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Tetratopic organic linkers have been extensively used in Zr-based metal-organic frameworks (MOFs) where
diverse topologies have been observed. Achieving meticulous control over the topologies to tune the pore
sizes and shapes of the resulting materials, however, remains a great challenge. Herein, by introducing
substituents to the backbone of tetratopic linkers to affect the linker conformation, phase-pure Zr-MOFs
with different topologies and porosity were successfully obtained under the same synthetic conditions.
The conversion of CO, to valuable cyclic carbonates is a promising route for the mitigation of the
greenhouse gas. Owing to the presence of substrate accessible Lewis acidic Zr(v) sites in the 8-

. 4 22nd S ber 2018 connected Zrg nodes, the Zr-MOFs in this study have been investigated as heterogenous acid catalysts
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Accepted 9th November 2018 for CO, cycloaddition to styrene oxide. The MOFs exhibited drastically different catalytic activities

depending on their distinct pore structures. Compared to previously reported MOF materials, a superior
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Introduction

Metal-organic frameworks (MOFs),"* a class of crystalline
porous materials constructed from metal nodes and organic
ligands by coordination bonds, have found a wide range of
applications such as gas storage and separation,*™ catal-
ysis,”**® magnetism,"”** drug delivery,”>* small-molecule
recognition* and chemical sensing.>** This functional diver-
sity is largely due to their versatile structural tunability where
a variety of components can be combined to generate an almost
indefinite number of novel materials. However, elucidating the
parameters that dictate the MOF structures, including their
topology and porosity, is non-trivial. Considering Zr, cluster-
based MOFs as an example, although linkers of lower connec-
tivity generally favor one particular topology,*”* more topolo-
gies can be accessed from linkers with higher connectivity®**

“Department of Pharmaceutical Engineering, School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300350, China

*Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University,
Tianjin 300350, China

‘Department of Chemistry and International Institute of Nanotechnology,
Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
E-mail: o-farha@northwestern.edu

T Electronic supplementary information (ESI) available: Proton NMR spectra of
organic ligands and MOF materials, crystallographic data, TGA curves, DRIFTS
spectra and SEM images are included in the ESI. CCDC [1854453 and 1855836].
For ESI and crystallographic data in CIF or other electronic format see DOI:
10.1039/c8sc04220a

1186 | Chem. Sci,, 2019, 10, 1186-1192

due to their tendency to undergo conformational changes,
resulting in challenges in predicting MOF structures.****
Since the first reports of Zr-MOFs with tetratopic linkers,
several topologies have been observed, including fiw,**%%*
qu,35_37'42 she,“ Shp,“ scu,32,45 ﬂu’27,46,47 ith,27 ch’ais vt* and
stp®® which can be attributed to the linker conformation
adjustments under different synthetic conditions. This confor-
mational change can be induced by controlling one of the many
factors, such as the modulating reagent, concentration, metal
salt, temperature and solvent. For example, a csq-net MOF (NU-
1000)**** is produced when using benzoic acid as the modulator
whereas a scu-net MOF (NU-901)* is obtained using 4-amino-
benzoic acid with the same 1,3,6,8-tetrakis(p-benzoic acid)pyr-
ene (TBAPy) linker and Zr precursor. Using a tetratopic linker
with arms of a high degree of rotational freedom, such as tet-
racarboxyphenylporphyrin (TCPP), multiple topologies have
been observed.**374*4448 A gimilar phenomenon was also
observed when we explored the isoreticular tetracarboxylate Zr-
MOF csq-net NU-100X series for enzyme immobilization where
MOFs with ftw topology were produced instead when using
linkers with longer arms. Therefore, our group concluded that
the torsion angle between the planar “backbone” (benzene,
pyrene, porphyrin) and the arms (carboxylic acid) had a critical
influence on the framework topology. Specifically, if the torsion
angle was close to 60°, the csq topology was favored, whereas
the ftw topology formed if the torsion angle was close to 0°.>*
In addition to using organic linkers with higher rotational
freedom, installing functional groups to the organic linkers
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affords another effective strategy to affect the linker confor-
mation, thereby the material topology. For instance, Yaghi and
co-workers successfully synthesized qom-net MOF-177 series
with uncommon topologies (pyr and rtl) by introducing func-
tional groups.®® Recently, Zhou and co-workers introduced
steric hinderance into the biphenyl-3,3’,5,5"-tetra(phenyl-4-
carboxylic acid) (TPCB) linker to affect linker conformation,
which subsequently effect the topology of the resulting Zr-
tetracarboxylate MOFs. However, accompanying the original
structure were mixed phase materials that formed as byprod-
ucts, most likely due to the introduction of the bulky substitu-
ents.”® In high agreement with experimental results,
computational studies compared the energy of MOFs with
different substituents to demonstrate the influence of intro-
duced steric hinderance on linker conformation and MOF
topology.> With these design rules and challenges in mind, we
set out to tune the steric hindrance of the organic linkers in
a stepwise fashion, aiming to achieve topology control in the
resulting series of Zr-MOFs.

