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erm studies on the adsorption–
desorption of technical-grade endosulfan in loamy
soils under Theobroma cacao L cultivation,
Southwestern Nigeria
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Lorraine T. Gibson,b Foluso O. Agunbiade, d Adesegun J. Kashimawoa

and Kayode O. Adebowalec

The fate of pesticides in soils is dependent on the adsorption–desorption kinetics, isotherms and soil types.

Interactions of technical-grade endosulfan with top soils (top 0–15 cm) from CRIN, Igba and Sore Bale

Theobroma cacao L farms in Southwestern Nigeria were studied using the OECD batch isotherm method.

The soils were predominately basic (pH 7.1–8.33), while the orders of the total organic carbon (1.32–2.03%)

and clay content (10.92–19.11%) were CRIN > Igba > Sore Bale and Igba > CRIN > Sore Bale, respectively.

The adsorption of endosulfan was bi-continuous: initially rapid, followed by a slow process, with pseudo-

equilibria and plateaus formed between 120 and 240 min. Endosulfan adsorption by soils was due to their

greater affinity for organic matter than clay. The adsorption rates fitted better into a pseudo-second-order

model (PSOM) than a pseudo-first-order model (PFOM), with the adsorption (kads) and desorption (kdes)

rate constants for both isomers ranging from 7.60 × 10−3 to 11.52 × 10−3 min−1 and 1.39 × 10−3 to 3.42 ×

10−3 min−1, respectively (i.e. kads > kdes), while kdes (b-isomer) > kdes (a-isomer) for PFOM, but k2_ads < k2_des
for the two isomers in PSOM. Additionally, a-endosulfan was adsorptive, with the b-isomer more prone to

leaching; both isomers were moderately leachable according to their FAO mobility rankings. The

adsorption model did not fit well into a Langmuir isotherm (R2 # 0.948); however, the desorption model

did (R2 $ 0.991). Freundlich isotherm plots fitted better (R2 $ 0.992) and exhibited non-linear curves of

types L and S for the adsorption and desorption processes, respectively. The adsorption/desorption

coefficients (Kfads and Kfdes) and strengths of adsorption/desorption (1/nads and 1/ndes) for both isomers

were from 1.33 ± 0.10 to 4.81 ± 0.18 mg1−1/n (mL)1/n g−1 and 0.503 to 1.402, respectively, in all soils, with

Kfads < Kfdes and 1/nads < 1/ndes. Positive hysteresis was observed. CRIN exhibited the highest hysteresis

index. The Kfom values were #127.14 ± 6.23 mL g−1, while the values of the standard free energy were DG0

= −5.11 to −14.05 kJ mol−1 K−1, depicting a spontaneous physisorption process, driven by van der Waals

forces, among others. Endosulfan could easily be leached and contaminate the surface and groundwater

owing to its faster PSOM desorption rate constant, but TOM and clay could be used as mitigants to reduce

its mobility in soils as they have significant affinity for the pesticide.
Environmental signicance

The misapplication of pesticides due to inappropriate and unregulated use by cocoa farmers in West African sub-region is amongst the main cause for their
persistence and contamination of farm soils. Therefore the interactions of commercial grade endosulfan pesticide with three pristine Theobroma cacao L farm
soils from Nigeria were assessed to decipher its fate and mobility aer application without amendment using adsorption-desorption batch model. The studies
reveal that soils with high organic matter and high clay inhibited mobility of the pesticides and thus would mitigate their runoff and/or leaching to impact
ground water and surface water.
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1 Introduction

The use of organochlorine pesticides (OCPs) and other agro-
chemicals in agriculture to control pests in order to enhance
productivity has achieved its purpose tremendously. However,
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their application has brought myriad environmental challenges
owing to their persistence, bio-accumulation and toxicity.1,2

OCP contamination of agricultural soils and its impact on
groundwater, surface water, aquatic biota and the atmosphere
is caused by their leaching, run-off, uptake, volatilization and
precipitation aer application.3,4

Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-
hexahydro-6,9-methano-2,3,4-benzo(e)dioxathiepin-3-oxide)
(Fig. 1) is an organochlorine pesticide (OCP) of the cyclodiene
subgroup that is used extensively for the control of numerous
insects and viruses in both food and non-food crops.5,6 It is
a pesticide of choice for Theobroma cacao farmers in West
African countries;7 however, it has been listed by the Stockholm
Convention as a persistent organic pollutant (POP) and marked
for global elimination.8,9 It exists in two stereoisomers: a- and b-
endosulfan, making up of 70% and 30% of the technical grade,
respectively.10,11 Although, both isomers have been reported to
exhibit similar insecticidal properties, they show some different
physicochemical properties.12 Endosulfan is ubiquitous and has
a propensity to undergo long-range transport.13 This hasmade it
one of the most frequently detected pesticides in the environ-
ment and it is oen reported in places where it has not been
applied.14 It is a persistent organic pollutant (POP) and has
a high potential for bioaccumulation in biota.8,10 In the envi-
ronment, some of its metabolites are endosulfan hydroxyl,
lactone, and sulfates.7,15

Soil, as that part of the earth that support plants growth, is
a ready sink for the used pesticides16 and when they are applied
to plants (such as Theobroma cacao trees) through spraying,
most of them get on the surrounding matrixes, which consist of
fell dried leaves and soils – where the un-volatilized pesticides
are eventually washed into the soil.7 The volatilized portion may
later precipitate and drop on soil and/or surface water. One of
the major processes governing the fate of pesticides in the
environment is the retention of pesticides by soils. Pesticide
retention in soils is dependent on the mechanism of adsorption
and desorption. Adsorption is the adherence of adsorbate
(pesticide) molecules to adsorbent (e.g. soil) surfaces through
physical interaction (physisorption) and/or through the forma-
tion of chemical bonds (chemisorption). A variety of mecha-
nisms are involved when pesticides bind to soils, including:
London–van der Waals forces, cation and water bridging,
hydrogen bonding, protonation, ligand exchange, covalent
Fig. 1 Chemical structures of (a) a-endosulfan and (b) b-endosulfan.
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bonding, cation and anion exchange, and physical trapping.17–19

Desorption is the reserve process of adsorption and is depen-
dent on the soil–pesticide binding strength. Adsorbates that are
initially adsorbed on an adsorbent are then leached into the
surrounding medium – usually liquid.20 The phenomenon of
soil sorption involving pesticides is of tremendous importance
from both an agricultural and environmental perspective.
Pesticide sorption inuences other processes too, like trans-
port, degradation, volatilization, persistence, bioaccumulation,
and biomagnication; these in turn determine the nal fate of
the pesticide in the soil environment.7,21–23 In addition, soils are
heterogeneous mixtures of several components, comprising
organic and inorganic compounds with varying compositions
and surface activities and when bonded to pesticides, their
bioavailability is generally reduced. Thus, a knowledge of the
pesticide adsorption–desorption characteristics of soil is
necessary for predicting their mobility (leaching and migra-
tion), retention, and disappearance, as well as to understand
the soil–pesticide dynamics, and whether bioremediation is
a feasible option or not for the clean-up of contaminated soils.

Sorption is usually described through isotherm models.
Some of the most frequently observed and sited mathematical
models in the literature are: the Freundlich isotherm, Langmuir
isotherm, BET (Brunauer, Emmett, and Teller) isotherm, and
Gibb's isotherm. The Freundlich and Langmuir isotherms are
the most commonly used models for solid–aqueous systems,
like for activated carbon/natural sorbent (solid) in water/
wastewater treatment (aqueous) containing organic
compounds.24 However, of the two models, the Freundlich
isotherm is the most frequently applied for the adsorption
processes that are typical of a heterogeneous surface, which are
oen observed in soils.25–27

There are numerous reports available on the reaction of
pesticides (carbamates, organophosphates, organochlorines)
with soil.6,21,28,29 Other hydrophobic organics, like PAHs,16,30 and
herbicides, like atrazine, acetochlor, and phenoxyalkanoic
acids,31–33 have been reported. Kumar and Philip,6 Atasoy et al.,18

and Qian et al.34 studied the behaviour of endosulfan in four
Indian soils: vertisol soils under cotton in a southeast region of
Turkey and two typical agricultural soils (latosol and lateritic
red soil) in Southwest China, respectively. They investigated the
sorption phenomenon of endosulfan in soils and its properties,
and also reported on the relationships between the total organic
© 2023 The Author(s). Published by the Royal Society of Chemistry
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carbon/organic matter, soil pH, soil types, and particle size
(clay, loam, silt, sandy) and endosulfan. These researchers
asserted that the adsorption and desorption of endosulfan in
soils is dependent on the presence and levels of the afore-
mentioned soil properties. In addition these properties are
fundamental to the assessment of the quantity of endosulfan
that can be transported or leached and also offers guidance for
appropriate remediation and mitigation techniques.6 There are
also several studies on the sorption of OCPs and other pesti-
cides; however, most studies tend to address only adsorption
properties and were conducted under different experimental
conditions, thus making a comparison of the adsorption
behaviour and properties difficult.29

The application of uncontrolled and large quantities of
pesticides may impact the quality of the surrounding soils,
surface water, and groundwater. The fate of sprayed endosulfan
as a pesticide of choice by Theobroma cacao farmers in the West
African sub-region has not yet been extensively examined,7 but
would be worth doing so as this sub-region accounts for over
70% of the world production of cocoa beans, with Nigeria
presently in fourth position.35 Consequently, this study aimed
to (i) investigate the adsorption and desorption behaviours of a-
endosulfan and b-endosulfan in commercial grade endosulfan
pesticide using three selected farm soils under Theobroma cacao
vegetation; (ii) use the Freundlich and Langmuir sorption
isotherms and pseudo-rst- and pseudo-second-order kinetic
models for the isotherm mechanism and kinetic studies to
determine the residence time of endosulfan in the soils and to
predict it environmental mobility and fate; (iii) attempt to
evaluate the sorption–desorption mechanisms of a- and b-
endosulfan and nd whether they are inuenced by their
physical or chemical properties in soils. It is pertinent to
mention that the adsorption–desorption phenomenon of
hydrophobic and non-ionic organic like endosulfan is best
assessed by applying kinetic and isotherm models.33
Fig. 2 Sampling locations: CRIN (N07°12′ E003°51); Sore Bale (N07°08
2022).

