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Autonomous optimisation of a nanoparticle
catalysed reduction reaction in continuous flow†

Brendan L. Hall, Connor J. Taylor, Ricardo Labes, Alexander F. Massey,
Robert Menzel, Richard A. Bourne and Thomas W. Chamberlain *

An automated continuous flow reactor system equipped with inline

analysis, was developed and applied in the self-optimisation of a

nanoparticle catalysed reaction. The system was used to optimise

the experimental conditions of a gold nanoparticle catalysed

4-nitrophenol reduction reaction, towards maximum conversion

in under 2.5 hours. The data obtained from this optimisation was

then used to generate a kinetic model, allowing us to predict the

outcome of the reaction under different conditions. By combining

continuous flow nanoparticle synthesis with this approach, the

development timeline for these emerging catalysts could be signifi-

cantly accelerated.

Due to their high energy surfaces and extremely high surface
atom to volume ratios,1 nanoparticles have been demonstrated
as excellent catalysts in a wide variety of chemical transforma-
tions, such as: photocatalytic water splitting,2 hydrogenations,3

oxidations4 and cross-coupling reactions.5 Over the past two
decades there has been an increasing focus on further optimising
the performance of catalytic nanoparticles.6 These reports often
investigate the effects of nanoparticle properties such as size,
shape or composition on their performance as catalysts.7–9

Nanoparticle catalysed reaction optimisation can be a chal-
lenging task. Unlike homogeneous organic or metal-complex
based catalysts, nanoparticle catalysts typically present as a
non-discrete distribution of structures. These structures can be
almost infinitely modified, providing additional variables to
explore. The outcome of these reactions depends on both the
intrinsic properties of the nanoparticles and the experimental
conditions under which the reactions are performed.10 There-
fore, it is important to compare each discrete catalyst system
under a range of different reaction conditions. The difficulty of
implementing such an approach arises from the sheer number

of experiments required to thoroughly explore the reaction
conditions in this way.

Recently, chemists have adopted a range of enabling tech-
nologies to assist with repetitive tasks such as reaction analysis
and screening. This has led to the development of systems that
utilise algorithms for the automated optimisation of reactions,
particularly in the area of continuous flow research.11 Auto-
mated continuous flow systems have been developed for the
self-optimisation of a wide variety of reactions12,13 and have led
to accelerated chemical process development timelines.14

One of the first reported uses of a self-optimising continuous
flow system was for the synthesis of cadmium–selenium quantum
dot nanoparticles. Where a quantum dot synthesis method was
optimised to produce nanoparticles with a maximum fluores-
cence intensity for a selected emission wavelength.15 Continuous
flow reactors more generally, have become popular platforms for
the synthesis of materials and nanoparticles in particular owing to
their superior heat and mass transfer properties.16–19 Examples
include the synthesis of metal,20 bimetallic,21 quantum dot22 and
metal oxide23 nanoparticles.

In this communication we report what is, to the best of our
knowledge, the first example of a self-optimising continuous
flow reactor for the optimisation of a nanoparticle catalysed
reaction. The general workflow of this approach begins as a
window of operating conditions is defined for the optimisation.
Automated HPLC pumps then pump nanoparticles and
reagents into a tubular reactor. The reactor outlet stream is
analysed with an inline analytical technique, in this case UV-vis.
The resulting analysis data is then interpreted to determine, for
example, conversion or selectivity and the results are fed to an
optimisation algorithm that determines the next array of experi-
mental conditions to be set by the system. This automated
process is repeated iteratively until an optimum solution is
obtained.

To demonstrate our system, the conditions of a gold nano-
particle (AuNP) catalysed 4-nitrophenol (4-NP) reduction reaction
were optimised for maximum conversion. Reduction reactions
are an important class of reactions with special relevance in
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synthetic drug development.24 4-NP reductions are commonly
used as a benchmark reaction for comparing the catalytic
performance of different nanoparticle catalysts.25 The AuNPs
in this study were synthesised using a Turkevich protocol26 and
confirmed by TEM to have an average diameter of 15.7 � 5.5 nm
(ESI,† Section 2.4).

The closed loop optimisation system is shown in Fig. 1.
Automated pumps were used to flow aqueous solutions of the
AuNPs, reducing agent NaBH4 and 4-NP into a tubular flow
reactor (PTFE, 0.8 mm ID, 3.5 mL volume). Altering the pump
flow rates allowed different concentrations of reagents as well
as different residence times to be explored. The active surface
area of the nanoparticles present in the reaction was correlated
to the concentration of Au present using a geometric approxi-
mation (ESI,† Section 2.2), based on the shape and average
nanoparticle size determined by TEM analysis. The AuNPs were
characterised with XPS, revealing the surface AuNP atoms to be
present in the Au(0) oxidation state, both before and after the
reaction (ESI,† Section 2.5). Further TEM characterization was
performed to confirm there was no change in nanoparticle size
after the nanoparticles were used to catalyse the reaction (ESI,†
Section 2.4). A water dilution pump was also included to
increase the range of conditions that could be attained by the
system, as not all combinations of factors could be achieved
without a diluent i.e. particular concentrations and residence
times. The global optimisation algorithm Stable Noisy Optimi-
sation by Branch and Fit (SNOBFIT)27 was used to optimise the
reaction, allowing us to demonstrate the platforms ability to

explore a wide range of reaction variables within the design
space shown in Table 1.

