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To address the question posed in the title, we have created, and now report details of, an

open-access database of cluster structures with a web-assisted interface and toolkit as

part of the WASP@N project. The database establishes a map of connectivities within

each structure, the information about which is coded and kept as individual labels,

called hashkeys, for the nanoclusters. These hashkeys are the basis for structure

comparison within the database, and for establishing a map of connectivities between

similar structures (topologies). The database is successfully used as a key element in

a data-mining study of (MX)12 clusters of three binary compounds (LiI, SrO and GaAs) of

which the database has no prior knowledge. The structures are assessed on the energy

landscapes determined by the corresponding bulk interatomic potentials. Global

optimisation, using a Lamarckian genetic algorithm, is used to search for low lying

minima on the same energy landscape to confirm that the data-mined structures form

a representative sample of the landscapes, with only very few structures missing from

the close energy neighbourhood of the respective global minima.
1. Introduction

The application of structure prediction in the eld of clusters and nanoparticles
has resulted in literally millions of structures being discovered for different
compounds, systems with different magnetic ordering, systems containing
different dopants, or simply systems of different sizes.1–4 Crucially, each system
can be described as an energy landscape and the initial target or targets are the
location of the global minimum (GM) or the locations of low energy local minima
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(LM).5 Today when one wants to study a new compound of interest within certain
sets of parameters, including stoichiometry, size, environment, etc., a key question
springs to mind: is it worth running new simulations that employ one or several
contemporary global structure optimisation algorithms?We argue – not necessarily!
Thoughtful exploitation of the available data that can be found in the literature
presents a viable alternative that turns out to be the most efficient way to discover
new structures, materials, and their physics and chemistry.6–14 Similar consider-
ations, apart from size, can be applied to crystal structures, including molecular,
metallic, ionic, covalent, or hybrid organic and inorganic frameworks.15–18

Another problem encountered by practically every practitioner of global opti-
misation for structure prediction is how to ascertain that the newly discovered
conguration of a particular compound is not known from competitors’ studies,
for example, or exists out there under the guise of a different compound of similar
stoichiometry, or is not published but is known as a lower ranked local energy
minimum (i.e. data that has a rank that is beyond a chosen set threshold for
publication). The use of slightly different energy functions, unintentional effects
of tolerances both in energy denition and local optimisation, or possibly an
intentional bias to match measurable properties (for example, infrared data) will
all muddle the waters further.

The choice of the best – or most suitable for the investigator’s purposes – cost
(or tness) function is uncertain, and could be quite different in different studies
even on the same system.

To address these challenges, we have developed a database complemented by
a toolkit that includes structure comparison as a key element. Aggregating
structures and their properties into one place also enables the sophisticated
exploration of structural motifs and particular properties and the discovery of
structure–property relationships. Databases are not a new concept in materials
modelling,19–29 even in the eld of nanoclusters.30,31 Crucially, our searchable
database generates a map of connections relating different structures. In this
article, we describe both the database and the algorithms that generate these
mappings, followed by simple showcase examples.
2. Web-assisted structure prediction at the
nanoscale (WASP@N)

In the development of the database, our Hive of knowledge, we aimed to arm the
scientic community and general public, from professional researchers to school
pupils, with a new intelligent tool to search, discover and disseminate structures
and properties of new nanoclusters. To allow access and interaction with the Hive,
we built a web interface, which we refer to as the WASP toolkit. The mapping
between structures and various properties is an essential element, or feature, of
the Hive database, which is generated by algorithms that form part of a separate
piece of code that we refer to as the Bee soware. The Bee soware runs on
dedicated computing facilities. The WASP interface links the user, the Hive and
the Bee soware – see Fig. 1. With open access to the Hive, a number of security
measures have been employed in order to protect the integrity of the data and the
computing facilities from malicious attacks (to complete the analogy, we refer to
unwanted visitors to the Hive as hornets).
594 | Faraday Discuss., 2018, 211, 593–611 This journal is © The Royal Society of Chemistry 2018
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Fig. 1 Schematic of the hardware and software solution for web-assisted structure
prediction at the nanoscale.
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Datasets within the Hive are organised as follows: (a) published atomic
structures, the atomic coordinates of which were originally used to generate
a gure (e.g. ball and stick models) or were explicitly given in a table as part of
a published paper (or electronic supplementary information) that has a DOI; and
(b) atomic structures generated using the Bee soware. For the former, the atomic
structures are labelled using the DOI of the published article they were taken
from, and are uploaded as one or more concatenated xyz le(s) using an extended
format that contains both the metadata saved on the comment line and the
atomic structure, which includes atomic labels: Cartesian coordinates; one
additional scalar and one vector record per atom (for example, charges, spin,
dipole on atom). Searchable metadata are vital for the use of a database. Values
for metadata that can be provided include the denition of energy and soware,
total charge, energy ranking, total spin, etc. For example, the comment line:

