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Total chemical synthesis of glycocin F and
analogues: S-glycosylation confers improved
antimicrobial activityf
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Glycocin F (GecF) is a unique diglycosylated bacteriocin peptide that possesses potent and reversible
bacteriostatic activity against a range of Gram-positive bacteria. GceF is a rare example of a ‘glycoactive’
bacteriocin, with both the O-linked N-acetylglucosamine (GlcNAc) and the unusual S-linked GlcNAc
moiety important for antibacterial activity. In this report, glycocin F was successfully prepared using
a native chemical ligation strategy and folded into its native structure. The chemically synthesised
glycocin appeared to be slightly more active than the recombinant material produced from Lactobacillus
plantarum. A second-generation synthetic strategy was used to prepare 2 site selective ‘glyco-mutants’

containing either two S-linked or two O-linked GlcNAc moieties; these mutants were used to probe the
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Accepted 2nd January 2018 contribution of each type of glycosidic linkage to bacteriostatic activity. Replacing the S-linked GlcNAc at
residue 43 with an O-linked GIcNAc decreased the antibacterial activity, while replacing O-linked

DOI: 10.1039/c75c04383] GlcNAc at position 18 with an S-linked GIlcNAc increased the bioactivity suggesting that the S-glycosidic
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Introduction

Microorganisms produce a highly diverse array of compounds
that can be harnessed as anti-bacterial agents.' Bacteriocins are
ribosomally synthesized and post-translationally modified
peptides (RiPPs) secreted by bacteria as a primary defence
mechanism against competing bacteria.> Bacteriocins from
lactic acid bacteria have received considerable attention due to
a desirable safety profile, stability across wide pH and temper-
ature ranges, antimicrobial activity against various pathogens,
and no cross-resistance with antibiotics.>”® These features have
prompted interest in bacteriocins as novel antimicrobial
agents, probiotics and natural preservatives.*
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linkage may offer a biologically-inspired route towards more active bacteriocins.

Glycocin F (GecF, 1) is a potent bacteriocin originally isolated
from liquid culture of Lactobacillus plantarum KW30.® GeeF is
a 43-residue helical peptide that contains two interlocked
disulfide bonds (*Cys-**Cys and **Cys->'Cys) and two B-linked
N-acetyl-p-glucosamine (GlcNAc) moieties, connected to the
side chain of '®Ser via the oxygen atom and **Cys via the sulfur
atom.” The glycosylated cysteine, in particular, is an extremely
rare post-translational modification in bacteria and has only
been found in two other glycopeptides to date (sublancin
and thurandacin).**® GceceF exhibits bacteriostatic activity
against a relatively wide range of Gram positive bacteria, with
L. plantarum strains suspected to be its natural target.®’
Notably, ASM1, a close homologue of GecF, and enterocin 96 are
the only glycosylated bacteriocins which have been shown to be
“glycoactive”,"** that is, the saccharide moieties are essential
for biological activity. In a previous study, removal of the
GlcNAc attached to 'Ser completely abolished the activity,
while removal of the C-terminal fragment **His-**Cys(B-Glc-
NAc) reduced the activity 44-fold.” The C-terminal S-glycosidic
linkage is of particular interest, as the natural functions of such
bonds remain unclear. Further, the improved biochemical
stability of S-glycoside linkages'* compared to their O-linked
congeners provides considerable scope for the development of
S-glycosylated bacteriocins as both preservatives and
therapeutics.

Since the discovery of GeeF (1), attempts to dissect its
molecular mechanism and cellular targets have been hampered

This journal is © The Royal Society of Chemistry 2018
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by the inefficiency of its isolation from cultures of L. plantarum.
Chemical synthesis of complex bacteriocin glycopeptides is an
attractive alternative to direct isolation or recombinant
production as it offers atomic-level control over peptide
sequence and modifications. However, few total syntheses of
glycosylated bacteriocins have been reported to date. An
example is the synthesis of 37-residue sublancin 168 by Payne
et al.® via solid-phase peptide synthesis coupled with a conver-
gent ligation methodology. Two other glycosylated bacteriocins
thurandacin and enterocin 96 have been prepared using che-
moenzymatic methods.**

