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Mitochondria as vital intracellular organelles play critical roles in multiple physiological processes, and their
polarity is a crucial characteristic that can reveal the intracellular environment and impact cellular events. In
this work, we designed and synthesized a novel series of highly emissive and environmentally sensitive
phosphorescent iridium(i) complexes (2a—2e, 3a—3e and 4) functionalized by o-carborane. These
complexes showed high emission quantum yields both in solution and in solid state (up to @p = 0.82),
long emission lifetime and tunable emission wavelength over 74 nm by introduction of a carboranyl
motif in their ligands. Importantly, all the complexes have shown significant solvatochromic effects in
contrast to the carborane-free control complex. Among them, complex 2d shows the highest sensitivity
to polarity of solvents with a MPPS (maximum peak phosphorescence shift) value of 42 nm and clear
dependence of phosphorescence lifetime on solvent polarity. Interestingly, complex 2d can easily
penetrate into cells and preferentially distribute in mitochondria. To utilize these properties, the first
phosphorescent imaging of mitochondrial polarity has been realized by photoluminescence lifetime
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apoptosis and distinguish cancer cells from normal cells. Compared to intensity-based sensing, lifetime-
DO 10.1039/¢75c00160f based detection is independent of the probe concentration, excitation power and photobleaching of

rsc.li/chemical-science probes, which can show high accuracy and reproducibility.

assays can reveal information about the cellular internal envi-
ronment such as transportation of proteins, maintaining of cell
function, and homeostasis.® Thus it is of great significance to
monitor mitochondrial polarity at a cellular level.

Introduction

Polarity plays a crucial role in chemistry and chemical biology,
and intracellular polarity reflects a lot of complicated physio-

logical and pathological processes in biological systems. Many
cellular events, such as adipogenic differentiation, immune
response activation, cell migration and death, and molecular
transport across cell layers, may phenotypically lead to polarity
variation in cells." Therefore, abnormal changes in polarity are
highly relevant to biological disorders and diseases (e.g., dia-
betes, liver cirrhosis).> Mitochondria are vital intracellular
organelles and play critical roles in multiple physiological
processes, including metabolism, ATP production, cell
signaling, and apoptosis. Therefore, mitochondrial polarity
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Luminescent bioimaging based on optical probes is
a powerful technique for monitoring cellular environmental
processing in living systems and has received considerable
interest in recent years. Currently, some polarity-sensitive
fluorescent probes are available.>® However, those fluorescent
probes are mainly limited to organic dyes, which feature short
emission lifetime and suffer from background interference
from biosamples and serious photobleaching.® In contrast, the
phosphorescent transition-metal complexes (PTMCs, namely
metallophosphors), especially the iridium(m) complexes,
exhibit advantageous photophysical properties, such as long
phosphorescence lifetime as well as high quantum yield and
excellent photostability. These make them promising probes for
biological imaging. Especially, their long and sensitive phos-
phorescence lifetimes are very beneficial for lifetime-based
biosensing and bioimaging by photoluminescence lifetime
imaging microscopy (PLIM), which can effectively eliminate the
unwanted background interference based on the emission
lifetime difference between the phosphorescent probe and
interference signal. Moreover, the emission lifetime as the
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sensing signal is independent of the probe concentration,
excitation power and photobleaching of probes, which can
show high accuracy and reproducibility.” To date, there have
been no reports about polarity-sensitive phosphorescent probes
for bioimaging. Therefore, the development of a new type of
phosphorescent probes through a combination of high
quantum yield, long emission lifetime and excellent polarity
sensitivity is highly desired.

Icosahedral o-carborane (1,2-C,B;oH;,) possesses strong
electron-withdrawing ability (C-substitution) and an alterable
C-C bond.? o-Carborane cage can serve as a rigid hindrance to
prevent probable intermolecular interactions and reduce self-
quenching as well as potential concentration quenching.’ Its
electron-withdrawing ability can lead to considerable charge
redistribution of the phosphorescent core, which can further
result in a large emission shift." On the other hand, the
stretchable C-C bond is quite sensitive to its chemical
surroundings, such as substitution at the C-H bonds®*™® and
even solvents or media." From this viewpoint, o-carborane
embedded metallophosphors might be an ideal polarity-
sensitive probe in cell imaging for potential biomedical
applications.