“Name¼drum; Symmetry¼D3h; Definition¼{FHI-aims, PBE0/PBE, tight}; Ener-

gy¼210Hartree; Size¼6; Atoms¼12; Charge¼0; Spin¼0; Dipole¼(0,0,0)”

for the cluster (ZnO)6 indicates that the user refers to the local minimum
conguration as a “drum”, the atomic coordinates of which have D3h point group
symmetry aer geometry relaxation using the FHI-aims soware with the gener-
alised gradient approximation in density functional theory in the form of the PBE
exchange and correlation density functional and the tight basis set, an energy of
210 Ha with the same basis set and the hybrid PBE0 exchange and correlation
density functional, a total charge and spin of zero, and no resultant dipole. If not
specied upon upload to the Hive, some of these will be calculated along with, for
example, stoichiometry, topology, total mass, centre of mass, and principal
moments of inertia. Non-searchable metadata like, for example, thumbnail ball
and stick images, are generated on-the-y. The dataset for each DOI string will
also contain timestamp metadata (when it was uploaded or last modied) and
publication metadata (authors and journal name, volume and page numbers).
Generated datasets are given a DOI string by the Bee soware that is based on the
chosen energy denition, and the atomic congurations result from structural
relaxations of all the published datasets.
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 211, 593–611 | 595
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The essential search and comparison features of WASP enable the user to
investigate structural motifs and physical properties. The comparison of clusters
can be quite expensive and, therefore, comparison-based pre-searches are per-
formed by the Bee soware upon the upload of new datasets, both published and
generated. A description of the algorithms employed in these comparisons is
provided in the next section. The results of pre-searches are saved as links
between (thus establishing) related structures. These links, or new metadata
generated by the Bee soware, form a map linking different structures in the
database. The map can be readily exploited by the user through the WASP
interface to ascertain the uniqueness of newly found congurations of clusters of
a certain compound and size or to compare clusters of different compounds.
Moreover, as we will demonstrate below, this map can also help to reduce the
effort needed to explore the energy landscapes of a compound that has yet to be
investigated. The computational work and the interaction of the three comple-
mentary codes (WASP, Bee, and the Hive) are supported by appropriate hardware
solutions – as illustrated in Fig. 1 – and related operating system server soware
(including task scheduler, etc.). In the near future, we plan to expand the solution
shown in Fig. 1 to include the exploitation of third party computing platforms.

3. Methodology
Uniqueness and similarity

Being able to quickly recognise similar structures, or measure their similarity, has
always been a challenge in materials modelling.32 Consider comparing the atomic
structures of two nanoclusters that are essentially the same but have either small
random perturbations (noise) resulting from the applied optimisation tolerances
or slight differences because of the different, but similar, density functionals
employed. In the comparison procedure, the rst task is to correctly align these
two congurations: the translation and rotation of each cluster is xed by posi-
tioning the centre of mass at the origin and aligning the principal axes of rotation
with the chosen Cartesian axes. Hopefully, upon alignment, a one-to-one match is
found for each atom in one conguration with the equivalent atom in the other. If
not, then there is a combinatorial problem to solve: which combination of atom
pairs minimises the sum of the distances between all pairs (a sum of zero implies
a perfect match, with each atom in one conguration positioned exactly on top of
the equivalent atom in the other conguration). Minimising this measure of
likeness for two dissimilar nanoclusters may also require optimising the relative
rotation and translation of the two nanoclusters.