© 2023 The Author(s). Published by the Royal Society of Chemistry
2 Materials and methods
2.1 Soil samples

Representative top soil samples, i.e. from a depth of 0–15 cm,
from three (3) geo-referenced Theobroma cacao farms located in
Oyo (Cocoa Research Institute of Nigeria (CRIN), Ibadan), Ogun
(Sore Bale Cocoa Farming Community, Sore Bale) and Ondo
(Igba Cocoa farm, Ondo) States, Southwestern Nigeria were
selected for the study. Fig. 2, shows the sampling locations:
CRIN –N07°12′ E003°51′; Sore Bale –N07°08′ E003°43′; and Igba
– N07°07′E004°53′. Samples were collected randomly at ve
points within each location. Samples were later composited and
allowed to age for a period of 24 months; then, prior to the
sorption studies, the samples were air-dried, crushed gently,
and sieved through a sieve with a mesh size of 2 mm. The
fraction of the soils # 2 mm were collected and used for the
study.

Table 1 shows a summary of the physicochemical properties
of the soil samples used for the study – obtained from previous
report by Vaikosen et al.7
2.2 Chemicals

Endosulfan standards (a-endosulfan (99.6%) and b-endosulfan
(99.9%)) and n-hexane and dichloromethane (DCM) solvents for
the extraction were purchased from Sigma-Aldrich (St Louis,
USA). Sodium sulfate (anhydrous), calcium chloride (CaCl2),
and silica gel 60 extra-pure (60–120 mesh) for the column
chromatography were obtained from BDH Limited (Poole, UK).
Thiodan EC 35 (technical-grade endosulfan, manufactured by
Bessen Chemical Co., Ltd, Nanjing, Jiangsu, China) was
purchased from an agro-chemical vendor at Dugbe market,
Ibadan, Southwestern Nigeria. The technical-grade endosulfan
was composed of a- and b-isomers in a ratio of 70 : 30%,
respectively.36
′ E003°43′); and Igba (N07°07′ E004°53′) (Source: Google Maps, April,

Environ. Sci.: Adv., 2023, 2, 257–277 | 259
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Table 1 Physicochemical properties of the tested farm soilsa

Parameters

CRIN Sore Bale Igba

0–15 cm 0–15 cm 0–15 cm

pH 8.26 8.31 7.1
Total organic carbon (%, w/w) 2.03 1.32 1.72
Total nitrogen (%, w/w) 0.14 0.11 0.14
C : N ratio 15 : 1 12 : 1 12 : 1
Total organic matter (%, w/w) 3.61 2.35 3.06
C. E. C (meq/100 g) 25.27 17.04 23.23

Particle-size distribution
% Clay 13.65 10.92 19.11
% Silt 16.84 14.87 25.53
% Sand 69.51 74.21 55.36

a Previously published by Vaikosen et al.7
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A stock solution of 2500 mg L−1 (i.e. 1750 mg L−1 a-endo-
sulfan and 750 mg L−1 b-endosulfan) was prepared by trans-
ferring 143 mL of technical-grade endosulfan (Thiodan 35 EC)
into 5 mL of ethanol in a 20 mL volumetric ask. This was made
to mark with distilled water.
2.3 Adsorption–desorption studies

OECD 106 and USEPA guidelines for the testing of chemicals
(adsorption–desorption using a batch equilibrium) were adop-
ted for the studies.26,27 Studies were conducted separately for
three loamy soils cultivated under Theobroma cacao farms in
Southwestern Nigeria, namely, CRIN (Cocoa Research Institute
of Nigeria), Sore Bale, and Igba cocoa farms.

2.3.1 Experimental design. Kinetic studies of these soils
were carried out with 5 mg mL−1 endosulfan at an equilibrium
time of 720 min using the parallel method, while the working
concentrations for the isotherm studies for the technical-grade
endosulfan ranged from 0.25 (0.175, 0.075) mg mL−1 to 25 (17.5,
7.5) mg mL−1, with the concentrations of a- and b-endosulfan
isomers given in the parentheses. Data obtained for the endo-
sulfan isomers were subjected to Freundlich and Langmuir
model equations to understand the mechanism of their
adsorption–desorption. The adsorption–desorption isotherm
curves and values of important variables in the linearized
Freundlich and Langmuir equations for both isomers in the soil
samples were also determined.

2.3.1.1 Screening for an appropriate soil/test solution ratio,
pH, and equilibrium time. Prior to the more denitive studies,
a preliminary investigation was carried out (at 24.0 ± 1.0 °C) on
two soil types [i.e. soils with the highest and least organic
carbon (OC) content] to ascertain the appropriate soil : test
solution ratio and equilibrium time to be adopted for the
sorption studies. Based on the OC levels in the soils, the
following three soil : solution ratios (w/v) 1/1, 1/5, and 1/25 were
prepared in 25 mL calibrated glass centrifuge tubes and the
tests were carried adopting OECD 106 and USEPA procedures.

The preliminary investigation showed a soil to solution
(0.01 M CaCl2) ratio of 1/25 was the most appropriate for all the
260 | Environ. Sci.: Adv., 2023, 2, 257–277
samples. Subsequent experiments were carried out using this
ratio.

2.3.2 Adsorption–desorption kinetics
2.3.2.1 Adsorption kinetic study. Soil samples (1 g) were

weighed into eleven (11) calibrated 25 mL glass centrifuge
tubes. To each tube, 22.5 mL of 0.01 M CaCl2 solution and
0.25 mL 0.02% (w/v) NaN3 were added and shaken overnight (12
h) to equilibrate. To the tubes, 50 mL of 2500 mg L−1 technical-
grade endosulfan emulsion (stock solution) was added and
adjusted with 0.01 M CaCl2 solution to 25 mL to give a concen-
tration of 5000 mg L−1 endosulfan (i.e. 3500 mg L−1 and 1500 mg
L−1 of a- and b-endosulfan, respectively). The mixtures were
shaken for 12 h with the aid of a GFL 3040 (end-to-end)
mechanical shaker at a rate of 22–24 rpm. At intervals of 15,
30, 45, 60, 90, 120, 180, 240, 360, 480, and 720 min, the inter-
actions between the endosulfan and soil samples were stopped
by centrifuging at 4500 rpm (3375 g) for 5 min with a Beckmen
Coulter Allegra 21 digital centrifuge. The supernatant was
gently decanted into a clean ask for extraction and clean-up,
while the residue in the tubes were le for the desorption
kinetic studies. Table 2 shows a summary of the experimental
set-up.

2.3.2.2 Extraction and clean-up. A 5 mL aliquot (in triplicate)
of the supernatant was transferred into a 25 mL separatory
funnel, and then extracted rst with 10 mL DCM and then twice
with 5mL of DCM. Combined extracts was concentrated to 1mL
under a gentle stream of N2 gas in a hood and transferred into
SPE cartridges with silica gel. This was eluted with 10 mL of
hexane : DCM (3 : 1) at a ow rate of 1.2 mL min−1 and the
eluate was evaporated to dryness under a gentle stream of N2

gas. The cleaned residue was redissolved with 1 mL hexane and
the amount of pesticide in the aqueous phase was quantied by
GC-MS analysis (the amount adsorbed on the soil was
computed by the difference).

2.3.2.3 Control and blank. The control and blank experi-
ments were carried out as described above, with the test
medium (0.01 M CaCl2), 50 mL of 2500mg L−1 of technical-grade
endosulfan, and NaN3 without soil samples for the control;
while the blank was made with a soil sample (1 g), test medium
(0.01 M CaCl2), and NaN3 without the test sample (endosulfan).
The extracts were subjected to the same test procedure.