We have previously reported™* the first synthesis of a biolog-
ically active form of GecF, identical in structure to the natural
product except for C-terminal amidation. The synthetic
C-terminal amide analogue of GeeF exhibited a reduced bacte-
riostatic activity compared to the natural peptide derived from
L. plantarum culture."* We therefore sought to obtain the native
GcecF that contains the C-terminal acid to determine the role of
the C-terminal carboxylate. We then sought to extend this
further by chemically synthesizing ‘glyco-mutants’ of GccF to
examine the chemical linkage between the peptide backbone
and the GlcNAc. Our hypothesis is that replacing O-linked
sugars with S-linked sugars would not greatly perturb the
structural requirements of GecF, thereby preserving the bioac-
tivity but may also result in enhanced enzymatic stability.™

Herein, the native form of glycocin F (1) was prepared and
improvements on its chemical synthesis are reported. Notably,
the synthetic GecF is equipotent to the isolated material in
a liquid culture assay. Furthermore, several ‘glyco-mutants’ of
GceceF were generated, in which both of the two native glycosyl-
ation sites (*®Ser and **Cys) were substituted with S-linked
B-GlcNAc (Cys(B-GlcNAc)) or O-linked B-GlcNAc (Ser(B-GlcNAc))
residues. These analogues have enabled us to better understand
the contributions of each sugar linkage to the bacteriostatic
activity of glycocin F and reveal the considerable potential of
S-linked glycoconjugates as antimicrobial agents.

Results and discussion
Synthesis of glycocin F (1)

The synthetic strategy to prepare native glycocin F (1) was anal-
ogous to that described for the previous synthesis of C-terminally
amidated glycocin F."* In that report, we adopted a three frag-
ment native chemical ligation (NCL) strategy as depicted in
Scheme 1. In the present work we employed the 2-chlorotrityl
linker for the preparation of the racemisation-prone C-terminal
acid fragment 2, bearing a C-terminal cysteine (ESI Fig. 14 and
Scheme 5t). The use of benzyl alcohol-based linkers was avoided
as the esterification conditions for loading a cysteine residue to
such linkers can lead to Ca racemisation and/or dehydroalanine
by-product formation.” 2-Chlorotrityl based resins does not
involve carboxylate activation and thus does not result in race-
misation. In our previous synthesis of glycocin F-amide, the 4-(4-
hydroxymethyl-3-methoxyphenoxy)-butyric acid (HMPB) linker
was used to prepare fragment 3, causing substantial racemisation
at *’His; pleasingly changing the linker to 2-chlorotrityl linker
reduced this to ca. 20%.

This journal is © The Royal Society of Chemistry 2018
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Scheme 1 Synthesis of GeeF (1) and [27p-His]-GecF, with the prob-
lematic His highlighted in red. Reagents and conditions: (i) 6 M Gn-HCl,
0.2 M NapHPO4, 100 mM MPAA, 20 mM TCEP, pH 6.8, r.t, 2 h; (i) 6 M
Gn-HCL, 0.2 M NayHPO,4, methoxylamine-HCL, pH 4, r.t, 16 h; (ii)) 6 M
Gn-HCl, 0.2 M Na;HPO,, 100 mM MPAA, 20 mM TCEP, pH 6.8, r.t, 4 h;
(iv) 6 M Gn-HCl, 1 M HEPES, hydrazine, 2-mercaptoethanol, 0 °C,
30 min; (v) 1.5 M Gn-HCL, 50 mM Na,HPOy,, 2 mM cysteine, 0.25 mM
cystine, 0.025 mM EDTA, 0.25 mM peptide, pH 8.2, 4 °C, 16 h.
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The necessary O-glycosylated amino acid Fmoc-Ser(B-
GIcNAc(OAc)3)-OH (Fmoc = 9-fluorenylmethoxycarbonyl) and
S-glycosylated amino acid Fmoc-Cys(B-GlcNAc(OAc);)-OH
building blocks were prepared as previously described (ESI
Scheme 11). Native chemical ligation was undertaken as before
and the fully assembled linear peptide was folded without
incident (ESI Fig. 23 and 24t). Purification by HPLC yielded
epimeric glycocin F (1a) and glycocin F (1b) in 29% and 32%
yield, respectively.

The presence of the two disulfide bonds in 1b was confirmed
by HRESI-MS analysis (HR-ESIMS, m/z [M + 4H]*"; calculated for
Cas6H311N5,05,S,:  1041.4634, observed: 1040.8167) (ESI
Fig. 267). Glycocin F glycopeptides 1a and 1b, epimeric at >’His,
were then compared with an authentic sample of glycocin F
isolated from L. plantarum (ESI Fig. 251) and assignment of the
natural product was achieved by direct comparison of the HPLC
retention time. Epimer 1b eluted at an identical retention
time to the isolated material and therefore was assigned the
1-configuration at *’His. In contrast, epimer 1a eluted earlier
and was therefore assigned the p-configuration.