The efficiency of stochastic search algorithms – particle swarm, basin hopping,
and genetic or evolutionary algorithms – that are employed to locate local minima
(LM) on the energy landscape can be improved if there is a computationally cheap
method that provides a measure of how similar two structures are. For example,
this could be used to check whether a newly found/generated conguration is
unique, whether the starting points are sufficiently spread apart for different
random walkers on the energy landscape, or whether the candidate structures in
the current population are sufficiently diverse for the evolutionary algorithm
(otherwise inbreeding results in the population not evolving, or improving, any
further). Onemay also want to distinguish between enantiomorphic clusters – two
clusters that are mirror images of each other. One half of such a pair can easily be
596 | Faraday Discuss., 2018, 211, 593–611 This journal is © The Royal Society of Chemistry 2018
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lost if the comparison of nanoclusters is simply based on their relative energy of
formation (since both enantiomorphic clusters have identical energies).

There are several approaches in the literature designed to measure the simi-
larity between structures,33–45 which can be classied in two groups: direct one-to-
one comparison or an indirect approach that requires the generation of labels,
also known as ngerprints or hashkeys, which are then compared.

One-to-one comparison algorithms are typically based around a cost function
that measures the degree of similarity between two structures. As introduced
above, the cost function will depend on the successful superimposition of the two
structures, i.e. the translation and rotation of one cluster with respect to the other.
Where Dirac delta functions are used to describe the position of an atom, the cost
function will also depend on thematching of atomic pairs between the structures.
This in itself can pose a formidable task (see for example ref. 33, which employs
the Hungarian algorithm).34–36 This problem is reduced for compounds or alloys if
pairs are restricted between like species. Alternatively, where a Gaussian, or
a similar function, is centred on each atom, the cost function is typically based on
the degree of overlap of atom-centred Gaussians between the two clusters. For
compounds and alloys, the overlap of Gaussians can be determined for each
species type; there is no explicit need to match pairs of atoms. Goedecker
employed a similar scheme, but based on atomic orbitals (see ref. 37). Both types
of cost function can also be employed to nd out whether, or how well, a smaller
cluster matches a fragment of a larger cluster.

In this article, we only compare pairs of clusters that have the same compo-
sition, and use only the species type and atomic coordinates as the input. One of
the most straightforward and widely used metrics for the comparison of molec-
ular structures is the root-mean-square deviation (RMSD) of the coordinates of
equivalent atoms.38,39 Following a similar idea, the metrics suggested by Ali
Sadeghi et al.37 use congurational ngerprints based on eigenvalues of matrices
of interatomic distances. The structural ngerprints are then compared by
measuring the distances between them, as small ngerprint-based distances
correspond to small RMSD distances. The H-FORMS (a hierarchical algorithm for
molecular similarity)46 approach estimates a rigid transformation that aligns
structures and computes rotation-invariant descriptors, which are then used to
match atoms. Similarly, R. Hundt et al. implemented an algorithm in the analysis
program KPLOT40 based on the mapping of atomic patterns constructed using
three-atom frame matches. An alternative approach to the problem of structure
comparison exploits the properties of the nanoclusters,41 such as radial distri-
bution functions, vibrational frequencies42 or principal moments of inertia.

Whichever method is used, when a structure needs to be efficiently compared
with vast data for thousands or millions of congurations, the chosen approach
needs to be both robust and computationally affordable. The second class of
comparison methods – based on comparing unique labels that are generated for
every congurationally unique structure – may address this big data challenge.