2.3.2.4 Desorption kinetic study. The parallel method was
adopted for the desorption kinetics.26,27 The procedure
described for the adsorption kinetics was repeated using the
same tubes, except that the decanted supernatants were
replaced with an equal volume of 0.01 M CaCl2 and the new
mixtures were agitated at the same speed with the end-to-end
shaker. The reaction was quenched for each tube correspond-
ing to time intervals of 15, 30, 45, 60, 90, 120, 180, 240, 360, 480,
and 720 min (in the adsorption kinetics) by centrifuging. The
amount of pesticide in each supernatant was then extracted,
cleaned, and quantied by GC-MS.

2.3.3 Adsorption–desorption isotherm studies
2.3.3.1 Adsorption isotherms/equilibrium studies. The

adsorption isotherm experiments were set up in ten (10) cali-
brated 25 mL glass centrifuge tubes, each containing 1 g of pre-
equilibrated soil samples in 20 mL of 0.01 M CaCl2 solution.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Tabulated sorption kinetics experimental set-up for the samples, blank and control with initial concentrations of a- and b-endosulfan in
0.01 M CaCl2 aqueous solution

Experiment/farm
soil Weight of soil (g)

Final volume of 0.01 M
CaCl2 in tube (mL)a

Concentration of
endosulfan (mg mL−1)

a-Isomer b-Isomer

CRIN 1.0 25.00 87.5 37.5
Igba 1.0 25.00 87.5 37.5
Sore Bale 1.0 25.00 87.5 37.5
Blank 1.0 25.00 — —
Control — 25.00 87.5 37.5

a The weight per milliliter (wt/mL) of 0.01 M CaCl2 was 1.00 g mL−1 (or specic gravity = 1.00); i.e. endosulfan was partitioned into 25 mL or 25 g
0.01 M CaCl2.
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Working concentrations of 0.25, 0.50, 1.0, 1.50, 2.5, 5.0, 10.0,
15.0, 20.0, and 25.0 mg mL−1 of endosulfan were prepared by
adding an appropriate amount from the endosulfan stock
solution (technical grade), and thereaer the tubes were
adjusted to 25 mL with 0.01 M CaCl2 solution. Controls and
blanks were also set up (as described for the adsorption
kinetics). The sample tubes were shaken for 12 h to attain
equilibrium. The phases were separated by centrifuging the
mixtures at 4500 rpm or (3375g) for 5 min and the aqueous
phase was decanted gently. The amount of endosulfan in each
supernatant was extracted, cleaned, and quantied by GC-MS.

2.3.3.2 Desorption isotherms/equilibrium studies. Aer the
completion of the procedure for adsorption isotherm/
equilibrium, the aqueous phases were carefully drained off
completely from the tubes (0.25, 0.50, 1.0, 1.50, 2.5, 5.0, 10.0,
15.0, 20.0, and 25.0 mg mL−1 endosulfan) and replaced by equal
volume of 0.01 M CaCl2 (without test substance) to the 25 mL
mark. The new mixtures were agitated again for 12 h and
thereaer centrifuged at 4500 rpm for 5 min to separate both
phases. The aqueous phase was gently decanted into a glass
ask for extraction and clean-up. This was followed by GC-MS
quantication of both isomers.

2.4 Gas chromatography mass spectroscopy analysis

Residual levels of a- and b-endosulfan in the test media were
quantied using a Thermo-Finnigan Trace GC Ultra system
(Waltham, MA, USA) coupled to an ion trap mass spectrometer
(MS) (Polaris Q), equipped with an AS-2000 Tray Auto-sampler
(Thermoquest), split-less injector, and HP-5MS capillary
column (30 m length × 0.25 mm i.d. × 0.25 mm lm thickness).
The data were processed by Xcalibur soware. The operating
conditions were as follows: the initial temperature of the oven
was held at 80 °C for 5 min, then increased to 200 °C at a rate of
20 °C min−1, and then held there for 5 min – this was followed
by an increase to 280 °C at 10 °C min−1, nally holding it there
for 2 min. The ow rate of the carrier gas helium (99.99% purity)
was kept constant at 1.18 mL min−1. The split-less injection
mode was done at 79.5 kPa at a temperature of 250 °C, while the
total ow and linear velocity were 32.7 mL min−1 and 10.0 cm
s−1, respectively. The interface line and ion source temperatures
were 260 °C and 250 °C, respectively.
© 2023 The Author(s). Published by the Royal Society of Chemistry
2.5 Calibration and validation of the analytical method

2.5.1 Calibration curve. A ve-point calibration plot for a-
and b-endosulfan in the hexane and isopropyl alcohol mixture
(1 : 1) was carried out. The working concentrations of the
reference standards used for the calibration ranged from 0.020
to 1.200 mg mL−1. The calibration curves for the a- and b-
endosulfan standards were linear over the concentration range
applied. The linearity was good, as indicated by the regression
coefficients (R2) of 0.9989 and 0.9976 obtained for a- and b-
endosulfan, respectively, with corresponding retention times
(RTs) at 18.42 and 20.07 min.

2.5.2 Quality assurance. To validate the method, the stan-
dard addition technique was applied for the recovery studies.
Solutions of technical-grade endosulfan (containing 3.5 and 1.5
mg mL−1 of a- and b-endosulfan, respectively) were fortied at
three concentration levels. Spiking was done using the a- and b-
endosulfan standards as follows: 4.0 and 6.0 mg mL−1; 6.0 and
8.50 mg mL−1; 11.50 and 13.50 mg mL−1 respectively. Control
and blank experiments were also assayed. The control tube was
lled with 0.01 M CaCl2 solution without endosulfan, while the
blank was made up of the technical grade endosulfan (3.5 and
1.5 mg mL−1 of a- and b-endosulfan, respectively) in 0.01 M
CaCl2 solution without spiking. The method sensitivity was
determined by the limit of detection (LoD) and the limit of
quantication (LoQ). The LoD and LoQ were obtained by eval-
uating the lowest concentrations of the analyte that could be
detected and measured respectively. They were calculated using
the expressions: LoD = 3.3Sa/b and LoQ = 10Sa/b (where Sa is
the standard deviation of the intercept of the regression line,
and b is the slope of the regression line).37,38 The identied GC-
MS peaks for a- and b-endosulfan extracted from aqueous phase
were conrmed by selected molecular ion peaks at m/z values
using the National Institute of Standards and Technology
(NIST) search library.7,39
2.6 Data evaluation

2.6.1 Quantication of the adsorbed endosulfan. The
amount of endosulfan adsorbed onto the soil surface was
evaluated from the difference between the initial concentration
of endosulfan in solution (C0) and the amount remaining in the
Environ. Sci.: Adv., 2023, 2, 257–277 | 261
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aqueous solution at the end of the experiment (Ce). The quantity
of endosulfan adsorbed at equilibrium (qe) or at any time t (qt)
was calculated in ug g−1 from eqn (1) and (2) as follows:

qe ¼ ðc0 � ctÞ v
m

(1)

qt ¼ ðc0 � ceÞ v
m

(2)

where qe and qt are the amounts of endosulfan adsorbed onto
the soil surface at equilibrium and at time t, respectively; C0 (mg
L−1) is the initial concentration of endosulfan in solution, while
Ce and Ct (mg L−1) represent the nal concentration of endo-
sulfan in the aqueous phase at equilibrium and at time t; v is the
volume of solution in mL, and m is the soil mass in g.

2.6.2 Kinetic study and sorption rate constants. The
adsorption (kads) and desorption (kdes) kinetic rate constants for a-
and b-endosulfan in the soils were evaluated by the Lagergren
pseudo-rst-order model40 (PFOM), as expressed in eqn (3) and (4):

ln

�
qe

qe � qt

�
¼ kt (3)

ln(qe − qt) = ln(qe) − kt (4)

Values for In (qe − qt) were calculated for each time ampli-
tude for both isomers at a temperature of 25.0 ± 1 °C, where qe
and qt represent the quantity of adsorbate adsorbed at equi-
librium and time t, respectively, and k represents the rate
constants for the adsorption (kads) and desorption (kdes)
processes. The pseudo-second-order kinetics model (PSOM) was
evaluated using eqn (5):

t

qt
¼ t

qe
þ 1

kSqe2
(5)

2.6.3 Isotherm/equilibrium study. The Langmuir41 and
Freundlich42 isotherms have been used for the description of
soil/sediment or solid phases with other materials. However,
the adsorption–desorption of pesticides with soils and sedi-
ments are best described by the non-linear Freundlich
isotherm.16,27 The Freundlich adsorption isotherm is generally
expressed as follows:

qads = KfadsC
1/n
eq

ads (6)

lnðqadsÞ ¼ lnðKadsÞ þ 1

nads
ln
�
Ceq

�
(7)

Eqn (6) and (7) are the normal and linearized forms of the
Freundlich adsorption isotherm respectively, where qe, is the
amount of pesticide adsorbed on the adsorbent (mg g−1), Ce is
the equilibrium concentration of pesticide in the solution (mg
mL−1), and Kf [(mg g−1)/(mg mL−1)n] and 1/n are empirical
constants, referred to as the Freundlich adsorption coefficient
and adsorption constant, respectively. Kf and n are obtained by
linear regression and characterize the adsorbent and the
pesticides adsorbed.
262 | Environ. Sci.: Adv., 2023, 2, 257–277
The Langmuir isotherm is expressed as follows:

qe ¼ qmax$KL$Ce

1þ KL$Ce

(8)