Results and discussion
Introduction of steric hinderance

In addition to the 1,2,4,5-tetrakis(4-carboxyphenyl)benzene
(TCPB) linker (Fig. 1, L1), two more linkers were designed. A
nitro group (Fig. 1, L2) and two bromo groups (Fig. 1, L3) were
installed on the central benzene respectively to introduce steric
hindrance to affect the rotational freedom of the peripheral
benzoate arms and in turn to control the topology of the
resulting MOFs. To ensure consistency and to eliminate vari-
ability from factors such as solvent, temperature and modulator
on the topology of the resulting MOFs, the syntheses with the
three TCPB-based linkers were carried out under identical sol-
vothermal conditions (ESIT).
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Fig. 1 Schematic representation of the construction of NU-903, NU-
904 and NU-1008. Atom colour scheme: C, grey; N, blue; O, red; Br,
pink; Zr, green polyhedra. H atoms are omitted for clarity.
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Topology and porosity diversity of the as-synthesized MOFs

As previously reported by Stock and co-workers,* Zrs nodes and
the L1 linker form NU-903 with an scu topology with charac-
teristic diamond-shaped channels along the ¢ axis (Fig. 1). NU-
903 is isoreticular to TBAPy-based NU-901 ** and TCPP-based
NU-902.%¢

The crystals of the resulting MOF with linker L2 are oval in
shape (Fig. 3b). Single crystal X-ray diffraction analysis (Table S1,
ESIt) revealed that NU-904 crystallized in the P2/m space group
(a=19.64 (1) A, b =12.63 (1) A, c = 19.635 (4) A and § = 119.994°
(2) at 200 K) with the formula as Zrg(pu-O)4(pn-OH)4(HCOO), 5
(H20),.5(0OH), 5(L2),. The 3D structure consists of 8-connected
Zrs nodes and mononitro-substituted TCPB linkers, yielding
a rare scu topology.** The single crystal structure of NU-904 is
characteristic of a reticular-merohedral twin structure in which
three orientations stack together along the b axis, twisting 60° from
each other (Fig. 2). The reticular twins of three scu-net components
gave rise to the overall 6-fold symmetry in the structure. Topolog-
ically, the average structure of the threefold twinned NU-904 is
based on the highly connected 4,12-c shp net.***” Interestingly, the
threefold twins of ordered 4,8-c scu structure led to a twinned 4,12-
c rare shp structure (Fig. S17, ESIt). To the best of our knowledge,
the inherent correlation between these two topological nets has
not been realized until this work. As a result, the average structure
is observed as triangular-shaped instead of the expected diamond-
shaped channels in NU-903 (Fig. 2).

The MOF synthesis with linker L3 yields hexagonal rod-
shaped crystals (Fig. 3b). Single crystal X-ray diffraction anal-
ysis (Table S1, ESIf) revealed that NU-1008 crystallized in the
hexagonal P6/mmm space group with the chemical formula as
Zrs(p-0),4(n-OH),(HCOO)(H,0);5(0OH);3(L3),; the 3D structure
consists of 8-connected Zrg nodes and dibromo-substituted
TCPB linkers in a esq topology. Isoreticular to NU-1000,
there are two types of channels along the ¢ axis, a 1 nm wide
triangular channel and a 3 nm hexagonal channel (Fig. 1). The
incorporation of the dibromo groups does not compromise the
porosity of the material because the bromo groups reside in the
window connecting the hierarchically triangular micropores
and hexagonal mesopores. Therefore, the pore size distribution
of NU-1008 is similar to NU-1000.

Characterization of as-synthesized MOFs

Due to the 8-connected Zrg nodes present in all three MOFs, "H
NMR was employed to identify the coordinated species on the
remaining accessible sites of the node. Upon digestion of the
MOFs with a dilute NaOD solution, a peak was observed for all
three materials around 8.37 ppm that is characteristic of

Fig. 2 The reticular twin structure of NU-904.
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Fig. 3 Characterization of the three MOFs. (a) PXRD patterns; (b) optical images of the single crystals of NU-904 (left) and NU-1008 (right), the
scale bars in the images are 100 um; (c) N, sorption isotherms and DFT pore size distribution of NU-903, NU-904 and NU-1008.

formate ligand. Quantifying the amounts of formate relative to
the organic linker in the three samples gives ca. 2, 2 and 3
formate groups per Zr node in NU-903 (Fig. S4, ESIt), NU-904
(Fig. S5, ESIt) and NU-1008 (Fig. S6, ESIf), respectively.
Diffuse reflectance infrared fourier transform spectroscopy
(DRIFTS) also confirms the presence of formate groups with the
observed C-H stretching at 2745 cm™'. In addition, N=0
stretching (1658 and 1373 cm ') and C-Br stretching
(712 em™) in the DRIFTS spectra of NU-904 and NU-1008
confirmed the presence of L2 and L3, respectively (Fig. S10-
S12, ESIt).