The secondary structure of synthetic folded GecF was
determined by circular dichroism (CD) spectroscopy. Similar to
the isolated GccF, the synthetic derivative 1b and epimeric
analogue 1a exhibit the features expected for a-helical proteins,
namely standard double negative ellipticity maxima at 210 and
221 nm, and a positive maximum near 194 nm (ESI Fig. 437).

Second-generation synthetic strategy provides expedient
access to ‘glyco-mutants’ of glycocin F

A. Development of a two-fragment, single ligation strategy.
In order to systematically examine structure-activity relation-
ships of complex glycopeptides such as GecF (1), a large number
of mutations must be made to enable dissection of each resi-
due's contribution to activity. We therefore sought to develop
a more efficient synthesis of GecF and analogues that would
enable rapid production of a library of such mutants, at a scale
sufficient for biochemical characterisation. The above-
described strategy to prepare GeceF involved synthesis of three
polypeptide fragments that underwent two consecutive NCL
reactions to produce full-length GecF. An alternative strategy
was devised (Scheme 2) using only two fragments, consisting of
a 32-amino acid digylcosylated fragment 5, ["*Cys-'®Ser(p-
GIcNAc(OAc);)-**Cys(B-GlcNAc(OAc);)] and the N-terminal
fragment 6, ['Lys-''Met-COSCH,CH,—(Lys)s]. While the
previous synthesis of fragment 5 had required the ligation of the
two short peptides 2 and 3 followed by *Thz deprotection, we
anticipated that 5 could be accessed through direct Fmoc-SPPS
with higher yield. Following this approach, the native residue
2Cys could be used as the ligation site between 5 and 6, thereby
avoiding introduction of a non-native thiazolidine that would
require further chemical manipulation after the ligation step.
Critically, a single-ligation strategy would by-pass the prob-
lematic thioesterification step at >’His, avoiding racemisation at
this residue.

Direct synthesis of fragment 5 was initiated on 2-CITrtCl-
polystyrene resin (Scheme 2), and subsequent peptide

1688 | Chem. Sci., 2018, 9, 1686-1691
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elongation was performed via Fmoc-SPPS using HATU/iPr,EtN
as the coupling reagent and 20% piperidine/DMF (v/v) as the
Fmoc deblocking reagent. As peptide aggregation and thus
reduced coupling yields had hindered previous efforts to syn-
thesise this long fragment, three pseudoproline dipeptides'®"
were incorporated within the peptide chain, namely
9Gly-*Thr, >*Tyr->°Ser, and **Ser-*°Ser. Previous analysis of
a truncated fragment '°Gly->"His, built on 2-CITrtCl-based
resin, revealed the presence of a significant, contaminating
by-product (25% relative to expected peptide) with the same
mass, which was attributed to >'Cys racemisation (ESI Fig. 277).
In order to prevent this, the coupling of *'Cys was achieved
using HATU and 2,4,6-trimethylpyridine (TMP) in the presence
of 1-hydroxy-7-azabenzotriazole (HOAt) in CH,Cl,/DMF (v/v;
1:1), conditions known to suppress racemisation.'®*
Following Fmoc-SPPS, the fully assembled peptide 9 was
recovered from the resin with simultaneous removal of side
chain protecting groups using the cleavage mixture TFA/EDT/
H,0/iPr;SiH (v/v/v/v; 94 : 2.5 : 2.5 : 1). Under the above condi-
tions, the desired glycopeptide 5 was successfully obtained in
30% crude yield and >73% purity, with successful inhibition of
*Cys racemisation and avoiding *’His racemisation (ESI
Fig. 287).