1

qe
¼ 1

qmax $KL

�
1

Ce

�
þ 1

qmax

: (9)

where qe is the amount of pesticide adsorbed on the adsorbent
(mg g−1), Ce is the equilibrium concentration of pesticide in the
solution (mg mL−1), KL is the Langmuir constant, and qmax is the
maximum adsorption capacity (mg g−1). It is pertinent to
mention that the Langmuir isotherm is based on the assump-
tion that there is chemisorption of the adsorbate. It is therefore
appropriate for the interaction between an adsorbate and
adsorbent leading to a monolayer adsorption.41

2.7 Leaching potential

Pesticide leachability (or mobility) in the soil prole and the risk
of groundwater contamination are oen assessed by FAO
mobility ranking based on log Koc values43 and the Groundwater
Ubiquity Score, GUS index,44 expressed as:

GUS index = (log t1/2) × (4 − log(Koc)) (10)

where t1/2 is the half-life of pesticide and Koc (organic carbon
adsorption coefficient) is an empirical value obtained from the Kd
and%OC. (The t1/2 of a-endosulfan, b-endosulfan in CRIN soil are
12.16 and 16.75 d, respectively; as earlier published by Vaikosen
et al.7).

2.8 Thermodynamic parameter of adsorption: the standard
gibbs free energy (DG°)

The thermodynamic properties aid describing the energy
changes observed in adsorption processes.45 To clarify the sorp-
tion mechanism of the endosulfan isomers in the three farm
soils, the resultant free energy changes due to the reactants (soil
and endosulfan) and products (soil–endosulfan) were evaluated
based on the equilibrium adsorption coefficient Kd and the
standard Gibbs free energy (DG°), as expressed in eqn (10):

DG˚ = −RT InKd (11)

where DG° is the standard Gibbs free energy change, R is the gas
molar constant (8.314 J mol−1 K−1), Kd if the equilibrium
adsorption coefficient, and T is the absolute temperature – at
298 K. Note: in order to have a dimensionless Kd, the volume
(mL) of the aqueous phase used was converted to weight (g) by
determining its specic gravity (or weight per millilitre, wt/mL).
The wt/mL of 0.01 M CaCl2 was approximately 1.00 g mL−1.

3 Results and discussions
3.1 Quality assurance and validation of the analytical
method

The analytical performance for the quantication of a- and b-
endosulfan was assessed and validated in accordance with ICH
guidelines.46 The calibration curves for a- and b-endosulfan
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Recovery studies for the adsorption–desorption experiments

Pesticide
(isomers)

Amount of
pesticide in
solution (mg mL−1)
(0.001 M CaCl2)

Amount of
pesticide
spiked (mg mL−1)

Total quantity of
pesticide expected
(mg mL−1)

Total quantity of
pesticide found
(mg mL−1)

Percentage
recovery (%) RSD (%) SEM

a-Endosulfan 3.50 4.00 7.50 7.53 � 0.06 100.44 � 1.16 0.81 0.04
b-Endosulfan 1.50 6.00 7.50 7.43 � 0.04 99.02 � 1.10 0.53 0.02
a-Endosulfan 3.50 6.50 10.00 9.74 � 0.19 97.37 � 1.92 1.97 0.11
b-Endosulfan 1.50 8.50 10.00 9.73 � 0.07 97.27 � 1.87 0.67 0.04
a-Endosulfan 3.50 11.50 15.00 14.98 � 0.06 99.84 � 0.56 0.41 0.04
b-Endosulfan 1.50 13.50 15.00 14.75 � 0.07 98.33 � 1.12 0.48 0.04

Control
a-Endosulfan 3.5 — 3.5 3.49 � 0.01 99.79 � 0.26 0.01 0.01
b-Endosulfan 1.5 — 1.5 1.47 � 0.01 97.87 � 1.22 0.03 0.01

Blank
a-Endosulfan <0.000 — <0.000 <0.000 <0.000 <0.000 <0.000
b-Endosulfan <0.000 — <0.000 <0.000 <0.000 <0.000 <0.000
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standards were linear over the concentration range applied. The
linearity was good, as indicated by the regression coefficients
(R2) of 0.9989 and 0.9976 obtained for a- and b-endosulfan,
respectively. Table 3 shows the values obtained in the recovery
studies for both isomers, which ranged from 97.27%± 1.87% to
100.44% ± 1.16%, with a coefficient of variation (CV) as % RSD
# 1.97%, with these values indicating that the method of
analysis was highly reliable and reproducible. The LoQ and LoD
values were 0.001 mg mL−1 and 0.0003 mg mL−1, respectively;
this again showed the good sensitivity of the method applied for
quantication of the pesticides.
3.2 Identication of the endosulfan isomers

Fig. 3 shows the chromatogram for a- and b-endosulfan at
retention times of 18.43 and 20.07 min, respectively, with the
corresponding m/z spectra below. These m/z spectra patterns
Fig. 3 Chromatograms and mass spectra of a-endosulfan and b-endos

© 2023 The Author(s). Published by the Royal Society of Chemistry
were characteristic of endosulfan.15,47 Also, Fig. 4(a–j) present the
chromatograms (with peak areas/heights) of both isomers from
t0 to t480 − these indicate the amount of residual endosulfan in
0.01 M CaCl2 medium versus the working time amplitude as the
soil–endosulfan reaction progressed. The decrease in the
amount of residual endosulfan implied an increase in the
amount of pesticide adsorbed on the soil samples.
3.3 Adsorption–desorption kinetics

Fig. 5–12, show the results obtained for the interaction of
endosulfan pesticide with the soils from CRIN, Igba, and Sore
Bale Theobroma cacao farms for the PFOM.

3.3.1 Adsorption kinetics. Fig. 5 and 6 show the adsorption
kinetics for a nominal equilibration concentration of 5 mg mL−1

technical-grade endosulfan [a- and b-isomers (7 : 3) ratio],
which exhibited a rapid and immediate adsorption, with 23.94–
ulfan.

Environ. Sci.: Adv., 2023, 2, 257–277 | 263
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Fig. 4 Chromatograms of the adsorption kinetics for a- and b-endosulfan at (a) T0mins, (b) T15min, (c) T30min, (d) T45min, (e) T90min, (f) T120min, (g)
T180min, (h) T240min, (i) T360min, and (j) T480min for CRIN farm soil.
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43.36% of the equilibration concentration of both isomers
adsorbed by the soils under investigation. The percentage
adsorption obtained with respect to the equilibration concen-
tration of the pesticides and three soils, in this study were
264 | Environ. Sci.: Adv., 2023, 2, 257–277
comparable with the range reported for the sorption studies of
seven pesticides with sediment from a pond in Teufelseiher,
Germany.21 However, this range was signicantly different from
the values reported by Atasoy et al.18 The incomparable ranges
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Adsorption kinetics of a-endosulfan on three different cocoa
farm soils.

Fig. 6 Adsorption kinetics of b-endosulfan on three different cocoa
farm soils.

Paper Environmental Science: Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
11

 2
02

2.
 D

ow
nl

oa
de

d 
on

 2
02

4/
08

/1
4 

23
:1

4:
17

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
with the latter may have been due to the large differences in the
working concentrations and soil prole.

The maximum adsorption capacities for a- and b-endosulfan
ranged from 75.64%–78.78% and 76.53–82.21%, respectively,
for all the soils in the Theobroma cacao farms within 60 min.
This phase was rapid, and it was followed by a slow adsorption
process of the adsorbate isomers to the farm soils – this trend
depicted a bi-continuous phenomenon.48,49 The aforemen-
tioned rapid adsorption was a surface phenomenon, in which
vacant sites in the soil were quickly occupied by the non-ionic
and hydrophobic endosulfan molecules.6,49 The sudden
decrease in the rate of adsorption exhibited in the second phase
by the endosulfan isomers was a result of their gradual migra-
tion and diffusion into the organic matter matrix and clay
mineral interlayers and surfaces.18,21 The same trend was
© 2023 The Author(s). Published by the Royal Society of Chemistry
reported by Parkpian et al.50 while studying Rangsit lowland and
Phrabat upland soils in Thailand; and also by Kumar and Phi-
lip6 and Atasoy et al.18 for four Indian soils and vertisol soils
from Turkey, respectively.

The a-isomer attained pseudo-equilibria, with the formation
of plateaus aer 120, 180, and 240 min with the Sore Bale, Igba,
and CRIN farm soils, respectively, while for the b-isomer,
plateaus were formed aer 120 min with Sore Bale soil and
240min with CRIN and Igba soils. The pseudo-equilibrium time
range obtained for each farm soils in this study (120–240
minutes) was comparable with the time reported by Parkpian
et al.50 and Atasoy et al.,18 for both isomers in topsoils. At
pseudo-equilibrium, less than a 3% variation of the residual
adsorbate concentrations (a- and b-endosulfan) in the aqueous
phase was observed between the two successive time ampli-
tudes, even at the terminal time of 720 min. The variation in
percentage adsorption was comparable with the values reported
for four Indian soils.6

The order of attainment of pseudo-equilibria and the
formation of plateaus were as follows: Sore Bale > Igba > CRIN.
The relative ease of attaining pseudo-equilibrium exhibited by
the Sore Bale soil was due to its relatively low adsorption
capacity and percentage adsorption caused by the presence of
fewer vacant sites for the a- and b-endosulfan isomers to
occupy.