Within our database, we implemented the approach rst adopted in the KLMC
soware47 to address the challenge of maintaining the diversity of structures
during a genetic algorithm search. The approach relies on the NAUTY soware
package (No AUTomorphisms, Yes?) written by McKay and Piperno,48 which can
generate canonical labels for graphs and compute automorphisms between them.
NAUTY labels graphs canonically by providing a string consisting of three 8-digit
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 211, 593–611 | 597
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hexadecimal numbers depending on the graph, i.e. a set of vertices and edges,
and, in general, every unique graph will have a unique NAUTY string, also known
as a hashkey, or ngerprint. By exploiting the feature of uniqueness, we have
incorporated NAUTY in the Bee soware in the following way: each cluster is
converted to a coloured graph by treating the atoms as vertices and the bonds
between them as edges. The number of colours of vertices (atoms) is determined
by the number of species in the structure. Thus, (MgO)n clusters will have two
different colours (species), whereas Tin clusters will have only one. It is important
to note that (KF)n clusters will also have two different colours, therefore graphs of
(MgO)n and (KF)n clusters of the same size can be compared explicitly. The edges
of the clusters’ graphs are generated from the calculated interatomic distances
between the atoms (vertices) of a cluster and can be thought of as “bonds”
between atoms. The radial cut-off by which the “bonds” are determined depends
on the species and is slightly longer than the expected actual bond length. A
owchart of the implemented hashkey generation is given in Fig. 2, where the
(MgO)5 GM cluster is used as an example. Here, the (MgO)5 GM cluster (shown as
a ball and stick model in Fig. 2a) is transformed into a coloured graph (shown in
Fig. 2b). This graph is then processed using the “NAUTY” soware package, which
in turn generates a unique hashkey for the cluster. An example of a hashkey is
shown in Fig. 2d.

Given that the comparison of hashkeys is orders of magnitude faster than
comparing atomic structures explicitly, each cluster within the Hive database is
labelled with a hashkey. As described above, the hashkeys enable a rapid check of
the database for duplicate structures by both the WASP and Bee soware and are
used in the generation of maps connecting similar structures (the network of
links between clusters entered into the database is updated as soon as the atomic
coordinates of generated and published LM nanoclusters are uploaded to the
Hive) – a feature that is not currently implemented in other structural databases.
This feature has proven to be essential when the WASP interface is used to nd
out whether a newly discovered cluster is already within the Hive. To demonstrate
one of the utilities our database provides, we have used the generated hashkeys to
identify unique structural motifs for a particular stoichiometry (1 : 1) and size (24
Fig. 2 Flowchart of hashkey (fingerprint) generation illustrated using the (MgO)5 global
minimum configuration.
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atoms). We then data-mined from this set, rather than a set of LM congurations
of one or all compounds in the Hive.

Data normalisation

Published LM cluster structures, which can be uploaded to the database, are, by
denition, dependent upon the theory and accuracy of the level of theory
employed in the calculation of energy as a measure of stability. Moreover, the
measure of tness may also be based on the deviation from some geometric,
physical or chemical observable(s). When LM on a potential energy landscape are
targeted, energy calculations at different levels of theory (quantum mechanical
(all-electron or pseudopotential), semi-empirical, Hartree–Fock, DFT, tight-
binding, semi-classical, or atomistic simulations) yield values that may scatter
across a few orders of magnitude. Even if a similar method is chosen, e.g. DFT
with identical basis sets and, possibly, effective core potentials, employing
different exchange and correlation density functionals could still lead to
substantially different values. The situation is just as problematic if semi-classical
simulations are employed, as there are oen many different sets of parameterised
interatomic potentials for the same material or compound. One trick commonly
used across the eld of materials chemistry is to switch from total to binding or
cohesion energies, which can be expected to behave better, and do in practice.49

The scatter in the calculated binding energy values obtained using different
approaches is usually, however, still greater than the energy separating low
ranking energy minima on the same energy landscape (denition of energy).

In practice, the WASP interface lets users upload their data without any
restrictions on how the data were obtained, but encourages the users to provide
details of the adopted computational approach as metadata. To support the
comparison of individual structures obtained using different energy denitions,
we introduced an internal standard attained by a data normalisation routine. In
particular, when data are uploaded to the Hive database, they are automatically
rened by the Bee soware, using the all-electron, full potential electronic
structure code FHI-aims50 with the PBEsol functional,51–53 the light basis set
(which is variationally equivalent to split valence double-zeta Gaussian plus
polarisation basis sets but can obtain energies that are much closer to the basis
set limit). Further computational parameters are provided in the ESI.† Aer
normalisation, the newly obtained structure is automatically uploaded to the Hive
database with a two-way link between the original and normalised congurations,
along with similarity links to the whole dataset in the database.