On the basis of the above hypotheses, a novel series of
phosphorescent iridium(u) complexes based on o-carborane
functionalized N~N ligands have been designed and synthe-
sized for the first time (Scheme 1). The introduction of carbor-
ane to the bipyridine ligand of the cationic iridium(m)
complexes (2a-2e, 3a-3e and 4) has led to highly improved
phosphorescence quantum yields both in solution (from 0.26 to

Ry Ri N N
c N C =

R1 =H (a), CH; (b), Ph (c) Us“(“ butyl)s R, = H (1a), CH; (1b), Ph (1c)

C"Rz
, <
¢ 7 N\_7 N
R, Cl =\ =
=H(d), Ph () =H (1d), Ph (1f)

/R3
C N N=
= iPr (1g), iBu (1h)

i
C\rO

= CHj; (1e), iPr (1i), iBu (1j)
Snz(n-butyl)s — —
Pd(PPh_-,)4 T N N C

Scheme1l The synthetic routes of o-carborane modified NAN ligands.
Conditions: (i) Pd(PPhsz)4, toluene, 110 °C, 24 h; (i) NaH, Rl (R = CHs,
iPr, iBu), DMF, —20 °C.

C N Nz
&0 -

e

This journal is © The Royal Society of Chemistry 2017

View Article Online

Chemical Science

0.79) and in solid state (from 0.07 to 0.82) in comparison to the
carborane-free control complex Model. The emission color has
been tuned from green to yellow, or even to red (up to 74 nm).
The photophysical properties of these iridium(u) complexes are
quite sensitive to the polarity of solvents. Interestingly, the
complexes show mitochondria targeting, therefore complex 2d
was chosen to develop a phosphorescence probe for monitoring
mitochondrial polarity at the cell level through photo-
luminescence lifetime imaging microscopy. As a result, such
a probe can distinguish cancer cells from normal cells, as well
as differentiate living cells from dying cells and dead cells.

Results and discussion
Synthesis and characterizations

The novel o-carborane-modified N*N ligands (1a-1j) (Schemes 1
and S17) were synthesized in high yields by using commercially
available B;,H;,(Et,N), which is cheap, stable and non-toxic.%
Through the change of the 2-R substituent or the substitution
site of the carboranyl unit at bipyridine,""*> two series of
complexes 2a-2e and 3a-3e were prepared by the reactions of
the dimeric [(C"N),Ir(p-Cl),Ir(C"N),] and the corresponding
carborane-functionalized ligands (1a-1j) (Schemes 1 and 2).
Complex 4 containing two carboranyl motifs was also synthe-
sized in order to further tune the photophysical properties. Both
the new ligands and the newly generated iridium(i) complexes
have been fully characterized by NMR, MS spectroscopy,
elemental analyses, and X-ray diffraction (Fig. 1, S1 and Table
S1t). The crystal structures of complexes Model, 2a, 2b, 2d, 3b,
3¢, and 3e exhibit a distorted octahedron geometry around the
iridium center (Fig. 1), and the carboranyl units have led to an
obvious increase in the volume of the complexes (Tables S1 and
S27t). Due to the bulkiness of o-carborane, no intermolecular -
T interactions were observed from the packing structures. The
advantage of the bulky carborane cage in inhibiting intermo-

lecular interactions is important to improve the
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Scheme 2 The synthetic routes of o-carborane modified iridium(in)
complexes: (i) CH,Cl,/CH3zOH (1 : 1, v/v), refluxing overnight, KPFs.
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Fig. 1
atoms, solvent molecules, and PFg~ anions are omitted for clarity.

phosphorescent emission of iridium(m) complexes both in
solution and in solid state.

Photophysical properties

The UV/vis absorption and photoluminescence (PL) spectra
were measured in CH,Cl, solution (Table 1). All the complexes
show similar absorption bands (Fig. S$10 and S11}) compared to
the model one. The main strong absorption bands below
350 nm are mainly attributed to the w-m* transitions from the
ligands. The weak absorption bands from 350 nm to 450 nm are
assigned to metal-to-ligand charge transfer (MLCT) and ligand-
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(A) Nomenclatures of carborane-modified iridium(in) complexes; (B) ORTEP diagrams of complexes Model, 2a, 2b, 2d, 3c, and 3e. H

to-ligand charge transfer (LLCT) characters, which is referenced
by the similar reported ionic iridium(ur) complexes. In solution,
2a-2e have similar emission wavelength (1 = 563 nm) (Fig. 2(A)),
but a 43 nm bathochromic shift was observed in comparison to
the Model, corresponding to the emission color change from
green to yellow. The quantum yields have been improved
varying from 0.49 to 0.79 (referenced to 0.26 for the Model, see
Table 1) dependent on the 2-R substituent at o-carborane, which
is higher than the cationic iridium complex (®p;, = 0.67) con-
taining o-carborane modified cyclometalated ligands.®? The
highest quantum yield was observed as 0.79 for 2d owing to the
relatively large size of the R (iPr) group. Complexes 3a-3e