The partition coefficient (Kd) at equilibrium ranged from
13.33 ± 0.57 to 19.51 ± 0.97 mL g−1 and 8.10 ± 0.34 to 11.25 ±

0.23 mL g−1 for a- and b-endosulfan, respectively (Table 4). The
order of partitioning was CRIN > Igba > Sore Bale; thus exhib-
iting the same trend with respect to the percentage adsorption.
A high equilibrium Kd value signies a greater adsorption
tendency of the adsorbate to the adsorbent and a lower
tendency of the adsorbate to remain in the aqueous phase.

A comparison of the R2 values of the PFOM with that of the
PSOM (Table 4) showed a higher value, which indicated the
better tness for the latter. The adsorption and desorption
kinetics tted perfectly into PSOM, which may imply that the
rate was dependent on the concentration of both the adsorbent
and the adsorbate.

3.3.2 Desorption kinetics of a- and b-endosulfan. The
degree of mobility of a chemical compound in soil can be
assessed by desorption studies. Fig. 7 and 8 show the kinetic
desorption of both isomers of endosulfan from the soils. The a-
and b-endosulfan exhibited a rapid desorption kinetics, with
apparent desorption capacities of a-endosulfan at the terminal
equilibrium time (720 min) for CRIN, Igba, and Sore Bale soils
of 0.12 ± 0.01 (7.92%), 0.12 ± 0.01 (10.15%), and 0.14 ± 0.01 mg
mL−1 (11.25%), respectively (with the percentage desorption
given in the parentheses); while the values for the b-isomer were
0.06 ± 0.00 (14.89%), 0.07 ± 0.01 (16.32%), and 0.07 ± 0.01
mg mL (18.53%), respectively. The relative ease of endosulfan
desorption from the soils at this initial stage was in the order:
Sore Bale > Igba > CRIN. This trend was in reverse with respect
to the adsorption kinetics. The loss of both isomers was
immediate and rapid. This may have been due to the particle-
size distribution of the farm soils. Krishna and Philip29 re-
ported a 50% desorption of pesticides (lindane, carbofuran, and
Environ. Sci.: Adv., 2023, 2, 257–277 | 265
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Fig. 7 Desorption kinetics of a-endosulfan for CRIN, Igba and Sore Bale farm soils.

Fig. 8 Desorption kinetics of b-endosulfan for CRIN, Igba and Sore
Bale farm soils.
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methyl parathion) within 15 min from a sandy soil. The
percentage of sand content in the farm soils here were 71.21%,
69.51%, and 55.36% for Sore Bale, CRIN, and Igba, respectively.
The rapid release of the endosulfan isomers from the soils
continued until pseudo-equilibrium was reached, followed by
a slow desorption process of the two adsorbate isomers. Pseudo
desorption equilibria in CRIN, Igba, and Sore Bale soils for a-
and b-endosulfan were attained within 180–240 min and 120–
180 min, respectively. The b-isomer showed a greater desorp-
tion tendency than the a-isomer, hence exhibiting a faster
desorption rate. This relative ease of being leached from the
266 | Environ. Sci.: Adv., 2023, 2, 257–277
farm soils may be one of the reasons the b-isomer is predomi-
nant in the aquatic environment.51,52

3.3.3 Sorption rate constants. The adsorption (kads) and
desorption (kdes) rate constants for both PFOM and PSOM are
presented in Table 4. The adsorption rate constants (kads) for a-
and b-endosulfan evaluated from the Lagergren plot varied
from 7.60 × 10−3 to 9.91 × 10−3 min−1 and 9.67 × 10−3 to 11.52
× 10−3 min−1, respectively. The regression coefficients (R2) for
all the plots ranged between 0.895 and 0.990. The order for the
kads values were Igba < CRIN < Sore Bale and CRIN < Igba < Sore
Bale for a- and b-endosulfan, respectively. This trend implied
that the Sore Bale soil would attain adsorption equilibrium
fastest due to its relatively low adsorption capacity because of its
low percentage clay and organic carbon content.6,21 Also, the kdes
for a- and b-endosulfan ranged from 1.39–1.70 × 10−4 min−1

and 2.24–2.85 × 10−4 min−1, respectively, the order being CRIN
< Igba < Sore Bale for both isomers. The calculated desorption
rate constants (kdes) were generally higher for the b-isomer than
those of the a-isomer in all the soils. This implied that the b-
isomer would have a greater tendency to be leached from soil
during run-off and also would migrate to contaminate both
surface and ground water.53 These rate constants were compa-
rable with the values reported for endosulfan isomers in four
Indian soils.6 Also, this study showed that kads > kdes for both
isomers, which indicated that the adsorption of endosulfan
proceeded much faster than in the desorption exercise, and
thus it would likely be retained.

Conversely, for PSOM, the obtained rate constants (Table 4)
showed that k2_des > k2_ads. This implied that when the
concentrations of the adsorbate and adsorbent were factored in,
the rate of desorption was faster than the rate of adsorption.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Adsorption isotherms of a-endosulfan for CRIN, Igba and Sore Bale soils, where: qe = concentration of a-endosulfan adsorbed on soil at
equilibrium (mg g−1), Ce = concentration of a-endosulfan remaining in 0.01 M CaCl2 at equilibrium (mg mL−1).

Fig. 10 Adsorption isotherms of b-endosulfan for CRIN, Igba and Sore
Bale soils, where: qe= concentration of b-endosulfan adsorbed on soil
at equilibrium (mg g−1), Ce = concentration of b-endosulfan remaining
into 0.01 M CaCl2 at equilibrium (mg cm−3).

Fig. 11 Desorption isotherms of a-endosulfan for CRIN, Igba and Sore
Bale farm soils, where qe = concentration of a-endosulfan unde-
sorbed at equilibrium (mg g−1), Ce = concentration of a-endosulfan
desorbed into 0.01 M CaCl2 at equilibrium (mg mL−1).
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This was the inverse of the trend obtained in the PFOM. Since
the kinetics tted better into the PSOM than the PFOM, it may
deduced that there was high mobility and a leaching rate
tendency of the endosulfan owing to the hydrophilicity of the
soil. This thus implied that the pesticide may not persist for
long in farm soils, which may indicate a short term impact but
no potential immediate contamination risk unless degraded.
The a-endosulfan was observed to adsorb and desorb faster
than the b-endosulfan, which was opposite of the trend
© 2023 The Author(s). Published by the Royal Society of Chemistry
observed in PFOM. CRIN soil had faster adsorption and
desorption kinetics, while the Igba and Sore Bale soil kinetics
had comparable rate constants (Table 4) for both adsorption
and desorption studies of both isomers.
3.4 Adsorption–desorption isotherms

3.4.1 Adsorption isotherm. The data obtained in the
adsorption equilibrium study for a- and b-isomers at the
temperature of 25 ± 1 °C tted the Freundlich isotherm better
Environ. Sci.: Adv., 2023, 2, 257–277 | 267
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Fig. 12 Desorption isotherms of b-endosulfan for CRIN, Igba and Sore Bale farm soils, where: qe= concentration of b-endosulfan undesorbed at
equilibrium (mg g−1), Ce = concentration of b-endosulfan desorbed into 0.01 M CaCl2 at equilibrium (mg mL−1).
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(R2 $ 0.992) for the isomers and soils (Table 5), but the
adsorption data were considered not to t as well into the
Langmuir isotherm (R2 # 0.948) as they did for the Freundlich.
The desorption data also tted well into the Freundlich
isotherm. All the Freundlich isotherm plots were non-linear,
while the isotherm curves were type L.54 Type L is typical for
adsorbents with a high affinity for adsorbates.18 Endosulfan is
hydrophobic by nature and would be strongly attracted to soil
surfaces that are highly heterogeneous in an aqueous
environment.

The 1/nads Freundlich exponent of sorption for both isomers
ranged from 0.503 to 0.557 (i.e. < 1.0) for all soils, with this
range depicting non-linearity. The results showed that 1/nads (a-
isomer) > 1/nads (b-isomer) for all three soils. The low 1/nads
values in this study also indicated that endosulfan adsorption
was normal and not cooperative.55 Small 1/nads values are
associated with adsorbents that have greater heterogeneity,
with some good examples being soils and sediments with high
OM.51,56 The OM content in the three loamy farm soils were
signicantly high [2.35–3.61% (w/w)], with the values for nads –
the strength of the adsorption (reciprocal of 1/nads) – ranging
from 1.097 to 1.402 for both isomers. The calculated nads values
between 1.0 and 10.0 suggested a good adsorption process;57

hence all the soils were good adsorbents.
The Langmuir maximum adsorption capacities (qmax) of the

soils were obtained in the range of 0.064–0.202 mg g−1 for
adsorption and 0.282–0.886 mg g−1 for desorption. b-Endo-
sulfan had a lower qmax than a-endosulfan in all instances,
except in the desorption data of CRIN. The Langmuir isotherm
equilibrium constant (KL) showed low values of 0.021–0.070 L
268 | Environ. Sci.: Adv., 2023, 2, 257–277
mg−1 for the adsorption capacity. The equilibrium constants for
the desorption of endosulfan were found to be 0.006–0.020 L
mg−1. The value of KL < 1 indicated that the rate of adsorption
was lower than the rate of desorption, which supported the
trend of results obtained in the PSOM.

