedo and its effects on
meltwater used by humans, in the context of global climate change.
Glacier ecosystems are shrinking at an accelerating rate due to

changes in climate and also increased darkening from allochthonous

and autochthonous carbon leading to subsequent changes in the

absorption of light, associated heat, andmicrobial communities. In this

study, in combination with measurement of nutrients and polycyclic

aromatic hydrocarbons (PAHs), compositions of microbial communi-

ties on surfaces of the Athabasca Glacier (Canadian Rockies, Alberta,

Canada) were measured and characterized by use of metabarcoding

and scanning electron microscopy. Three matrices, glacier ice, cry-

oconite hole, and supraglacial surface sediment, were analyzed to gain

a first insight into microbial communities on the Athabasca Glacier.

Both, eukaryotic and prokaryotic microbial biodiversity was positively

correlated with PAH concentrations of Benzo[a]pyrene, Indeno[123-

cd]pyrene, Chrysene, Benzo[ghi]perylene, and Dibenz[ah]anthracene.

Furthermore, the combustion of petroleum was identified as a major

source of PAHs found on the Athabasca Glacier. The high levels of

deposition and nutrients observed in this studymay lead to an increase

in microbial activity and growth that could accelerate glacier melting

by further reducing surface albedo. More research is needed to

understand the impacts of microbial activity and biodiversity on

surface albedo and its effects on glacier meltwater, in the context of

global climate change.
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1. Introduction

Glaciers, ice elds, and ice sheets cover approximately 10% of
the Earth's land surface and represent the largest constituent of
the cryosphere.1 Accelerating rates of retreat of glaciers world-
wide2 are of global concern, threatening resources of water,
biodiversity, associated ecosystem services, and the sustain-
ability of human societies.3–6 This is occurring in the Canadian
Rockies at particularly high rates and is expected to accelerate
in the future due to climate change.7–9 Solar radiation consti-
tutes the dominant energy for surface melting on almost all
snow and ice systems,10 including mountain glaciers.11 Absor-
bed solar radiation, which is controlled by albedo of the surface,
determines rates at which glaciers melt. Albedo of glaciers and
perennial snowelds can be decreased through atmospheric
deposition of light-absorbing particles.12–16 Light-absorbing
particles, including carbonaceous (such as black carbon,
Environ. Sci.: Adv., 2024, 3, 355–365 | 355
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brown carbon, algae, and microorganisms) and inorganic (such
as mineral dust and volcanic ash) materials, can originate from
various sources.17 Black carbon in snow and ice is the result of
atmospheric transport and deposition and its main sources are
diesel engines, industry, residential solid fuel, and open
burning, such as wildres.18 The amount of light-absorbing
particles is also affected by climate variability. Drier condi-
tions, for instance, can lead to more frequent dust transport,
while warmer temperatures can increase surface melting and
create conditions that favor the growth of algae and
microorganisms.17

Glaciers are known to be unique habitats that host a variety
of microorganisms as diverse as those living in freshwater
habitats19–21 Psychrotroph and psychrophilic microorganisms
dominate these supraglacial environments.21 Results of
previous studies have shown that these microbial communities
play an active role in biogeochemical transformation22 at local
and global scales. However, due to their slow growth rates and
difficulty of culturing, only little is known about microbial
communities in glacial snow and ice.23 Their presence further
increases the absorption of light and decreases surface albedo
through a mechanism known as bioalbedo.14 Microbes can
secrete extracellular polymeric substances (EPS) that lead to the
formation of aggregates of minerals and anthropogenic parti-
cles. These aggregates can persist on surfaces, extending the
persistence of surface-darkening particles and substantially
sustaining their effects on albedo and rates of melting.11,24–26

This aggregation with inorganic material leads to the formation
of cryoconite, a dark-colored material covering the ice. Over
time, cryoconite holes, consisting of small depressions lled
with meltwater, can develop when solar-heated inorganic and
organic debris melt into the ice. Due to its contribution to
melting and biogeochemical cycling, microbial and chemical
compositions of cryoconites have been studied.27 The accumu-
lation of specic substances, such as atmospherically deposited
anthropogenic contaminants, within these cryoconite holes has
been the subject of recent studies.28–33 Pollutants can be trans-
ported long distances in the atmosphere and deposited on
glacier surfaces, where they undergo post-depositional
processes of distributing among different environmental
matrices and chemical alterations.34 Consequently, these
substances can either enter the food chain or be released into
the environment by meltwater impacting downstream ecosys-
tems. This is shown in a previous study29 demonstrating that
a glacier-fed tributary was the major source of persistent
organic pollutants in a subalpine lake in the Canadian Rockies.
The transformation of meltwater chemistry by cryophilic biota
and nival ecosystem processes can have a profound impact on
nutrient and contaminant mass budgets.35 A better under-
standing of the relationships between deposited organic matter,
microbial community composition and albedo is required to
improve understanding of glacier melt rates and biogeochem-
ical cycling on glacier surfaces, as well as the environmental fate
of deposited pollutants.