Table 1 Photophysical and electrochemical data of iridium(i) complexes

Complex Aabs” [nm] (Ig ¢) Aem” [nm] ¥ [ns] Dpr” Eonset (€V) E° (eV) HOMO/LUMO? (eV)
2a 244(4.0), 296(3.7), 309(3.7), 364(2.9)  563.0 1115.0  0.49(0.41)  1.239 2.94 —6.039/—3.049
2b 251(4.0), 300(3.8), 315(3.8), 365(3.1)  563.0 746.9  0.59(0.37)  1.251 2.95 —6.051/—3.101
2¢ 246(4.2), 303(3.9), 315(3.9), 362(3.3) 560.0 794.0  0.62(0.16) 1.270 2.95 —6.070/—3.120
2d 246(4.1), 304(3.9), 315(3.9), 363(3.3)  563.0 760.0  0.79(0.82)  1.257 2.96 —6.057/—3.097
2e 246(4.1), 304(3.8), 314(3.8), 362(3.3) 563.0 774.6 0.72(0.63) 1.259 2.97 —6.059/—3.087
Model 247(4.0), 303(3.8), 316(3.8), 362(3.1)  520.0 561.5  0.26(0.07)  1.208 3.18 —6.008/—2.828
3a 244(4.1), 298(3.8), 315(3.8), 362(3.4)  555.0 5853  0.55(0.49)  1.225 2.99 —6.025/—3.039
3b 246(4.1), 299(3.8), 315(3.7), 362(3.3)  555.0 733.0  0.66(0.67)  1.240 2.99 —6.040/—3.053
3¢ 266(4.0), 298(3.8), 317(3.7), 363(3.3) 553.0 465.1 0.68(0.54) 1.238 2.99 —6.038/—3.048
3d 243(4.2), 304(3.9), 315(3.8), 361(3.5)  556.0 759.3  0.76(0.49)  1.228 2.98 —6.028/—3.046
3e 244(4.1), 303(3.8), 314(3.8), 361(3.4)  556.0 793.6  0.73(0.71)  1.232 2.98 —6.032/—3.050
4 249(2.4), 311(3.7), 321(3.8), 364(3.3)  594.0 597.5  0.33(0.18)  1.260 2.81 —6.060/—3.252

“1In CH,Cl,. ” Data in degassed CH,CI, at 298 K (1.0 x 107°
—e(E¥ et + 4.8), Eg = 1240/2, LUMO (V) = E, + HOMO.
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Fig.2 PL spectra of iridium(i) complexes: (A) complexes 2a, 2b, 2c, 2d, 2e, and Model; (B) complexes 3a, 3b, 3c, 3d, 3e, and Model in degassed
CH,Cl, (1.0 x 1075 M) at room temperature. (C) PL spectra of iridium(ii) complexes Model, 2a, and 4 in degassed CH,Cl, (1.0 x 1075 M) at room
temperature (Aex = 365 Nnm and corresponding luminescence photographs are inset).

containing an o-carboranyl unit at a different site of the N*N
ligand also show highly efficient emission in solution (®p;, =
0.55-0.76, Table 1). Their emission wavelength is positioned at
556 nm (Fig. 2(B)), having a 36 nm bathochromic shift
compared to the Model. A significant red shift of 74 nm has
been achieved in complex 4 (594 nm in Fig. 2(C)). Obviously,
this is attributed to the cooperative electron-withdrawing
property of the two-carboranyl motifs. But the quantum yield
of 4 (0.33) in solution has little increase in comparison to the
Model (0.26), which may be attributed to the “energy gap law”.**
It is worthy to note that the solid-state quantum yields of these
iridium(mr) complexes are also significantly increased from 0.07
for Model to 0.16-0.82 for 2a-2e and 0.49-0.71 for 3a-3e,
respectively (Table 1 and Fig. S12%), which are among the
highest values for metallophosphors. The bulkiness of carbor-
ane cage has played an important role in inhibiting intermo-
lecular interactions (Fig. S2-S9t) as indicated by the longer Ir-Ir
distances along one or more axes between adjacent metal
centers in comparison to the model complex (Fig. S2-S97). In
addition, 2-R substituents decrease the flexibility of molecular
structures and increase the volumes of the corresponding unit
cells (Tables S1 and S2t), which are important to suppress the
interactions between metallophosphors and improve quantum
yields. This is clearly attributed to the steric property of the
carboranyl motif.