Hence, the user can search for structures that rene to the same LM on our
normalised energy landscape (particularly useful for the investigation of nano-
clusters of the same compound) or structures of any compound with the same
connectivity (structural motif), as explained in the previous section.

Data mining

Starting from a known set of atomic congurations with the target stoichiometry
and total number of atoms, the Data Mining (DM) module of the KLMC soware
package54 rescales each conguration to obtain an estimate of the expected
nearest neighbour interatomic distances for the target compound, and then,
using third party soware, relaxes the rescaled atomic structures to LM. In the
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 211, 593–611 | 599
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results shown below, we employ GULP55 as the third party soware, i.e. a semi-
classical level of theory is used for the calculation of energies (and atomic
forces). Aer the rescaling and renement procedure, KLMC is also employed to
analyse the resulting congurations in terms of their energy ranking, uniqueness
and geometrical properties.
Global optimisation

A Lamarckian genetic algorithm (GA) approach implemented in the KLMC so-
ware package47 was also used to locate LM on the energy landscape dened by the
same set of interatomic potentials (semi-classical level of theory) as those used in
the data-mining investigation. We note that the ability of the KLMC GA47 to locate
LM and GM efficiently has been proven for various types of system, and thus it is
chosen here as a method for providing reliable data that we can use to assess the
results obtained using the data-mining approach. The population of each GA run
was set to 200 candidate structures, with the initial random structures generated
within a 15 Å � 15 Å � 15 Å cubic simulation box. Default values, as given in ref.
47, were used for the remaining simulation parameters.
4. Results
Isomorphic structures, or structural motifs

As an illustration of how the connectivity maps are employed, we consider the
case of a GM nanocluster reported in ref. 56 for (MgO)7 that has the symmetry
point group C3v; see Fig. 3a. The topological analysis tool nds that this structure
has “7Mg3–7O3” topology, i.e. seven Mg and seven O atoms, each with a coordi-
nation number of three. When selected using the WASP interface for the Hive,
beneath the rotatable ball and stick model of this structure are two lists; one
showing the standardised entry for this conguration (as described earlier), and
another showing all the “isomorphic structures” found in the Hive based on
matching hashkeys (as also described above). A snapshot of the second list is
shown in Fig. 4. In our chosen example, the (MgO)7 GM structure currently has
eleven isomorphic structures: eleven atomic congurations within the Hive have
the same hashkey as our chosen example. The inclusion of a DOI in the entry for
a candidate structure in this list indicates that it is a published LM. The
remaining ve are, therefore, standardised LM (using FHI-aims). As more entries
are submitted to the Hive, we would expect many more matches to be found. The
Fig. 3 Six configurations for (XY)7 taken from the Hive database that all have the same
hashkey, shown to scale as ball and stick models with a cation shown uppermost, two
bond angles measured, and where XY is the compound (a) MgO, (b) CaO, (c) SrO, (d) BaO,
(e) KF and (f) CdSe.
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Fig. 4 Snapshot of the lower part of theWASP interface showing 11 results (5 generated by
the Bee software) returned from the Hive for structures that have the same hashkey as the
GM structure for (MgO)7 as reported in ref. 56.
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six published LM show that this structural motif is also reported54,56,57 to be the
GM for (KF)7, (CaO)7, (SrO)7, (BaO)7 and (CdSe)7. There is also another (MgO)7
conguration, which has a different DOI54 to that of the original chosen structure.
Given that there are six different compounds with the same structural motif, we
would expect six standardised LM. The two published LM entries for (MgO)7, the
same compound, relax to the same standardised LM. To nd all the nanoclusters
within the Hive that relax to the same standardised LM, the user only needs to
click on the thumbnail of the standardised nanocluster. In our example, the
missing standardised LM results from the standardised conguration for (CdSe)7
relaxing to a different LM. Therefore, it has a different hashkey as it is a different
structure (in fact, it has C1 point symmetry).
Efficient structure prediction