The deposition of organic matter on the Athabasca Glacier
has the potential to affect the biodiversity of its prokaryotic and
eukaryotic microbial communities. To investigate this
356 | Environ. Sci.: Adv., 2024, 3, 355–365
hypothesis, the present study employed 16S rDNA (prokaryotic)
and 18S rDNA (eukaryotic) metabarcoding and scanning elec-
tron microscopy, to gain a rst insight into the biodiversity of
microbial communities on surfaces of the Athabasca Glacier in
Alberta, Canada. Inorganic nutrients and polycyclic aromatic
hydrocarbons (PAHs) amounts were assessed along with PAHs
congener ratios as markers of soot deposition sources. To our
knowledge, this represents the rst study of the compositions of
microbial communities on the Athabasca Glacier.
2. Materials and methods
2.1 Location and collection of samples

Samples were collected on July 23rd, 2018, from the Athabasca
Glacier (52.19182,−117.25165, at 2177 m.a.s.l.) in the Canadian
Rocky Mountains (Fig. 1). Samples were opportunistically
collected from three matrices, ice (n = 3), glacier surface sedi-
ment (n = 1), and cryoconite holes (n = 3), for each sample,
parts of the frozen material were extracted and placed in
resealable plastic bags. The Athabasca Glacier is an outlet
glacier of the Columbia Iceeld, which is the hydrological apex
of North America and contributes runoff to the largest rivers
crossing the continent.8 Smoke from wildres occurring in
heavily forested British Columbia, west of the Columbia Ice-
eld, tends to ow eastward to the Canadian Rockies.9 In the
last decade, re activity upwind of the Columbia Iceeld has
been highly variable and includes the two worst re seasons
ever recorded, 2017 and 2018.36 In 2018 alone, over 1.35 million
hectares were burned.37 The samples were collected following
a season of intense wildres in 2017, which was then followed
by an active melt season. In addition to the wildres, there are
other potential sources of PAH contamination on the Athabasca
Glacier, such as the tourist activities that have been taking place
there since 1969. These activities involve visitors taking tours on
the glacier ice using an all-terrain vehicle known as the “Ice
Explorer”, which may contribute to increased levels of PAH
concentrations. In addition, PAHs are known to be transported
over long ranges within the atmosphere. Therefore, PAHs on the
Athabasca Glacier could be attributed to long-distance atmo-
spheric transport as well as local sources.
2.2 Scanning electron microscopy

Imaging and description of present microbial communities was
conducted by use of scanning electron microscopy (SEM)
imaging. Samples were processed and imaged according to
a previously outlined protocol with slight modications.38

Briey, aer samples were dehydrated, they were treated with
hexamethyldisilazane (HMDS) twice for 15 min each (instead of
10 min as described by Hynninen et al., 2018), before being
mounted on a SEM stub and sputter-coated with a thin layer of
gold (Edwards S150B). Samples were then imaged using
a SU8010 electron microscope (Hitachi High-Technologies
Canada Inc., Etobicoke, Canada) with backscattered electrons
imaging mode. Further details of SEM imaging can be found in
the ESI.†
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Scanning electron microscopy of samples from the Athabasca Glacier (Alberta, Canada): of cryoconite holes (A and B) and ice (C–F). (A)
Cluster of aggregated bacterial rod-shaped cell association attached to inorganic material. (B and D) Diatoms. (C) Collapsed cell of glacier algae
Ancylonema. (E) Clusters of ultramicrobacteria embedded in EPS. (F) EPS-embedded bacteria with regular separation on a surface. Additional
SEM images are included in the ESI.†
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2.3 16S and 18S rDNA metabarcoding and bioinformatics