B. Generation of ‘glyco-mutants’ of glycocin F. As glycocin
F (1) was already synthesised, its preparation from glycopeptide
5 using the optimised synthetic strategy was not undertaken.
Instead, we employed the improved methodology for the
synthesis of ‘glyco-mutant’ analogues of glycocin F. Thus, two
analogues of glycocin F (peptides 10 and 11) were prepared,
each bearing a single modification at one of the glycoside
positions. Thus, analogue 10 was designed to contain O-linked
GlcNAc moieties at amino acid positions 18 and 43. To prepare
this analogue, the C-terminal **Cys(B-GlcNAc) was replaced with
a Ser(B-GlcNAc). Analogue 11 was designed to have S-linked
GIcNAc moieties at positions 18 and 43. To achieve this, the
internal ®Ser(B-GlcNAc) was replaced with a Cys(B-GlcNAc).
Both analogues were designed to elucidate the biological
rationale for incorporation of an S-glycosidic linkage in native
glycocin F. The requisite resin-bound fragments 12 and 13
containing the desired glycosides, were synthesised in an
analogous fashion to that described above for peptide 9
(Scheme 2 and ESI Fig. 29 and 30t). Polypeptides 14 and 15 were
then individually ligated with the N-terminal fragment, peptide
thioester 'Lys-'"Met-COSCH,CH,—(Lys)s 6. NCL reactions were
performed as described previously (6 M Gn-HCl, 0.2 M
Na,HPO,, 20 mM TCEP, and 100 mM MPAA, pH 6.8) at a final
peptide concentration of 1 mM, and provided the ligation
products in good yields (40% from 12, and 44% from 13) (ESI
Schemes 31 and 337). The ligation products were subjected to
simultaneous formyl and acetyl deprotection, purified by RP-
HPLC and subjected to oxidative folding, following the proce-
dures developed above for the preparation of GeeF 1. Each
‘glyco-mutant’ of GeeF folded successfully to afford a single
folded species, as determined by HPLC, within 16 h (ESI Fig. 39
and 417). The presence of two disulfide bonds in each analogue
was confirmed by high resolution mass spectrometry (HRMS)
with an observed mass for glyco-mutants 10 and 11, of

This journal is © The Royal Society of Chemistry 2018
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Scheme 2 Optimised synthesis of GceF fragment 9, which was then employed for the synthesis of glycol-mutants 10 and 11. Reagents and
conditions: (i) Fmoc-L-Cys(B-GIcNAc(OAc)s)-OH for 9 and 13 or Fmoc-L-Ser(B-GIcNAc(OAc)s)-OH for 12, iPr EtN, CH,Cly, r.t, 1 h; (ii) Fmoc-
SPPS (Fmoc deprotection: 20% piperidine in DMF (v/v)), r.t, (2 x 5 min); coupling: Fmoc-amino acid, HATU, iPr,EtN, DMF, r.t, 40 min except
Fmoc-'8Ser(B-GIcNACc(OAc)s)-OH, HATU, HOAt, TMP, DMF, r.t, overnight and Fmoc-2'Cys(Trt)-OH, HATU, HOAt, TMP, CH,Cly: DMF (L : 1, v/v),
rt, 2 x 1h; (i) 94% TFA, 2.5% EDT, 2.5% H,0, 1% iPrsSiH (v/v/v/v), r.t, 2 h; (iv)-(vi) for 14 and 15, (iv) 6 M Gn-HCl, 0.2 M Na,HPO,4, 100 mM MPAA,
20 MM TCEP, pH 6.8, r.t, 4 h; (v) 6 M Gn-HCL, 1 M HEPES, hydrazine, 2-mercaptoethanol, 0 °C, 30 min; (vi) 1.5 M Gn-HCL, 50 mM Na,HPO,4, 2 mM
cysteine, 0.25 mM cystine, 0.025 mM EDTA, 0.25 mM peptide, pH 8.2, 4 °C, 16 h.

1037.6213 ([M + 5H]’") and 1044.0121 ([M + 5H]*") Da, respec-
tively, consistent with the calculated masses of the desired
products (ESI Fig. 40 and 427).

The secondary structure of glyco-mutants 10 and 11 was
determined by circular dichroism (CD) spectroscopy, which
confirmed a similar o-helical structure to the native glycosin F
bacteriocin (ESI Fig. 437).

Biological evaluation of synthetic GecF (1b) and [*"p-His]-GeeF
and “glyco-mutants”

Recent research from one of our laboratories (Norris) implicates
a GlcNAc-specific phosphotransferase system (PTS) transporter

This journal is © The Royal Society of Chemistry 2018

in the cell membranes of susceptible Gram-positive bacteria as
the likely target of glycocin F. It is hypothesised that glycocin F
binds to the transmembrane domain of its receptor through the
tethered GlcNAc residues and disrupts sugar-processing and
regulatory activities essential for bacterial growth. Although the
exact details remain unknown, a full understanding of the
mechanism of action of glycocin F will afford a unique oppor-
tunity to develop an entirely new suite of PTS-targeted glyco-
conjugate antimicrobials for therapeutic and industrial
application.