The Hive contains the LM atomic structures for numerous binary compounds
with 1 : 1 stoichiometry and a total charge of 0. We now concentrate on one
particular size, clusters composed of 12 cations and 12 anions. To investigate
a compound that is missing from the Hive database, one could data-mine
structures already in the Hive for a similar compound. The success of this
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 211, 593–611 | 601
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Table 1 Parameters for the Buckingham potential, A exp(�r/r) � C/r6, applied between
ions X and Y

X–Y A (eV) r (Å�1) C (Å6 eV)

Li–Li 1153.80 0.13640 0.000
Li–I 8894.70 0.26170 0.000
I–I 5502.50 0.30660 0.000
Sr–O 1952.39 0.33685 19.220
O–O 22 764.00 0.14900 27.879
Ga–Ga 470.18 0.13490 0.000
Ga–As 1544.69 0.42310 0.000
As–As 484.31 0.24810 0.000
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approach would rely on the chosen set of initial congurations; the more exten-
sive this set, the greater the probability of nding the target LM. To maximise this
probability one could data-mine all the compounds; however, this would generate
many copies of each LM. Using the hashkey, which provides a unique identier
for each structural motif, we were able to reduce this initial set to just over 100
unique structural motifs (which we will refer to as the DM-set). If the database
contained entries for alkali halides, (XY)12, and alkaline earth oxides, (ZO)12, for
X ¼ Li to Cs, Y ¼ F to I, and Z ¼ Mg to Ba, then potentially there would be
a maximum reduction of 96%.

The determination of this reduced set (calculation and comparison of hash-
keys) is orders of magnitude faster to perform than the additional structural
relaxations (using standard algorithms within an electronic structure code) that
would have been necessary if we could not determine equivalent structures.
Moreover, data-mining requires the evaluation of far fewer candidate structures
than is typically performed in a stochastic approach. It is expected that the
number of datasets within the Hive will grow, and that important unique struc-
tural motifs may be missed given our search has been performed soon aer we
have created this database. Stochastic approaches may also miss important LM,
and the number of unique motifs is likely to increase much more slowly than the
number of entries for clusters of any particular size, charge and stoichiometry.

Using our DM-set of unique LM, we now investigate three different compounds
that were not included in the initial dataset taken from the Hive, namely (LiI)12,
Table 2 Parameters for the shell model for ions X, whereQ and Y are the point-charges of
the core and shell, which are connected by a spring with constants k2 and k4. The
Coulomb contribution to the energy between point-charges of an individual ion X is
replaced with the energy associated with the spring, 1/2k2x

2 + 1/4k4x
4, where x is the

distance between the core and shell. Note that the strontium cation is treated as a rigid ion
and therefore only has one parameter

X Q (e) Y (e) k2 (eV Å�2) k4 (eV Å�4)

Li 0.295 0.705 15.979 0
I 3.087 �4.087 39.950 0
Sr 2.000
O 0.869 �2.869 74.920 0
Ga 3.436 �0.436 2418.361 0
As 0.809 �3.809 7.722 300 000
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(SrO)12 and (GaAs)12. As the main focus of this article is the methodology as
opposed to the physical and electronic properties of the predicted nanoclusters,
we have chosen to present new IP-LM structures, i.e. the atomic congurations
and ranks of local minima on the energy landscape are dened using interatomic
potentials (IP), the parameters of which are given in Tables 1 and 2. For each
compound we also perform a search of low energy IP-LM using an evolutionary
algorithm; details of both methods are described in the previous section. We note
that the potential parameters for LiI were taken from ref. 58. The small spring
constant for the lithium cation caused problems during the global optimisation
runs; during the relaxations of new candidate structures (particularly the random
structures used in the initial population), the initial electric elds were some-
times strong enough that during structural relaxation the shell was stripped away
from the cation. It is known that the polarisability of an ion is dependent upon the
electric eld, which is much stronger for our clusters than that experienced within
Fig. 5 (SrO)12 IP-LM configurations obtained by relaxing the DM-set of unique LM found
by data-mining from other 1 : 1 compounds. Green and red atoms represent Sr and O,
respectively, and the symmetry point groups of the clusters are given within parentheses.
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the bulk. Thus, in our simulations, we doubled the value of the spring constant
for lithium cations, which corresponds to an apparent reduction in their coor-
dination number compared to the bulk.