For DNA extraction, 1 g frozen subsamples per sample were
prepared. Cryoconite hole and supraglacial sediment samples
were centrifuged at 2 °C and 16 000 g for 30 min. The super-
natant was removed, and the DNA was extracted from the cor-
responding pellets using the E.Z.N.A Soil DNA Kit (OMEGA Bio-
Tec, Inc., U.S.A.) following the manufacturer's protocol. Ice
samples were freeze-dried, and DNA extracted using the same
E.Z.N.A Soil DNA extraction kit. The hypervariable V3–V4 region
of the bacterial 16S rRNA gene and the V4 fragment of the
eukaryotic 18S rRNA gene were amplied by polymerase chain
reaction (PCR) using double-tagged PCR primer pairs. PCR
products were checked for quality by agarose gel electrophoresis
and pooled before undergoing library preparation using the
NEBNext Ultra II DNA Library Prep Kit for Illumina (New
England Biolab, U.K.). Finally, a 600-cycle paired-end
sequencing run was performed on an Illumina® MiSeq
sequencer (Illumina, San Diego, CA) using a 2 × 300 bp paired-
end Illumina® chemistry kit. More details on the processing of
samples for metabarcoding analyses can be found in the ESI.†

Quality control of the sequencing output was rst conducted
using FastQC.39 The sequences were pre-processed, including
quality ltering, trimming, merging, dereplication, and
denoising, resulting in a set of predicted biological sequences
called zero-radius taxonomic units (ZOTUs). The taxonomic
annotation for each ZOTU was assigned using the SILVA data-
base.40 To enable a robust comparison of diversity matrices,
rarefaction was applied. Further details on sequencing data
processing are described in the ESI.† Sequencing data can be
accessed at https://doi.org/10.20383/102.0528.
© 2024 The Author(s). Published by the Royal Society of Chemistry
2.4 Polycyclic aromatic hydrocarbon characterization and
nutrient proling

Polycyclic aromatic hydrocarbons (PAH) were extracted by
shaking 10 mL of melted ice, cryoconite, or sediment samples
with an equal volume of dichloromethane. Isotope-labelled
internal standards (500 mg L−1 acenaphthene-d10, chrysene-
d12, and phenanthrene-d10 in acetone) were added at a level of 1
mg per sample. Extracts were reduced to a volume of 0.5 mL
under a gentle stream of nitrogen gas and analyzed using gas
chromatography-mass spectrometry (GC-MS). Analytes were
separated on an Agilent DB-5ms column (60 m length, 250 mm
diameter, 0.1 mm lm thickness) using a Thermo Scientic
Trace 1310 gas chromatograph. Full-scan spectra were obtained
using a Thermo Scientic QExactive GC Orbitrap high-
resolution/accurate-mass (HRAM) mass spectrometer. Concen-
trations were determined through an isotope dilution workow
based on internal standard recovery and calibration based on
a 7-point calibration curve. Limits of detection/quantication
ranged from 0.2/1.4 ng kg−1 (benzo[a]anthracene) to 1.2/7.4
ng kg−1 (dibenz[a,h]anthracene). Metrics inferred from PAH
measurement included diagnostic ratios of PAHs that are
indicative of the potential sources, specically:1 anthracene
(ANT) and phenanthrene (PHE); ANT/(ANT + PHE),2 uorene
(FLU) and pyrene (PYR); FLU/(FLU + PYR),3 and indeno[1,2,3-cd]
pyrene (InP) and benzo[g,h,i]perylene (BgP); InP/(InP + BgP).
PAHs are emitted as mixtures and diagnostic ratios can be used
to specify emission sources as characteristic PAH proles and
they are found in the environment as a consequence of the
combustion or processing of hydrocarbon fuels (e.g., burning of
coal, oil, gas, wood, garbage, and tobacco).41 Typically, low
molecular weight PAHs are generated during low-temperature
Environ. Sci.: Adv., 2024, 3, 355–365 | 357
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processes like wood burning, whereas high-temperature
processes like fuel combustion in engines tend to release PAH
compounds with higher molecular weights.41 It should be noted
that diagnostic ratios of PAHs should only be seen as a rough
indication of the emission source, and further research is
necessary to attribute the emissions to certain sources.