The phase purity of the bulk materials was confirmed by
PXRD (Fig. 3a). The particle morphology of NU-904 is oval-
shaped and NU-1008 is hexagonal rod-shaped (Fig. 3b), as evi-
denced by the SEM images (Fig. S13, ESI}). Nitrogen sorption
isotherms of three different MOFs were measured at 77 K; the
type I isotherms of NU-903 and NU-904 are indicative of
microporous structure of the MOFs, while the type IV isotherm
of NU-1008 indicates the presence of both micropores and
mesopores in the material. The BET areas were calculated to be
1140, 1410 and 1400 m” g~ for NU-903, NU-904 and NU-1008,
respectively. DFT pore size distributions reveal micropores of
11 A for NU-903, 10 A for NU-904 and hierarchical micropores of
11 A and mesopores of 29 A for NU-1008 (Fig. 3c). The total pore
volumes were 0.515, 0.613 and 0.819 cm® g™ for NU-903, NU-
904 and NU-1008, respectively. The larger gravimetric pore
volume and the type IV isotherm of NU-1008 is again consistent
with a mesoporous structure. Thermogravimetric analysis (TGA)

1188 | Chem. Sci,, 2019, 10, 1186-1192

under air showed no sign of mass loss up to 400 °C (Fig. S7-S9,
ESIf), demonstrating the high thermal stability of the three
MOFs. In addition, all three materials showed good stability
under acidic condition with treatment of 0.5 M HCIl aqueous
solution for 10 hours (Fig. S14, ESIT).

Topology and porosity control through introduction of steric
effect

To investigate the influence of linker conformation on topology
control, we performed a detailed analysis of linker conforma-
tion in the three crystal structures. In the scu-net NU-903
structure,* the TCPB linker with no substituents adopts a C,p,
symmetry with the C, axis and the perpendicular ¢}, depicted in
Fig. 4a. In the MOF structure, the two adjacent phenyl arms in
the upper side rotate away from each other, whereas the lower
ones rotate toward each other (Fig. 4a). In NU-904, the intro-
duction of the mononitro group lowers the symmetry of the
linker to C, but the conformation of the peripheral phenyl arms
was found to be similar to the non-substituted TCPB linker in
NU-903 (Fig. 4b). As a result, each of the twinning portions that
comprise this structure has the same scu topology as NU-903,
even though the average structure of NU-904 has 1D trian-
gular channels instead of the diamond-shaped channels with
a typical scu topology. Notably, the mononitro group on the
central benzene rotates ~32° to fit in the structure. In NU-1008
with dibromo-substituted TCPB, the linker adopts a C,,
symmetry due to the rotation of the upper and lower pair of
phenyl arms toward each other (Fig. 4c) which directs the

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 Linker conformation in (a) NU-903, (b) NU-904 and (c) NU-
1008.

framework to csq topology over the scu-net MOF. In addition, to
accommodate the dibromo groups in NU-1008, the dihedral
angle between the arm benzene and central benzene in the csq-
net NU-1008 is closer to 90° than the dihedral angle observed in
scu-net NU-903 and NU-904 (Table S3, ESIt). Additionally, the
angle between the arms (117°) in NU-1008 is larger than in scu-
net NU-903 (115°) and NU-904 (108.5°).

The 8-connected Zrg cluster in the three MOFs can be
regarded as a cubic shaped node and the linker as a rectangular
plane. In NU-903, the non-substituted TCPB linker with Cyp,
symmetry can link the clusters in the same orientation (Fig. 1),
giving the scu topology. In contrast, the Zrg clusters in NU-1008
undergo an orientation change to conform to the C,, symmetry
of dibromo TCPB linker, and form a different topology, csq. The
topology change confirmed our hypothesis that the steric effect
induced by linker functionalization can achieve the topology
control of MOF materials.