The results from data-mining our DM-set of unique LM are shown in Fig. 5–7.
For strontium oxide, lithium iodide and gallium arsenide, 47, 50 and 41 LM
structures were generated, respectively, i.e. not all the structural motifs of one
compound were locally stable for another. Moreover, a different global minimum
was found for each compound. Labelled DM01 in Fig. 5, the D3d barrel was found
to be the IP-GM for (SrO)12, whereas for (LiI)12 and (GaAs)12 it was ranked fourth
and second, respectively. The 2 � 2 � 6 D2d conguration of alternating atoms,
labelled DM01 in Fig. 6, was found to be the IP-GM for (LiI)12. One can imagine
that this cuboid conguration could be cut from the NaCl rock salt structure, and
thus it is not surprising that this structural motif was not generated for (GaAs)12.
The Th sodalite cage, so named as it is a basic building block of the sodalite bulk
structure (given the abbreviation SOD by the zeolite community), was found to be
Fig. 6 (LiI)12 IP-LM configurations obtained by relaxing the DM-set of unique LM found by
data-mining from other 1 : 1 compounds. Pink and red atoms represent Li and I,
respectively, and the symmetry point groups of the clusters are given within parentheses.
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Fig. 7 (GaAs)12 IP-LM configurations obtained by relaxing the DM-set of unique LM found
by data-mining from other 1 : 1 compounds. Purple and orange atoms represent Ga and
As, respectively, and the symmetry point groups of the clusters are given within
parentheses.
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the IP-GM for (GaAs)12. This conguration was ranked h and thirty-eighth for
(SrO)12 and (LiI)12, respectively. Comparing the ball and stick models for different
compounds but for the same structural motif, one noticeable difference between
the LM for lithium iodide and those of the other two compounds is the sharper
(more acute) bond angles that directly result from the greater polarisability of the
iodide anion. Essentially, the iodide anions are further out from the cluster’s
centre of mass than the lithium cations.

To check the current success of data-mining the Hive for these three
compounds, we also conducted global optimisation on each of the three IP-energy
landscapes for low lying LM. We present the results as three densities of LM
graphs; see Fig. 8. In the panel insert for each compound it is very clear that the
data-mined LM present only a sample of all the possible LM. In terms of ranking,
fortunately, the missing LM tend to be mid-range rather than at the more stable
end (which, typically, is where there is most interest). Looking more closely at the
top ranked LM, we identied which IP-LM structures are missing; these are
shown in Fig. 9.

For strontium oxide clusters, the rst six missing LM were ranked 6, 7, 8, 9, 13
and 16. The rst three of these are basic rock-salt cuts that could have been
included in our data-mined set if we had included the structures from ref. 54 (we
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 211, 593–611 | 605
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Fig. 8 Density of IP-LM found for (XY)12 by data-mining our DM-set of unique structures
(red lines) and by employing a genetic algorithm (blue lines) as a function of energy from
the GM. The main panels show enlarged regions of the full graphs that are shown in the
insets. Red and blue numbers label the ranks of the IP-LM as found by data-mining and the
genetic algorithm, respectively.
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did not as this paper includes data-mined structures for alkaline oxides, one of
which is one of the compounds we chose to investigate). The GA08 cuboid
conguration was in fact found as the IP-GM for (LiI)12. Generating this LM
during the data-mining process was fortuitous given that this structural motif was
not included in the DM-set of unique LM. GA09 and GA13 are composed of a n¼ 6
drum (typically the IP-GM for (XY)6) and 2 � 2 � m cuboids. More interesting is
the GA16 conguration, which we have previously seen; it has an unusual dis-
torted planar four-coordinated oxygen anion site.