Total organic carbon (TOC), total dissolved phosphorus
(TDP), and total dissolved nitrogen (TDN) were analyzed to
assess the nutrient proles of the glacier samples. TOC was
quantied by a commercial lab (Bureau Veritas, Edmonton,
Canada) and expressed as either percent or mass concentration,
depending on sample characteristics. Further details for the
measurement of TOC can be found in the ESI† (SI-4). For TDP
and TDN analysis, samples were thawed and then centrifuged at
3500 rpm (∼2054 g) for 10 min to separate liquid and particu-
late fractions, with the liquid fraction being collected and
ltered through 0.45 mmnylon syringe lters. Subsamples of the
ltered water were then digested and analyzed on a SmartChem
170 autoanalyzer. Further details for the measurement of TDN
and TDP can be found in the ESI (SI-5).†
2.5 Statistical analysis

The statistical analysis and data visualization was performed
using R (version 4.1.2). Richness, Shannon diversity, and
evenness were calculated and compared between different
sample types. A Spearman correlation analysis was performed
to test for correlations between alpha diversity metrics and PAH
concentrations. For beta diversity, Bray–Curtis distances were
calculated. Non-metric multidimensional scaling (NMDS)
based on Bray–Curtis was performed to visualize taxonomic
composition proles of prokaryotic and eukaryotic communi-
ties. Permutational multivariate analysis of variance (adonis2
function) was used to test whether the differences among
sample types were signicant. The envt function (vegan,
version 2.5-7) was applied to compute correlations between taxa
and ordination scores to obtain taxa that drive differences in
community composition. The most discriminant phyla (p <
0.01, 999 permutations) were then tted on the NMDS plot. If
not mentioned otherwise, data are reported as mean± standard
deviation (SD) where the n $ 3, while results from duplicate
measurements were averaged.
3. Results and discussion
3.1 Characterization of ice and microbe communities by
SEM

Overall, the glacier exhibited a pattern of darkening, which
indicated potential deposition of organic material and growth
of microbial organisms (Fig. S1A and B†).9,36 The persistence of
low albedo conditions aer a melt season suggests that there
may be a bio-albedo feedback loop at play, whereby biological
processes contribute to the retention of soot and further dark-
ening of the glacier's snow and ice surface.9,42 SEM analyses
revealed the formation of biolms on all surfaces of the glacier
sampled (Fig. 1A–F). The size of the microorganisms observed
was relatively small, 50–400 nm (Fig. 1E and F).43,44
358 | Environ. Sci.: Adv., 2024, 3, 355–365
3.2 Glacier prokaryotic and eukaryotic microbial
communities

Molecular richness, as measured by total ZOTUs (zero-radius
operational taxonomic units) differed between glacier sample
matrices. The glacier surface sediment sample (n = 1) showed
the greatest molecular richness with 3094 ZOTUs for 16S and
1480 ZOTUs for 18S, while glacier ice (n = 3) exhibited the
lowest bacterial (1245 ± 42.7; mean ± standard deviation (SD))
and eukaryotic (525 ± 68.4) molecular richness (Table S1†).
Cryoconite holes (n = 3) exhibited an intermediate molecular
richness for the bacterial (2035 ± 869.2) and eukaryotic
microorganisms (837.3 ± 320.7).

In all sequenced samples, bacterial communities were
mainly represented by the phyla Cyanobacteria (Table S2,† 38.6
± 20.3% mean relative abundance ± SD), Proteobacteria (26.5 ±

10.4%), Bacteroidetes (18.1 ± 6.61%), and Actinobacteria (7.31 ±

1.90%) (Fig. 2A), which is consistent with samples from other
glaciers (e.g., Northern Schneeferner Glacier, Germany;45 Qaa-
naaq Glacier, Greenland;46 cryoconites in the Artic and
Antarctic47). Cyanobacteria were comprised primarily of the
genus Leptolyngbyales (10.2 ± 7.34%) and Pseudoanabaenales
(3.07 ± 2.19%), lamentous bacteria, which, due to production
of EPS, play a pivotal role in formation of biolms,21,26,46,48 and
Nostocales (1.40 ± 1.22%), which are largely responsible for
nitrogen xation in glacier environments.48,49 Proglacial soils
across the globe frequently contain heterocystous cyanobacteria
of the Nostocales order.50 The ability of these cyanobacteria to x
atmospheric nitrogen makes them signicant contributors to
the buildup of organic matter in such sparse environments.50

This promotes the formation of aggregates, thus stabilizing the
surface and protecting against physical damage, which allows
the establishment of more widely distributed taxa primarily
composed of heterotrophs.48,50–53

The assessment of the eukaryotic communities via 18S
metabarcoding revealed Chloroplastida (52.9 ± 31.5%),
members of the SAR (Stramenophiles, Alveolata, Rhizaria)
supergroup (21.9 ± 14.2%), Opisthokonta (15.4 ± 11.1%), and
Amoebozoa (7.59± 6.65%) as the most abundant eukaryotic taxa
among samples (Fig. 2).