Catalytic performance for CO, fixation under mild conditions

CO, is a well-established greenhouse gas that originates from the
carbon footprint of human activities.” In order to mitigate the
adverse effect of CO, to the environment, considerable progress

This journal is © The Royal Society of Chemistry 2019
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has been made in its capture and storage in recent years,**** and
promising strategies for the consumption of CO, have received
much attention. Rational utilization of CO, is of great signifi-
cance for the deceleration of global warming and the develop-
ment of sustainable energy. Chemical fixation of CO, with
epoxides through a facile cycloaddition process, catalysed by
acidic sites, is an attractive route to convert this greenhouse gas
into highly demanded cyclic organic carbonates.*

Owing to the presence of substrate accessible Lewis acidic
sites, MOFs have been previously explored to catalyse the
cycloaddition of CO, and epoxides.®»** However, energy-
demanding reaction conditions such as elevated temperatures
and pressures are generally required for the efficient conversion
of CO, into cyclic carbonates.®® Inspired by these reports, CO,
fixation into styrene oxide was used as a model reaction to test
the catalytic performance of MOFs reported in this study under
mild conditions.

NU-903, NU-904 and NU-1008 were investigated for CO,
fixation into styrene oxide under room temperature with 1 bar
of CO,. The styrene oxide (0.2 mmol), tetrabutylammonium
bromide (6.5 mg, 0.02 mmol) pre-dissolved in 400 pL of aceto-
nitrile and MOF material (4.0 mol%, 0.002 mmol) were added to
an autoclave batch reactor, which had previously been dried for
6 h at 80 °C. The autoclave reactor was evacuated, purged with
CO,, and then placed under a constant pressure of CO, under 5
bar for 15 min to allow the system to equilibrate. The reaction
was carried out at room temperature for 24 hours after the
pressure was reduced to 1 bar of gauge pressure. After the
reaction, the catalyst was separated by centrifugation and
a small aliquot of the supernatant reaction mixture was taken to
be analyzed by "H NMR to calculate the conversion (Fig. 5).

0
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0

Acetonitrile 400 uL,TBAB 0.02 mmol

O
@A Catalyst (0.002 mmol) ]
NU-903 _ § @/&a

d b a al

NU-904

r.t. 1 bar

[NU-1008

55 50 45 40 35 3.0
ppm
Fig. 5 Proton NMR spectra of CO, fixation into styrene oxide cata-
lyzed by NU-903, NU-904 and NU-1008 (1 bar, room temperature,

24 h; CDClz as deuterium solvent, 500 MHz. The peak with asterisk
refers to the tetrabutylammonium bromide).
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Fig.6 CO, fixation conversion on NU-903, NU-904 and NU-1008. (a)
Catalytic capacities; (b) size of substrate, product and pore size of NU-
903, NU-904 and NU-1008.

A control experiment without any MOF catalyst exhibited
negligible conversion of styrene oxide. However, vastly different
CO, fixation activities were observed within the three MOF
catalysts utilized in this report. Remarkably, full conversion of
styrene oxide was observed with NU-1008 after 24 hours under
mild conditions (room temperature, 1 bar of CO,). Previous
reports using MOF catalysts for this reaction required elevated
temperatures (~120 °C), pressures (10-20 bar) or longer reac-
tion time (up to 56 hours) to afford similar or lower substrate
conversions (Table S2, ESIT).** Thus, NU-1008 stands out as
a more environmentally friendly solid acid catalyst for the
chemical fixation of CO,, compared to others reported.

In comparison, NU-903 and NU-904 showed much lower
conversion (Fig. 6a), despite the fact that they had similar CO,
adsorption performance to NU-1008 (Fig. S15, ESIf). This
significant difference is likely attributed to the aforementioned
narrower pores and smaller pore volumes in NU-903 and NU-
904 (around 10 A, 0.50 cm® g~*) compared to the mesoporous
channels in NU-1008 (around 30 A, 0.82 cm® g~ ). The micro-
porous NU-903 and NU-904 most likely limited the diffusion of
the sizeable substrate and product (Fig. 6b) and resulted in the
lower conversion. The turnover numbers (TONs) in 24 hours
were calculated to be 20.3, 22.8 and 99.4 for NU-903, NU-904
and NU-1008, respectively.

Conclusions

Three different Zr-MOFs were constructed by the steric control
of the conformations of substituted tetratopic carboxylate
linkers. Compared to NU-903 with the scu topology, phase pure
csq-net NU-1008 supports our initial hypothesis that intro-
ducing functionality into the organic linker can influence the
linker conformation and direct the topology of targeted MOFs.
Consequently, some mechanistic insights regarding MOF
synthesis can be inferred in efforts to make MOF topology
control possible with the strategic design of organic linkers.
Interestingly, with nitro groups, threefold twinning is observed
in scu-net NU-904, which yields an average structure of shp-net
with triangular microchannels while maintaining the unsatu-
rated metal sites for promising catalytic applications. Signifi-
cantly different CO, fixation catalytic activities were observed
due to the diverse pore structures. Among them, the

1190 | Chem. Sci,, 2019, 10, 1186-1192
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mesoporous NU-1008 is found to be a highly active MOF catalyst
which displays complete CO, fixation into styrene oxide in less
than 24 hours under room temperature and 1 bar of CO,.
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