For lithium iodide clusters, the rst six missing LM structures were ranked 3,
4, 5, 7, 8 and 9. Unlike our DM-set, these congurations, which we will refer to as
HC, have at least one highly coordinated (greater than 4) anion site and are not
one of the possible cuboid cuts from the NaCl rock salt phase. Given the stability
of this type of structure, quite a few of the better ranked structures were missed.
As already seen, any unstable LM in the DM-set can lead to new structural LM and
thus we did not miss all of the HC structures; the enantiomer of GA03 was found
(labelled as DM03 in Fig. 6 and ranked equal third).
606 | Faraday Discuss., 2018, 211, 593–611 This journal is © The Royal Society of Chemistry 2018
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Fig. 9 Ball and stick models of (XY)12 IP-LM configurations obtained by the genetic
algorithm that were missing from the IP-LM found using the data-mining approach. The
colour scheme is shown in the lower right hand panel and is the same as that employed in
previous figures. The numbers in the GA** labels indicate the rank found for the nano-
cluster, where 01 indicates the IP-GM, whereas in the previous labels, DM**, they indicate
the rank before the missing IP-LM were found using the GA.
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For gallium arsenide clusters, data-mining the DM-set was much more
successful in that only four additional IP-LM structures were found in the top thirty;
the rst four missing LM structures were ranked 7, 14, 21 and 29. Of these, GA07 is
the result of merging IP-GM for n ¼ 6 (a drum) and n ¼ 9 (bubble) across a hexag-
onal face; GA14 is very similar to the GA16 LM that was missed for (SrO)12; GA21 has
the same structural motif as DM18, but with all the anions switched for cations, and
vice versa, cf.DM23 andDM24 and also GA06 andGA07 for strontium oxide.We note
that the DM and GA runs found different chiral versions of DM23 and DM24.

Finally, we should reiterate that the structures reported above for LiI, SrO and
GaAs were obtained on the interatomic potential landscape. These potentials
were originally parameterised for bulk compounds, where atoms are typically in
higher coordinated environments, and therefore such parameterisations are very
limited in scope. For example, arsenide anions are highly polarisable, and more
realistic structures should be expected to have more buckled shapes, as seen
above in LiI congurations. The latter proved to be easier to optimise due to the
relatively low charges on Li and I. Notwithstanding this, the structures obtained
here will be uploaded to the Hive and rened using our chosen ab initio approach,
which will both give the actual ndingsmore credence for future applications, but
will also allow the parameters of the interatomic potentials to be rened. The
latter is an important element of machine-learning techniques that have been
particularly successful in studies of metallic clusters.59,60
5. Conclusions

We have presented, for the rst time, details of our database of published atomic
congurations of nanoclusters. We have described the algorithms employed
within this database to establish whether two entries are equivalent LM for
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 211, 593–611 | 607
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a particular compound and whether congurations of different compounds are
equivalent when judged using connectivity arguments, and have shown how to
exploit these data in order to predict structures for three new compounds. The
database provides initial model structures that were traditionally obtained from
experiments, congurations that can be employed in structure prediction using
a data-mining approach, and a way of checking whether a candidate structure is
indeed new. Data-mining the set of congurations for (XY)12 structures that have
a unique hashkey proved relatively successful in that the top two LM congura-
tions for each of three compounds were found. However, global optimisation
techniques are still required for compounds that are chemically distinct enough
that their low energy LM structures do not match congurations already in the
database, using our connectivity arguments. This will of course change with time,
as more data is entered into the database.

Lessons learnt in the creation of the Hive and the associatedWASP interface as
a toolkit will be of direct use for further work on nucleation and crystallisation
processes,61 crucially the nucleation and growth of small particles on or in solid
supports and liquid environments. The LM atomic congurations in the database
are also readily usable as secondary building units (SBU) for constructing crystal
structures.6,8,10,62–68 Here, using low energy SBUs that do not resemble cuts from
the main phases of the chosen compounds will produce more interesting results.
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