Comparing the microbial community composition between
sampling types, signicant differences were found (PERMA-
NOVA: prokaryotes: p = 0.02; eukaryotes p = 0.02, also see
Fig. S5 and S6†). Communities in ice were mainly composed of
primary producers, with Cyanobacteria (58.3 ± 16.1% mean
relative abundance of prokaryotes) and Chloroplastida (88.7 ±

7.56% mean relative abundance of eukaryotes) dominating.
Chloroplastida were almost exclusively represented by the genus
Ancylonema (86.8± 7.97% total mean relative abundance± SD),
a lamentous alga, which was tentatively conrmed using SEM
(Fig. 1C). Accordingly, correlation analysis between taxa and
NMDS ordination scores showed higher relative abundances of
Zygnematales, which includes Ancylonema, in ice samples
compared to the other glacier samples analyzed (Fig. S5†).
These autotrophic organisms provide organic carbon for other
members of these sparse ecosystems, representing the rst
steps in the carbon cycle.54,55 Algae belonging to this group have
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Composition of microbial communities grouped by sample types. Relative abundance (%) refers to the mean proportion of ZOTUs
originating from each class. ZOTUs with mean relative abundances <1% are summarized in the category Other.
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been detected to occupy vast areas of ice surfaces, producing
strong secondary pigmentation during summer, further
decreasing surface albedo.21 Similar low algal species diversity
(>95% Ancylonema) have been seen in other studies with 2-3
species making up >95% of composition.56

Relative abundances of heterotrophic bacteria, including
Actinobacteria, Proteobacteria (Alpha-, Gamma-, and Deltapro-
teobacteria), and Bacteroidetes, were greatest for the sediment
sample (78.9%), followed by samples from cryoconite holes
(60.8 ± 0.12%), and glacier ice (33.9 ± 9.67%; Fig. 2A). The
envt correlation analysis revealed cryoconites being associated
with higher relative abundances in Nitrosomonadaceae, Strep-
tomycetaceae, Bdellovibrionaceae, Blrii41, and Cytophagaceae (Fig
S5†).

Furthermore, various taxa with higher relative abundances
in sediments appeared to be signicant driver for the differ-
ences in community composition including Sphingomonada-
ceae, Xanthomonadaceae, Micrococcaceae, Desulfobacteraceae,
Methylococcaceae, Pseudonocardiaceae, Roseiexaceae, Fla-
vobacteriaceae, and Intrasporangiaceae.

Alphaproteobacteria were mainly composed of the orders
Rhizobiales (cryoconite holes 2.5 ± 0.9%; ice 1.0 ± 0.3%, sedi-
ment 0.88%) and Sphingomonadales (cryoconite holes 2.2 ±

0.6%; ice 1.2 ± 0.4%, sediment 4.4%), which have been previ-
ously detected on other glaciers.57–59 The order Sphingomona-
dales is known for its ability to degrade a wide range of aromatic
hydrocarbons, particularly PAHs.60 Differences between
samples were also seen in their eukaryotic composition. Besides
Tubulinea, no other taxonomic group within phylum Amoebozoa
exceeded a relative abundance of 0.1% within ice samples. In
contrast, higher relative abundances for phylum Amoebozoa
(Classes Tubulinea, Gracilipodida, Discosea) were measured
within the cryoconite holes and the sediment sample. In
© 2024 The Author(s). Published by the Royal Society of Chemistry
addition, the greatest abundance of Eutardigrada (Metazoa),
eukaryotic grazers, was found in cryoconite (11.4 ± 2.24%),
followed by sediment (6.20%), and ice samples (0.30 ± 0.35%).
Cryoconite samples were therefore characterized not only by
higher relative abundances of heterotrophic bacteria but also
higher relative abundances of metazoan (tardigrades) as top
grazers, suggesting a self-contained multi-level trophic web
within cryoconite holes.47 The analysis of correlations between
relative abundances in eukaryotic taxa and NMDS ordination
scores indicated that the sediment sample was characterized by
higher relative abundances in Chlorellales, Camptobasidiceae,
andHeterotrichea, which were identied as signicant drivers of
differences in eukaryotic community composition.
3.3 Characterization of PAHs and diagnostic ratios

Surface sediment had the greatest quantity of PAHs, with sum
concentrations of 737 ng kg−1 (Table 1), followed by ice (268 ±