Fig. 9 and 10 are separate plots for a- and b-endosulfan of the
adsorbed concentration (mg g−1) versus the equilibrium
concentration (mg mL−1), which showed a steep rise at low
concentrations (0.175–1.050 mg mL−1 for a-endosulfan; 0.075–
0.450 mg mL−1 for b-endosulfan), followed by a parabolic
increase at higher concentrations (1.750–17.500 mg mL−1 for a-
endosulfan; 0.750–7.500 mg mL−1 for b-endosulfan) in all the
soil samples investigated. The initial steep rise in the low
concentration range may have been due to the availability of
abundant vacant sites in the adsorbent material (i.e. the soil
samples), competed for by small quantities of the adsorbate (i.e.
a- and b-endosulfan) in the aqueous phase; while the parabolic
curve may have resulted from the gradual reduction in the
number of vacant sites available for adsorption by the adsorbate
as its concentration increased. The behaviour of both isomers
were almost similar in all the soils, except for b-endosulfan,
which exhibited a more ‘parabolic shape’ in the high concen-
tration range, which was likely due to the more competitive
nature of the a-isomer over the b-isomer. The a-isomer may
have been favoured because of its rapid rate of adsorption6,34

and relatively higher proportion in the commercial endo-
sulfan36 that was used in this study. The aforementioned may
also be one of the reasons why the b-isomer is more predomi-
nant in the aquatic environment. The Freundlich adsorption
coefficients (Kfads) for a-endosulfan were 4.50 ± 0.22 (CRIN),
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Adsorption–desorption pseudo-first-order model (PFOM) and pseudo-second-order model (PSOM) kinetics parameter of a- and b-
endosulfan for the CRIN, Igba and Sore Bale farm soilsab

Adsorption kinetics – parameters PFOM PSOM

Acp (mg g−1) At% Kd
c (mL g−1) Kom (mL g−1) kads (min−1) R2 k2_ads (g mg−1 min−1) R2

CRIN farm soil
a-Endosulfan 37.94 � 1.09 43.36 19.15 � 0.57 547.19 � 23.31 9.67 × 10−3 0.933 71.59 � 1.88 0.997
b-Endosulfan 11.94 � 0.17 31.85 11.25 � 0.23 321.45 � 19.57 12.36 × 10−3 0.895 6.92 � 0.57 0.999

Igba farm soil
a-Endosulfan 29.96 � 0.29 34.24 14.5 � 0.12 488.99 � 31.91 7.60 × 10−3 0.974 43.47 � 1.41 0.999
b-Endosulfan 10.05 � 0.11 26.80 9.15 � 0.06 308.57 � 21.46 9.67 × 10−3 0.931 5.03 � 0.49 0.998

Sore bale farm soil
a-Endosulfan 28.04 � 0.30 32.05 13.33 � 0.05 585.54 � 35.34 9.91 × 10−3 0.990 44.57 � 1.55 0.999
b-Endosulfan 8.98 � 0.08 23.94 8.10 � 0.04 355.94 � 23.34 11.52 × 10−3 0.958 5.47 � 0.59 0.999

Desorption kinetics – parameters

Dcp (mg mL−1) Dt% Kdes (mL g−1) Kom (mL g−1) kdes (min−1) R2 k2_des (g mg−1 min−1) R2

CRIN farm soil
a-Endosulfan 0.12 � 0.01 7.92 209.7 � 10.56 2600.21 � 54.24 1.39 × 10−3 0.821 754.6 � 25.5 1.000
b-Endosulfan 0.06 � 0.00 14.89 142.9 � 8.78 2028.73 � 51.19 2.69 × 10−3 0.922 32.94 � 3.83 1.000

Igba farm soil
a-Endosulfan 0.12 � 0.01 10.15 221.2 � 12.02 2664.17 � 61.52 1.79 × 10−3 0.959 449.8 � 16.8 1.000
b-Endosulfan 0.07 � 0.00 16.32 128.2 � 9.98 2141.45 � 41.21 2.98 × 10−3 0.906 31.18 � 2.72 1.000

Sore Bale farm soil
a-Endosulfan 0.14 � 0.01 11.25 197.2 � 13.83 3295.72 � 67.09 2.04 × 10−3 0.939 450.4 � 16.7 1.000
b-Endosulfan 0.07 � 0.00 18.53 109.99 � 8.87 2702.49 � 69.17 3.42 × 10−3 0.957 33.01 � 4.08 1.000

a Where; Acp = adsorption capacity at 720 min equilibrium time.; A% = adsorption percentage at equilibrium; D% = desorption percentage at
equilibrium; Kd = distribution coefficient at adsorption equilibrium; Kdes = distribution coefficient at desorption equilibrium; Koc =
distribution coefficient due to organic carbon; kads=adsorption rst-order rate constant; kdes = desorption rst-order rate constant; k2_ads =
adsorption second-order rate constant; k2_des = desorption second-order rate constant; R2 = correlation coefficient. Note: Kd was calculated

using the expression from OECD (2000)26 and USEPA (2008).27 b Kd ¼ Cs

Caq
where; Cs = concentration in soil; Caq = concentration in aqueous

medium. c Partitioning of endosulfan (mg) between soil (1 g) and 0.01 M CaCl2 (25 g) since wt/mL of 0.01 M CaCl2 was approx. 1.00 g mL−1.
Unit for Cs and Caq the same (mg g−1) will result in a unit-less Kd and DG° could be calculated.
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3.64 ± 0.13; (Igba), and 2.31 ± 0.08 (mg1−1/n (mL)1/n g−1) (Sore
Bale), while the same trend was exhibited by the b-isomer, with
values ranging from 2.51 ± 0.13 to 3.35 ± 0.09 (Table 5).

3.4.1.1 Effect of the organic matter and clay content on
adsorption. Endosulfan is non-ionic and hydrophobic and
would absorb strongly on the organic components present in
soil.50 The total organic matter (TOM) content in the soils were:
Sore Bale – 2.35% (w/w), Igba – 3.06% (w/w), and CRIN – 3.61%
(w/w) (Table 1). Soils with a heavy texture and containing not
less than 1% (w/w) organic matter have been reported to have
been used to predict their adsorption capacity.58 The order of
Freundlich adsorption capacity (Kads) was CRIN > Igba > Sore
Bale (Table 5) – this trend corroborates the earlier assertion by
Parkpian et al.50 The Kads values of a chemical with different
sorbents are directly proportional to their organic matter or
organic carbon content.20 The adsorption capacities exhibited
by a- and b-endosulfan in this study would retard their down-
ward migration and leaching within these soil proles. It is
© 2023 The Author(s). Published by the Royal Society of Chemistry
therefore expected that the order of ease of mobility and
leaching will be in the reverse order, i.e.: CRIN < Igba < Sore
Bale. Si et al.59 reported that the leaching potential of a pesticide
is inversely related to adsorption, while its mobility in soil is
controlled by sorption. In heterogenous adsorbents like soil, the
sorption of non-ionic and hydrophobic organics are dependent
on the level of organic matter and, to some extent, on the clay
mineralogy of each soil,16,60 and these both inuence the
mobility.61,62

The order of clay content was: Igba > CRIN > Sore Bale, while
the order of organic matter was: CRIN > Igba > Sore Bale. The
latter trend was observed when the adsorption capacities of the
three cocoa farm soils for a- and b-endosulfan were considered,
thus suggesting a greater affinity of endosulfan to TOM than to
clay. Although, Torrents and Jayasundera63 in their sorption
study of non-ionic pesticides reported that the intensity of
sorption was a function of herbicide and clay content, the
differentials in the clay and organic matter components
Environ. Sci.: Adv., 2023, 2, 257–277 | 269
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Table 5 Adsorption–desorption isotherm constants for a- and b-endosulfan in the cocoa farm soilsa

Freundlich constants for the adsorption isotherm and standard Gibbs free-energy change*

Kfads

(mg1−1/n (mL)1/n g−1) 1/nads Kfoc (mL g−1) Kfom (mL g−1)
DG°
(kJ mol−1) R2

CRIN farm soil
a-Endosulfan 4.50 � 0.22 0.535 � 0.02 221.47 � 10.83 127.14 � 6.23 −7.31 0.998
b-Endosulfan 2.33 � 0.19 0.524 � 0.01 114.74 � 9.36 65.87 � 4.01 −6.09 0.998