Cyclic voltammograms and DFT calculations

The electrochemical studies have revealed that all the
complexes have reversible oxidation waves with potentials in
the range of 1.2-1.3 V (Fig. S13} and Table 1). The oxidation
potentials of 2a-2e are similar, independent of the 2-R
substituent at the o-carboranyl unit. The same occurs for 3a-3e.
This is consistent with the energy gaps and emissive wave-
lengths. DFT calculations (Fig. S20-S227) have shown that all
the 2-R substituents at carborane are not involved in orbitals,
indicating no contribution to the energy levels.” The HOMOs
are mostly distributed over the cyclometalated C*N ligands. The
LUMOs of complex Model are distributed merely on the bipyr-
idine ligand, whereas those of carborane-embedded complexes

This journal is © The Royal Society of Chemistry 2017

are mainly located on bipyridine plus a small fraction on the
carboranyl motif. Owing to the inductive electron-withdrawing
effect of carborane, the HOMO — LUMO energy gaps of 2a-2e
are narrowed by about 0.23 eV because of the greater LUMO
stabilization than that of HOMO, in comparison to the nar-
rowed values of about 0.19 eV for 3a-3e (Fig. S20 and S217). The
LUMO level in complex 4 has been further decreased, demon-
strating the overlaid inductive electronic effect of the two car-
boranyl groups. Thus, the DFT calculations are consistent with
the observed red-shifted emissions.

Solvatochromic effect

Interestingly, all the complexes have shown significant sol-
vatochromic effects in contrast to complex Model. The
maximum peak phosphorescence shift (MPPS, denoted as Av),
is defined as the maximum difference between emissions in the
low polar solvent toluene (0.36 debye) and in the high polar
solvent DMSO (3.96 debye)."”® Thus Av is given as 9 nm for
Model, 19 nm for 2a, 32 nm for 2b, 34 nm for 2¢, 42 nm for 2d,
18 nm for 2e, 7 nm for 3a, 7 nm for 3b, 24 nm for 3¢, 21 nm for
3d, 6 nm for 3e, and 27 nm for 4 (Fig. S14-S19 and Table S37).
Among them, complex 2d exhibits the largest MPPS of 42 nm,
corresponding to a distinct color change from green to yellow
(Fig. 3(A)). The emission intensity and lifetime of complex 2d
show a decreasing trend with the increase of solvent polarity
(Fig. S267).

Studies on MLCT (metal to ligand charge transfer) in iri-
dium(m) complexes have revealed that the solvatochromic effect
is related to molecular dipole moments.*® Thus the singlet (S,)
and triplet (T;) dipole moments of the complexes in different
solvents were calculated (Tables S4 and S57), and the transition
dipole moments (AT;-S,) are summarized in Fig. 4 and Tables
S6 and S7.1 Complexes 2¢, 2d, and 3¢ show big (AT;-S,) changes
from those in toluene to those in DMSO. This is in accordance
with the MPPS shown in emissions (i.e. 34 nm for 2¢, 42 nm for
2d, and 24 nm for 3c). Generally, introduction of the electron-
withdrawing carboranyl group into the bipyridine ring (N*N
ligand) has enhanced the transition dipole moments in
comparison to complex Model (Tables S6 and S7t). The

Chem. Sci,, 2017, 8, 5930-5940 | 5933
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Fig. 3 (A) Luminescence photographs of 2d in various solvents. (B)
Phosphorescence spectra of complex 2d in toluene (0.36 D), chlo-
roform (1.04 D), dichloromethane (1.60 D), acetonitrile (3.84 D),
ethanol (1.69 D), and DMSO (3.96 D).
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Fig. 4 Calculated transition dipole moments (AT;-Sp) of iridium
complexes in different solvents (see data in Tables S7 and S8+).

calculations also demonstrate that the molecular transition
dipole moments of the iridium(m) complexes can be finely
adjusted by the carboranyl group, as reflected by different
emissions. This might shed new light on the utilization of the
transition dipole moments of iridium(m) complexes for
applications.