The NaBH4 solution was kept in an ice bath and adjusted to
pH 10 with a solution of sodium hydroxide (0.1 M), to prevent
hydrolysis when stored in the reactor reservoir. The initial
concentration of 4-NP (0.06 mM) was kept the same for each
experiment to simplify analysis. The outlet of the reactor was
monitored with an inline UV-vis absorption spectrometer,
this allowed real time monitoring of 4-NP concentration and
verification of steady state conditions.

Reaction conversion was determined by integrating the
UV-vis absorption profile of 4-NP between 350–450 nm. As the
AuNP and 4-NP absorption bands overlap within this range,
the measured UV-vis spectra were deconvoluted by subtracting
an AuNP reference band that was scaled to match the AuNP
peak intensity in the measured spectrum between 500–560 nm
(ESI,† Section 5).

The optimisation was performed in under 2.5 hours and the
outcome of the individual experiments are displayed in Fig. 2.
A trend towards the highest conversion (95%) was found at
longer residence times, with higher AuNP surface areas and
NaBH4 concentrations. These results fit well with the findings of
previously reported studies,28,29 demonstrating clearly the sys-
tems capability for nanoparticle catalysed reaction optimisation.

The global optimisation algorithm used in this study
explored a wide range of conditions within the experimental
design space. Therefore, it was possible to use this data set to
identify kinetic parameters and obtain a high degree of under-
standing of the reaction system. Previous studies have shown

Fig. 1 A schematic describing the self-optimising system. The experimental
conditions are changed by altering the flow rates of the automated pumps,
the reaction is monitored with an inline UV-vis spectrometer and optimised
by closed-loop feedback control, based on the reaction conversion.

Table 1 The lower and upper variable bounds set for the optimisation in
this study

AuNP SA
(m2 L�1)

NaBH4 conc.
(mM)

Res. time
(min)

Upper bound 0.16 2.5 3
Lower bound 0.04 0.5 1

Fig. 2 A plot showing the outcome of the self-optimisation. Each
coloured point represents an individual experiment performed by the
system. A trend towards increasing reaction conversion was observed at
longer residence times with greater concentrations of reducing agent and
higher AuNP surface areas (SA).
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how kinetic models can be generated using structured data
from similar automated flow systems,30,31 but kinetic models
built from data obtained during a self-optimisation experiment
have not been reported prior to this work. Ordinary differential
equation (ODE) solvers were used to predict reaction progres-
sion under different conditions using a commonly accepted
kinetic model for bi-molecular surface catalysed reactions, the
Langmuir Hinshelwood (LH) model.32 This model is shown in
(eqn (1)), where S is nanoparticle surface area per unit volume,
k is the overall rate constant for the reaction, CNit/CBH4

repre-
sent the concentrations and KNit/KBH4

are the absorption coeffi-
cients of 4-NP and sodium borohydride respectively (ESI,†
Section 6).

v ¼ dCNit

dt
¼ kSKNitCNitKBH4

CBH4

1þ KNitCNit þ KBH4
CBH4

� �2 (1)

Kinetic models such as this can be used to predict the outcome
of reactions under different conditions, even when alternative
reactor configurations are used.33 A genetic algorithm34 was used
to determine the kinetic parameters within the LH model by
maximising the convergence of the predicted reaction outcomes
to experimental data. Upon identifying this kinetic information, it
was possible to use the model to predict reaction conversion
under different experimental conditions. The model was used to
predict the reaction kinetics of a AuNP catalysed 4-NP reduction
reaction performed in a batch reactor with a two-fold increase in
4-NP concentration, compared to the flow optimisation study. The
resulting extrapolated reaction kinetics showed good agreement
with the model prediction, with a residual error of only �1.85%,
see Fig. 3 (ESI,† Section 6.1).

In summary, a continuous flow reactor platform has been
developed for the efficient optimisation of nanoparticle catalysed
reactions. Automated reactor controls and a self-optimising
feedback loop were integrated into an automated flow reactor

system. The effect of changing residence times, sodium boro-
hydride concentrations and AuNP surface area were explored using
the global optimisation algorithm SNOBFIT. The system was
able to identify the optimum reaction conditions for maximum
4-NP conversion within a set operating window. Furthermore,
the data gained during this optimisation process was used to
obtain a kinetic model by employing ODE solvers and a genetic
algorithm to fit kinetic parameters to the experimental data,
thereby generating a response surface for the explored design
space. The generated model was then validated by accurately
predicting the outcome of a nanoparticle catalysed reduction
reaction performed in batch. The system presented herein allows
efficient determination of the optimal conditions for nano-
particle catalysed reactions. Integrating this system into auto-
mated flow reactors for nanoparticle synthesis, could also enable
rapid determination of the conditions required for producing
optimal catalytic nanoparticles as well as the best conditions for
their respective catalysed reaction.
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