Igba farm soil
a-Endosulfan 3.64 � 0.13 0.519 � 0.02 211.62 � 7.56 121.48 � 7.32 −6.36 0.999
b-Endosulfan 2.13 � 0.11 0.503 � 0.02 123.95 � 5.42 71.1 � 5.74 −5.49 0.997

Sore Bale farm soil
a-Endosulfan 2.31 � 0.08 0.557 � 0.01 175.24 � 6.06 100.60 � 6.11 −6.11 0.992
b-Endosulfan 1.33 � 0.10 0.547 � 0.02 101.06 � 7.57 58.012 � 4.88 −5.11 0.994

Freundlich constants for the desorption isotherm

Kfdes

(mg1−1/n (mL)1/n g−1) 1/ndes Kfoc (mL g−1) Kfom (mL g−1)
DG°
(kJ mol−1) R2

CRIN farm soil
a-Endosulfan 4.81 � 0.18 1.299 � 0.03 237.14 � 8.87 136.13 � 8.72 −14.05 0.998
b-Endosulfan 3.35 � 0.09 1.335 � 0.05 165.17 � 4.43 94.82 � 5.35 −12.29 0.993

Igba farm soil
a-Endosulfan 3.84 � 0.15 1.176 � 0.01 223.21 � 8.72 128.13 � 6.15 −13.38 0.995
b-Endosulfan 3.16 � 0.09 1.239 � 0.06 183.52 � 5.23 105.35 � 5.25 −12.02 0.999

Sore Bale farm soil
a-Endosulfan 3.49 � 0.12 1.171 � 0.03 264.16 � 12.09 151.64 � 6.32 −13.09 0.994
b-Endosulfan 2.51 � 0.13 1.076 � 0.04 190.08 � 9.85 109.12 � 4.68 −11.65 0.997

Langmuir constants

Adsorption isotherm Desorption isotherm

KL_ads (L mg−1) qmax_ads (mg g−1) R2 KL_des (L mg−1) qmax_des (mg g−1) R2

CRIN farm soil
a-Endosulfan 0.021 � 0.001 0.093 � 0.006 0.905 0.017 � 0.005 0.283 � 0.011 0.991
b-Endosulfan 0.052 � 0.007 0.064 � 0.008 0.928 0.020 � 0.004 0.319 � 0.015 0.999

Igba farm soil
a-Endosulfan 0.023 � 0.005 0.126 � 0.010 0.922 0.010 � 0.002 0.509 � 0.012 0.994
b-Endosulfan 0.053 � 0.008 0.075 � 0.008 0.948 0.017 � 0.006 0.370 � 0.023 1.000

Sore Bale farm soil
a-Endosulfan 0.027 � 0.001 0.202 � 0.012 0.888 0.006 � 0.001 0.886 � 0.032 0.992
b-Endosulfan 0.069 � 0.004 0.109 � 0.010 0.890 0.013 � 0.004 0.561 � 0.026 0.997

a Where; Kfads = Freundlich adsorption coefficient; Kfdes = Freundlich desorption coefficient; KL_ads = Langmuir adsorption coefficient; KL_des =
Langmuir desorption coefficient; qmax_ads = maximum adsorption capacity; qmax_des = maximum desorption capacity; 1/nads = Freundlich
exponent for adsorption (nads – adsorption intensity); 1/ndes = Freundlich exponent for desorption (ndes – desorption intensity); Kfaoc = organic
carbon normalized adsorption coefficient; Kfaom = organic matter normalized distribution coefficient; log Koc = logarithm of Freundlich
coefficient due to organic carbon; log Kf = logarithm of Freundlich adsorption/desorption coefficient or capacity; DG° = standard Gibbs energy
(kJ mol−1); R2 = coefficient of determination. DG° calculated from Kd in Table 4.
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between the Igba (19.11%, 3.06%) and CRIN (13.65%, 3.61%)
top soils were 5.46% and 0.55% for clay and organic matter
content respectively. Despite the minimal difference of 0.55%
(w/w) TOM content in favour of the CRIN soil, a much greater
adsorption capacity was recorded by the CRIN soil compared to
the Igba soil, with 5.46% (w/w) more clay. This affirmed the
ndings of Krishna and Philip,29 who reported that organic
270 | Environ. Sci.: Adv., 2023, 2, 257–277
matter seems to have a high affinity to lindane, carbofuran, and
methyl parathion pesticides compared to clay. In addition,
Huang et al.64 reported that if the organic matter of sediment
and soil is less than 0.1% (w/w), the clay and silt content will be
mainly responsible for the adsorption of pesticides. Therefore,
the contribution of TOM to the sorption of endosulfan in this
© 2023 The Author(s). Published by the Royal Society of Chemistry
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study wasmuchmore relevant than the contributions of the clay
and other components.

The Kfom values of a- and b-endosulfan, calculated from the
Freundlich adsorption coefficient (Kfads),27,65 were 127.14 ± 6.23
and 65.87 ± 4.01 mL g−1; 121.48 ± 7.32 and 71.1 ± 5.74 mL g−1;
100.60 ± 6.11 and 58.012 ± 4.88 mL g−1 for the CRIN, Igba, and
Sore Bale soils, respectively. The Kfom values for the a-isomer
were higher than those for the b-isomer for all three soils. The
order was CRIN > Igba > Sore Bale for a-endosulfan, while for b-
endosulfan, it was Igba > CRIN > Sore Bale.

The Kfom values of pesticides with soils have been used to
predict their mobility, and according to Swann et al.,66 pesti-
cides with Kfom values < 500 are considered as mobile with
respect to leaching. The highest Kfom value obtained in this
study was 127.14± 6.23 mL g−1 (a-isomer, CRIN); this indicated
that endosulfan had a very high potential to contaminate
surface and ground water in the three cocoa farm soils and the
b-isomer could be expected to have a greater contamination
potential over the a-isomer. Again, this corroborated why the b-
isomer is more predominant in the aquatic environment. In
addition, it also implied that high levels of organic content in
soils could be used to mitigate the migration and mobility of
endosulfan in the contamination of surface water and
groundwater.67,68 According to the FAO criteria for leachability
assessment,43 both isomers were ranked moderately mobile in
the soils under investigation; however, the GUS index classied
them as nonleachers.44

The calculated DG° values ranged from −5.11 to
−14.05 kJ mol−1 K−1 for both isomers and the adsorption–
desorption processes (Table 5). Yu et al.33 reported that values
between 0 and −20 kJ mol−1 K−1 imply that physical adsorption
was occurring, with van der Waals forces playing the dominant
role among others, which may result in the adsorption effect
being small and desorption occurring readily. The aforemen-
tioned trend was observed in this study. In addition, the
composition of the technical-grade endosulfan (70 : 30) fav-
oured the a-isomer, thus making its molecules more available
for a xed number of binding sites in the soil samples.

3.4.2 Desorption isotherm. The Freundlich desorption
parameters obtained for a- and b-endosulfan are shown in
Table 5, where all the isotherm equilibrium plots of the unde-
sorbed concentrations (Cqeuds; sorbed pesticides aer the
desorption exercise) versus desorbed concentrations (Cedes; in
the aqueous phase) of both isomers were non-linear and could
be tted to the Freundlich model (Fig. 11 and 12). The coeffi-
cients of determination, R2, for the Freundlich equation were$
0.992. The desorption isotherm curves for both isomers had an
S-shape (subgroup 1)54 for all the farm soils, with a slight
concavity in the middle stage of the isotherm. The concavity was
more pronounced with the b-isomer, which exhibited a greater
rate of desorption than the a-isomer. This signicant difference
may be due to b-endosulfan being slightly more soluble than a-
endosulfan in aqueous media,69 and at a pH and temperature of
7.2 and 22 °C, respectively. Also, as the equilibration concen-
trations used for the adsorption process increased, the amount
of desorbed pesticide did not follow a proportional increase, but
rather there was retardation and disproportionate increase in
© 2023 The Author(s). Published by the Royal Society of Chemistry
the desorbed endosulfan. The Freundlich isotherm model with
such a graphical concave curvature has been reported to have 1/
ndes > 1.70,71 The values for 1/ndes (i.e. Freundlich exponent of
desorption) for a- and b-endosulfan were 1.299 and 1.335 for the
CRIN soil, 1.176 and 1.239 for the Igba soil, and 1.171 and 1.076
for the Sore Bale soil, respectively; these values depicted a non-
linearity of the desorption data and indeed the nature of the
isotherm curve. These values tended to agree with those re-
ported by Atasoy et al.18 for both isomers in vertisol soil from
a southeast region of Turkey.