To evaluate the antibacterial activity of synthetic glycocin F
(1b), [*’p-His]-GeeF (1a) and glyco-mutants 10 and 11, the ICs,
values against Lactobacillus plantarum ATCC 8014 were
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Table 1 Activity of bacterially isolated GccF, the synthesised GccF
peptides and GccF glyco-mutants

Compound # Modification 1Cso

Native Isolated GeeF 2.0 £ 0.20 nM
1b Synthetic GeeF 1.13 £+ 0.20 nM
1a [*”p-His]-GeeF 0.98 + 0.17 nM
10 *3Cys(GleNAc) to Ser(GleNAc) 12.1 £ 0.20 nM
1 8Ser(GleNAc) to Cys(GleNAc) 0.60 + 0.10 nM

measured using a liquid culture assay. Synthetic GeeF (1b) was
used as the positive control (Table 1).

The ICs, of the bacterially produced glycocin F was found to
be 2.0 £ 0.20 nM. The synthetic glycocin F (1b) exhibited an
enhanced antibacterial activity relative to this batch of isolated
material (ICs, = 1.13 £ 0.20 nM). Considering that the previ-
ously reported GecF-NH, exhibited reduced bacteriostatic
activity (ICso = 1.6 nM)," this current result provides insight
into the relationship of the target glycopeptide with its target
receptor: amidation of the C-terminus was in fact responsible
for the reduced effect, implying that a positively charged residue
within the receptor may be interacting with the negatively
charged carboxylate C-terminus.

The importance of the C-terminal carboxylate for bioactivity
was also verified from the ICs, value of [*’p-His]-GecF (1a) (0.98
+ 0.17 nM). Interestingly, the previously reported [*’p-His]-
GceeF-NH, showed a significant reduction in activity (ICs, =
4.8 nM) compared to both isolated GecF and GeeF-NH,, sug-
gesting that incorporation of bp-His negatively influences
bioactivity. However, we herein show that the previously
reported reduction in bioactivity of the [*'p-His]-GccF-NH, was
in fact a consequence of the C-terminal amidation.

The antibacterial activity of the two glyco-mutants, 10 and 11
revealed an intriguing trend. The activity of glycocin F analogue 10,
which contains two O-linked GlcNAc moieties, exhibited decreased
activity (approximately 10-fold, ICs, = 12.1 & 0.20 nM) compared to
the native glycocin F (ICso = 1.13 + 0.20 nM). Notably, the activity
of analogue 11, which contains two S-linked GlcNAc moieties, was
increased by approximately 2-fold (IC5, = 0.60 & 0.10 nM) relative
to the native glycopeptide. Thus, in this series, the bacteriostatic
activity is enhanced by replacing the O-glycoside with an S-glyco-
side, with the maximum activity obtained by glycopeptide 11
bearing S-linked GIcNAc at both residues 18 and 43.

This striking result is predicted to be due to the enhanced
resistance of the stable S-glycosidic linkages to hydrolytic
cleavage compared to O-glycosidic linkages, when exposed to the
cell envelope and/or secreted glycosidases of target bacteria.
Indeed, the Pratt group has recently demonstrated the resistance
of S-linked GlcNAc to cleavage by human O-GlcNAcase (OGA).*
By avoiding enzymatic cleavage, the S-linked GlcNAc moieties
could remain available for binding at the GcecF target receptor,
leading to enhanced potency and prolonged bacteriostasis.

Conclusions

The first total synthesis of native glycocin F 1, containing both S-
and O-linked B-GlcNAc moieties, was accomplished using

1690 | Chem. Sci., 2018, 9, 1686-1691
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a three-fragment NCL strategy followed by oxidative folding.
Structural identity to the naturally isolated glycocin F was
confirmed by analytical RP-HPLC and CD spectroscopy. To
avoid troublesome racemisation at *’His and to increase the
overall efficiency of glycocin F synthesis, an alternative synthetic
strategy was successfully developed using a two-fragment NCL
strategy. This strategy was then employed for the synthesis of
two ‘glyco-mutant’ analogues of glycocin F (10 and 11), each
bearing a single modification at one of the residues bearing
a sugar moiety. Strikingly, the bioactivity increased significantly
when the sequence incorporated two S-GlcNAc moieties at
positions 18 and 43 (in peptide 11).

The results reported herein highlight the potential of glyco-
cin F analogue 11 and related S-linked glycoconjugates as leads
for the development of new anti-bacterial agents. Our prepara-
tion of glycocin F and analogues aims to provide fundamental
insights into a novel antimicrobial mechanism of action,
knowledge that is vital for the successful conversion of natural
products into the ‘smart antibiotics’ needed for future therapies
and industrial applications.
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