43.6 ng kg−1) and cryoconite hole samples (134 ng kg−1).
Microbial activity could lead to microbial degradation, and thus
removal of PAHs (Table S2†). Results of previous studies have
indicated degradation of the organophosphorus insecticide
chlorpyrifos by microbial communities found in cryoconite.61

FLU was the dominant PAH found in glacier samples, with ANT
and PYR being the next two dominant PAHs measured (ESI,
Table S3†). Diagnostic ratios of PAHs were applied as a rst
approach to try and identify sources of these contaminants. It
should be noted that diagnostic ratios should be interpreted
with caution, especially in new environments. Our ndings
might indicate that the dominant source of PAHs was the
incomplete combustion of fossil fuels and organic materials.
The ratio of the PAHs (ANT : PHE) was consistently >0.1 which is
oen considered to be indicative of pyrogenic sources
(combustion) over petrogenic sources (fossil fuels) (Table 1;
Environ. Sci.: Adv., 2024, 3, 355–365 | 359
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Table 1 Polycyclic aromatic hydrocarbon (PAH) profiling of the collected samples normalized to 1 kg of sample material. Select PAH congener
ratios were used to help distinguish sources of PAH in measured samples

Total PAH (ng kg−1)
ANT/(ANT +
PHE) FLU/(FLU + PYR)

InP/(InP +
BgP)

Ice (n = 3) 268 � 43.6 1.000 0.892 � 0.016 0.314a

Cryoconite hole (n = 2) 134 1.000 0.654 0.491
Sediment (n = 1) 737 1.000 0.757 0.209

a n = 2 was used for the calculation of this PAH congener ratio.
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ANT/(ANT + PHE)).41,62,63 Concentration ratios of FLU/(FLU +
PYR) with values >0.5, indicated that the fraction of PAHs
originating from the combustion of fossil fuels was primarily
derived from the combustion of diesel fuel.41,63 The congener
ratio InP/(InP + BgP), with values between 0.2 and 0.5, indicated
PAHs were derived from the combustion of petroleum.63 These
ndings are consistent with the operation of a eet of diesel
engine vehicles that carry tourists on the Athabasca glacier in
summer and the large number of motor vehicles that travel
along the near Iceelds Parkway. In addition, the PAHs on the
Athabasca Glacier could be attributed to long-distance atmo-
spheric transport from urban areas. Although samples were
taken aer one season of signicant wildres in British
Columbia, west of the Columbia Iceeld, there is an indication
that the combustion of petroleum appears to be the major input
of PAHs on the Athabasca Glacier. Spearman correlation anal-
ysis revealed that Shannon diversity and evenness of microbial
eukaryotes and prokaryotes, as well as the richness of prokary-
otes were positively correlated with the concentration benzo[a]
pyrene, indeno[123-cd]pyrene, chrysene, benzo[ghi]perylene,
and Dibenz[ah]anthracene (ESI Fig. S7†). The signicant impact
of PAH contamination on the microbial community composi-
tion suggests that surface albedo could be affected in unfore-
seen ways. Future studies should focus on quantifying a greater
diversity of combustion-derived contaminants on the glacier,
including aliphatic compounds, and using non-targeted
methods to capture this diversity as comprehensively as
possible.

Previous research has indicated that cryoconite samples in
select Tibetan Plateau glaciers had an InP/(InP + BgP) ratio of
>0.5, indicating PAHs derived from grass, wood, and coal
combustion.41,64 Cryoconite holes had an InP/(InP + BgP) ratio of
0.491 ± 0.110, broadly indicating that they originated from
diesel, coal, or wood combustion. In summary, signicant PAH
contaminations were found on the surface of the Athabasca
Glacier. In comparison to prior investigations into PAH
contaminations on diverse glaciers globally, the concentrations
observed in this study were both of lesser and greater magni-
tude when compared with values reported in the literature. For
instance, while the Mt. Everest glacier in the central Himalayas
was previously reported to have 100 mg L−1 of melted ice65 and
the Alpine glacier was found to have 168 mg L−1 of melted ice,66

the current study revealed lower levels of PAH contamination.
In contrast, concentrations of PAHs observed in this study were
greater than those reported in some other studies, such as the
Tibetan Plateau (20.54–60.57 ng L−1)67 and various mountains
360 | Environ. Sci.: Adv., 2024, 3, 355–365
in Europe (5.6–81 ng L−1).68 Glaciers are considered low-carbon
ecosystems from an ecological point of view, where most of the
organic carbon present is derived from allochthonous inputs.69