3.5 Soil sorption hysteresis

3.5.1 Hysteresis and Freundlich isotherm parameters. A
signicant variation was observed between the adsorption and
desorption isotherms over the working concentration range.
This remarkable difference was due to hysteresis, related to the
changes that occurred in the soil.29 The calculated Freundlich
adsorption equilibrium constant (1/nads) for both a- and b-
endosulfan for all the soils (0.503–0.557) were relatively lower
than those for the Freundlich desorption isotherm (1/ndes)
(1.097–1.402). In addition, the Freundlich desorption coeffi-
cient values (Kfdes) were signicantly higher than the corre-
sponding adsorption coefficient values (Kfads) for all the soils
and both isomers (Table 5). CRIN soil recorded the highest Kfdes

value of 4.81 ± 0.18 (mg1−1/n (mL)1/n g−1), followed by the Igba
and Sore Bale farm soils with values of 3.84 ± 0.15 and 3.49 ±

0.12 (mg1−1/n (mL)1/n g−1) respectively. The high Kfdes values in
the CRIN and Igba soils were probably due to the moderately
high levels of organic matter and clay contents, respectively,
which have strong affinity for pesticides. The Sore Bale farm soil
was the lowest because of its high sandy nature and relatively
low organic matter content (Tables 1 and 6).

3.5.2 Endosulfan reversibility in soils and the hysteresis
index (HI). Desorption is critical in assessing the extent to
which pesticides are released from soil; that is, the reversibility
of the adsorbed pesticide. The reversibility of adsorbed pesti-
cides could be evaluated from the Freundlich adsorption coef-
cient (Kfads) and desorption coefficient (Kfdes) or Freundlich
adsorption constant (1/nads) and desorption constant (1/ndes).
Hysteresis is a normal phenomenon in pesticide sorption
studies.21,72–74 Positive hysteresis occurred for a- and b-endo-
sulfan in all three soils (i.e. Kfads < Kfdes and 1/nads < 1/ndes). The
differences between the Freundlich adsorption and desorption
coefficients were remarkable for both isomers (Table 5).
Hysteresis is exhibited when there is an increase in the differ-
ence between the adsorption and desorption isotherm
slopes.75–77 The magnitude or degree of hysteresis (u) is oen
expressed as the hysteresis index (HI).65,78 According to Seybold
and Mersie,65 this is the ratio of the Freundlich adsorption and
desorption exponents 1/nads and 1/ndes.

u = {[1/nads : 1/ndes] × 100} (12)

The HI for a-endosulfan ranged between 38.16% and
47.04%, while it was between 39.02% and 49.84% for b-endo-
sulfan (Table 7). Among the three soils, CRIN had the lowest HI
for both isomers, with the order being: Sore Bale > Igba > CRIN.
Environ. Sci.: Adv., 2023, 2, 257–277 | 271
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Table 6 Leachability/mobility assessment of pesticides in soils

Soil/pesticide log Koc (mL g−1) log Kfoc (mL g−1) GUS index

Mobility assessment

FAO criteriaa GUS indexbc

CRIN farm soil
a-Endosulfan 2.97 2.35 1.1 Moderately Nonleacher
b-Endosulfan 2.76 2.06 1.52 Moderately Nonleacher

Igba farm soil
a-Endosulfan 2.88 2.33 1.22 Moderately Nonleacher
b-Endosulfan 2.73 2.09 1.56 Moderately Nonleacher

Sore Bale farm soil
a-Endosulfan 2.95 2.24 1.14 Moderately Nonleacher
b-Endosulfan 2.78 2.00 1.50 Moderately Nonleacher

a FAOmobility assessment:43 log Koc values of 1–2 were mobile; 2–3 moderately mobile. b GUS Index;44 GUS < 1.8 were nonleachers. c Half-lives (t1/2)
for a-endosulfan and b-endosulfan were 12.16 and 16.75 d, respectively, obtained from Vaikosen et al.7
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However, Huang et al.79 dened HI as residual–concentration–
specic relative sorption–desorption and expressed it as:

qde � qse
qse

����
T ;Ce

(13)

where qse and qde are the solid-phase solute (pesticide) concen-
tration for single-cycle sorption and desorption, respectively,
while T and Ce are the temperature and residual solution-
phase concentration. The HI values ranged from 0.2129 to
0.2558 and 0.1335 to 0.2257 for a- and b-endosulfan, respec-
tively. The Sore Bale soil exhibited the least hysteresis for both
isomers. There was poor correlation between the HI values of
the aforementioned denitions with respect to a-endosulfan
(R2 = 0.4100), while the relationship was very strong for b-
endosulfan (R2 = 0.9991). Langaro et al.,80 Bao et al.,81 and
Adeola et al.82 all determined HI using Freundlich exponents
for a single-step desorption. However, the latter expression is
believed to be the most appropriate, acceptable, and valid for
soil HI quantication for one-step desorption.79,83 The
Freundlich exponents are used when a desorption experiment
is carried out in multiple steps.83 Besides, these two
Table 7 Hysteresis index (HI) for the CRIN, Igba and Sore Bale soils

Soil/pesticide 1/nads : 1/ndes
a [1/nads : 1/ndes] × 100b qde − qse/q

s
eT,Ce

c

a-isomer
CRIN 0.3816 38.16 0.2131
Igba 0.3918 39.16 0.2558
Sore Bale 0.4704 47.04 0.2129

b-isomer
CRIN 0.3922 39.22 0.2257
Igba 0.4060 40.60 0.2099
Sore Bale 0.4984 49.84 0.1335

a HI was calculated according to O'Connor et al.,78 b HI was calculated
according to Seybold & Mersie,65 c HI was calculated according to
Huang et al.79
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approaches, three other empirical indices for hysteresis
quantication have been reported.83 The desorption of the
sorbed endosulfan from the soil samples was most difficult
with the CRIN soil, followed by the Igba and Sore Bale soils.
This order was reective of the differences observed in the type
of isotherm curves and slopes between adsorption and
desorption processes in this study (Fig. 11 and 12) (Table 5).
The varying isotherms exhibited by the adsorbate (endosulfan)
may be due to the following: the extent of its binding with OM,
hydrogen-bond formation, charge transfer, ionic bonds,
cation bridges, hydrophobic interactions, and physical diffu-
sion into humic substances in the different soils.60,62,75 The
hysteresis order was directly proportional to the level of
organic matter in these three soils; thus making organic
matter the prime factor in the hysteresis of endosulfan over
the clay content and other factors. Low HI values are associ-
ated with adsorbates with a poor desorption property.84,85 The
difference in HI between the a- and b-isomers for each of the
three soils was almost insignicant or minimal. However, b-
endosulfan exhibited a higher hysteresis over a-endosulfan in
CRIN, while the reverse was observed for the Sore Bale and
Igba soils, where a-endosulfan exhibited a slightly higher
hysteresis than b-endosulfan.
4 Conclusion

The adsorption–desorption of technical-grade endosulfan (a-
and b-isomers (70 : 30)) on top soils from three Theobroma
cacao L farms in Southwestern Nigeria were studied using an
OECD/USEPA batch equilibrium isotherm method. Both
isomers attained pseudo-equilibria, with the formation of
plateaus within an equilibrium time range of 120 and 240 min
for all the farm soils. There was a very rapid initial adsorption
phase, followed by a slow process as equilibrium was
approached. The order of attainment of the pseudo-equilibria
and plateau formation were as follows: Sore Bale > Igba >
CRIN. The order of partitioning was CRIN > Igba > Sore Bale,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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with the CRIN soil possessing more vacant sites for the
adsorption of endosulfan. Study reaffirmed that organic matter
does have higher affinity and predominance over clay in the
adsorption–desorption of hydrophobic pesticides such as
endosulfans. High levels of TOM and clay in soils could be used
to mitigate the migration and mobility of endosulfan to
contaminate surface water and groundwater. There was no
direct proportionality between the amounts of desorbed pesti-
cide and increasing equilibration concentrations; rather,
a retardation and disproportionate increase in the desorbed
endosulfan was observed. The study showed that the rate of
adsorption assuming a PFOM was greater than the rate of
desorption (kads > kdes), while the reverse was the case for PSOM
(k2_des > k2_ads). This implied that there will be higher mobility
and a higher leaching rate of the endosulfan in applying the
latter. The Freundlich isotherm model was the most appro-
priate model for soil compared to the Langmuir, due to its
heterogeneous nature. The data obtained in the adsorption
equilibrium study at the temperature of 25 ± 1 °C tted the
Freundlich isotherm (R2 $ 0.992) better than the Langmuir
isotherm (R2 # 0.948) for both the isomers and soils, while the
desorption data tted well for both isotherms (R2 $ 0.991). All
the plots were non-linear; the curves were of types L and S for
the adsorption and desorption processes, with the b-isomer
exhibited greater concavity. Again, Kom (a-isomer) > Kom (b-
isomer) – this and the aforementioned may have contributed to
its predominance in the aquatic environment. Positive hyster-
esis was observed, with the CRIN soil exhibiting the highest
hysteresis index. The values for the standard free energy, DG° =
−5.11 to −14.05 kJ mol−1 K−1, depicted spontaneity and
a physisorption process; driven by van der Waals force among
the other soils' physicochemical properties: TOM and clay. Both
a- and b-endosulfan showed a weak adsorption capacity in all
the soils, with the b-isomer was more desorptive in the soil–
aqueous environment. Endosulfan can easily be leached to
contaminate surface and groundwater since PSOM revealed
faster desorption than adsorption. However, the TOM and the
clay could be used as mitigants to reduce its mobility in soils,
since they have signicant measures of affinities for the
pesticide.
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