However, the accumulation of organic pollutants, as shown in
this study, represents an important source of carbon and
therefore may have a signicant impact on microbial commu-
nities of these ecosystems.70,71
3.4 Nutrient proling of glacier samples

Amounts of total organic carbon (TOC) varied among samples
of glacier materials (Table 2). Surface sediment had the greatest
TOC percentage (16.0%), with cryoconite holes having a similar
percentage of 13.7%. The TOC content of cryoconite samples
previously taken from the Athabasca Glacier was 10.4 ± 0.3%,27

while relative proportions in cryoconite samples from select
Tibetan Plateau glaciers were between 0.1 and 6.7%,72 indi-
cating an overall increase relative to previous and different
located samples. Glacier ice contained TOC concentrations of
229 ± 185 mg L−1, which were greater than concentrations of
dissolved organic carbon (DOC), albeit a different measurement
of organic carbon, in surface glacier water collected from ice
sheets and various mountain glaciers in Greenland and Ant-
arctica with concentrations ranging from 0.20 ± 0.1 to 0.49 ±

0.07 mg L−1.73 Along with this trend, snow samples taken from
the Greenland Ice Sheet, at Summit, Greenland, had average
TOC concentrations of 0.064 mg L−1.74 Water collected from
cryoconite hole environments of Antarctica and Himalaya
glacier surfaces had average TOC concentrations of 0.022 to
1.21 mg L−1 and 0.264 to 16.7 mg L−1, respectively.75 Overall,
there is an indication of elevated organic carbon in collected
samples from this study.

Concentrations of total dissolved nitrogen (TDN) and phos-
phorus (TDP) differed among types of samples from the glacier.
TDN was greatest for surface sediment (Table 2; 11.5 mg L−1),
while ice and cryoconite holes had similar values of 7.62 ± 5.17
and 6.96 mg L−1, respectively. In comparison with another
glacier, ice samples collected from the Svalbard Glacier con-
tained TDN concentrations of 0.0383 ± 0.0156 mg L−1, which
was 100-fold less than what was observed in this study.76 Simi-
larly, Hans and Werenskoid glacier (Svalbard glaciers) ice
samples had total nitrogen (TN) of 0.2–0.23 mg L−1 and cry-
oconite was found to contain 1.17-3.7 mg TN/L.77 Glacier
samples from this study all had relatively similar total dissolved
phosphorus (TDP), with ice having the greatest (85.7 ± 94.9 mg
L−1), surface sediment having the lowest (54.7 mg L−1), and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Total organic carbon (TOC) and nutrient (total dissolved nitrogen, TDN; and total dissolved phosphorus, TDP) values in matrices from
glacier samples

Sample TOC (%) TOC (mg L−1) TDN (mg L−1) TDP (mg L−1)

Ice (n = 3) NA 229 � 185 7.62b 85.7 � 94.9
Cryoconite hole (n = 2) 13.7a NA 6.96 67.5
Sediment (n = 1) 16.0 NA 11.5 54.7

a n= 3 was analyzed for total organic carbon, with limitedmaterial for additional analyses of PAHs and nutrients of the additional glacier cryoconite
sample. b n = 2 was used for the calculation of TDN because of insufficient sample volume.
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cryoconite holes having a value of 67.5 mg L−1. Previously
analyzed grab samples of meltwater from the Athabasca Glacier
contained lesser concentrations of total phosphorus of 16 ± 10
mg L−1,32 suggesting dilution by precipitation and early-season
snowmelt. TDP concentrations detected in collected samples
were exceptionally high when compared to total phosphorus
(TP) in ice samples from the two Svalbard glaciers (0.11–
0.14mg L−1).77 Comparison of nutrients between glaciers can be
difficult due to the use of various endpoints and sample pro-
cessing, however, overall elevated amounts were detected in our
study samples.

4. Summary

In summary, all samples from the Athabasca Glacier indicated
elevated PAH, nutrient, and TOC concentrations relative to
studies conducted on various glaciers around the world. Ice
samples from the Athabasca Glacier surface had lower nutrient
and PAH concentrations and were associated with lower ZOTU
richness, but higher relative abundance of autotrophic organ-
isms. In contrast, cryoconite holes and supraglacial sediment
hosted highly diverse bacterial and eukaryotic communities,
including greater relative abundances of heterotrophic bacteria
and eucaryotic grazers, possibly forming a multilevel trophic
network.

Studies have shown that cryoconite holes are not spatially
isolated, as they can be interconnected and represent dynamic
habitats linked to the near-surface ice sheet, which in turn are
widely connected to other glacial and extraglacial environ-
ments.78 Understanding the dynamics of these communities
better is critical, as they have been shown to inuence surface
energy balance and glacier melt rates. Related studies on the
Athabasca Glacier and Columbia Iceeld could demonstrate
strong and persistent radiative forcing for increased melt due to
soot and algae on the snow and ice surfaces.9 In this context,
increased deposition of organic matter and nutrients may
further increase microbial biodiversity, biomass, and EPS
production, leading to a reduction in surface albedo and
possibly increased retention of dark sediments, further
promoting glacier melt.

Eventually, the inclusion of glacier microbial community
dynamics in predictive climate and hydrologic models that
explicitly account for glacier melt will have huge potential.
Although the extent of the present study is not sufficient to
compare the different matrices, this initial assessment provides
an important insight into the bacterial and eukaryotic
© 2024 The Author(s). Published by the Royal Society of Chemistry
composition of different supraglacial habitats of the Athabasca
Glacier. A better understanding of the environmental contam-
inants and nutrients that may be affecting these communities
and their inuence on glacial ecosystem processes is urgently
needed to better understand the consequences of global climate
change and its impact on melt rates and meltwater quality for
ecosystems and downstream human use.
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M. Lafreniěre, K. McDonald, et al., Fluxes of semivolatile
organochlorine compounds in Bow Lake, a high-altitude,
glacier-fed, subalpine lake in the Canadian Rocky
Mountains, Limnol. Oceanogr., 2001, 46(8), 2019–2031, DOI:
10.4319/lo.2001.46.8.2019.

30 M. J. Lafrenière, J. M. Blais, M. J. Sharp and D. W. Schindler,
Organochlorine Pesticide and Polychlorinated Biphenyl
Concentrations in Snow, Snowmelt, and Runoff at Bow
Lake, Alberta, Environ. Sci. Technol., 2006, 40(16), 4909–4915.

31 L. M. Campbell, D. W. Schindler, D. C. Muir, D. B. Donald
and K. A. Kidd, Organochlorine transfer in the food web of
subalpine Bow Lake, Banff National Park, Can. J. Fish.
Aquat. Sci., 2000, 57(6), 1258–1269.

32 K. J. Staniszewska, C. A. Cooke and A. v Reyes, Quantifying
Meltwater Sources and Contaminant Fluxes from the
Athabasca Glacier, Canada, ACS Earth Space Chem., 2021,
5(1), 23–32.

33 D. B. Donald, J. Syrgiannis, R. W. Crosley, G. Holdsworth,
D. C. G. Muir, B. Rosenberg, et al., Delayed Deposition of
Organochlorine Pesticides at a Temperate Glacier, 1999.

34 A. M. Grannas, C. Bogdal, K. J. Hageman, C. Halsall,
T. Harner, H. Hung, et al., Atmospheric Chemistry and
Physics The role of the global cryosphere in the fate of
organic contaminants, Atmos. Chem. Phys., 2013, 13, 3271–
3305, available from: http://www.atmos-chem-phys.net/13/
3271/2013/.

35 H. G. Jones, The Ecology of Snow-Covered Systems: a Brief
Overview of Nutrient Cycling and Life in the Cold, 1999.

36 A. Bertoncini, C. Aubry-Wake and J. W. Pomeroy, Large-area
high spatial resolution albedo retrievals from remote
sensing for use in assessing the impact of wildre soot
deposition on high mountain snow and ice melt, Remote
Sens. Environ., 2022, 278, 113101.

37 , Statistics & Geospatial Data – Province of British Columbia.,
available from: https://www2.gov.bc.ca/gov/content/safety/
wildre-status/about-bcws/wildre-statistics.

38 A. Hynninen, M. Külaviir and K. Kirsimäe, Air-drying is
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Report Microbial Primary Production on an Arctic Glacier Is
Insignicant in Comparison with Allochthonous Organic
Carbon Input, 2008.

70 M. S. Shamurailatpam, J. Telling, J. L. Wadham,
A. L. Ramanathan, C. A. Yates and N. J. Raju, Factors
controlling the net ecosystem production of cryoconite on
Western Himalayan glaciers, Biogeochemistry, 2023, 162(2),
201–220.
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