Cell imaging

Complex 2d shows high quantum yields both in solution (@, =
0.79) and in solid state (@p;, = 0.82) as well as sensitive emission
color and lifetime toward solvent polarity. Therefore, it might be
a potential polarity probe by the PLIM technique. As such, the
phosphorescent emission in pH 4-10 was measured, which
showed no change (Fig. S237). Next, 2d was found to be more
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photostable in comparison to the commercially available
reference (Mito-Tracker-Red) (Fig. S247). Moreover, the phos-
phorescence intensity of 2d was little affected in the presence of
common metal ions (Na*, K*: 5 mM; Ca**, Mg>": 500 uM; Zn*",
AIP*, Mn*": 200 uM) and various reactive oxygen species (H,O,:
50 uM; ClO™, O, 7, -OH: 100 uM) (Fig. S25 and S26%). Also, the
emission intensity changes little with increasing viscosity from
0.60 cP to 100 cP (Fig. S277).

An MTT assay has shown that complex 2d exhibits no cyto-
toxicity towards HepG2 cells at concentrations under 10 pM,
thus making it suitable for cellular staining experiments
(Fig. S287). Colocalization imaging experiments were performed
for liver human hepatoma cells (HepG2) and normal human
liver cells (HL-7702) with complex 2d and Mito Tracker Red
(mitochondrial dye) to demonstrate that complex 2d can readily
penetrate into cells (Fig. S29t). More importantly, complex 2d
showed mitochondria targeting with Pearson’s colocalization
coefficients of 0.96 and 0.90 in the two cell lines, respectively. It
is likely that A549 and HeLa cells also showed mitochondria
targeting (Fig. S297). Other subcellular organelle staining
control experiments gave the colocalization coefficients 0.18 for
Lyso (lysosomes), 0.68 for Golgi apparatus, 0.72 for ER (endo-
plasmic reticulum) (Fig. S30f). These experiments further
demonstrate that complex 2d can preferentially accumulate in
mitochondria. This is probably attributed to its cationic charge
and lipophilic carboranyl group®® since complex 2d is inde-
pendent of mitochondrial membrane potential as indicated by
the fact that both emission intensity and lifetime of the complex
were almost unchanged in the absence or presence of CCCP
(carbonyl cyanide 3-chlorophenylhydrazone) (Fig. S31+).

It is well known that cancer cells have different microenvi-
ronments from normal cells. In many cases, cancer cells have
exhibited mitochondrial disorders. Therefore, we intended to
detect the polarity difference in mitochondria in different cell
lines by using complex 2d and the PLIM technique. In doing so,
the emission spectrum of complex 2d within the cells was
measured and was found to be nearly identical to that observed
in the extracellular environment (Fig. S32}). The phosphores-
cence lifetime was also examined and found not to be affected
by the dosage of 2d (10, 20, and 30 uM), demonstrating that the
probe is stable during cellular imaging (Fig. S331). Next, HepG2
and HL-7702 cells were incubated with complex 2d (10 uM). The
emission lifetime and phosphorescence intensity in HepG2
cells were observed to be much longer and higher than those in
HL-7702 cells (Fig. 5(A)).

According to the polarity-lifetime relationship (Fig. S347),
the cellular environment of HepG2 cells is less polar than that of
normal cells (HL-7702), consistent with the reported result.>***
In contrast, HeLa and A549 cell lines exhibited little difference
in phosphorescence lifetime in comparison to HL-7702
(Fig. 5(A) and S347). In particular, both the emission lifetime
and phosphorescence intensity of Model remained almost the
same in HL-7702 cells, HepG2, A549, and HeLa cell lines
(Fig. S357), indicating insensitivity toward polarity within cells.
Hence, the PLIM results demonstrate that complex 2d can be
used as a phosphorescent probe to detect the mitochondrial
polarity in live cells.

This journal is © The Royal Society of Chemistry 2017
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Fig. 5 (A) Phosphorescence lifetime imaging of the mitochondrial

polarity in HepG2, HL-7702, Hela, and A549 cells stained with 2d (10
uM) (scale bar: 30 um). (B) Phosphorescence lifetime imaging of
HepG2 cells in different states stained with 2d (10 puM).

Mitochondrial disorders are well-known to be highly relevant
to apoptosis, which is basically defined as a programmed cell-
death event in contrast to the unprogrammed cancer cell
growing.'»"” During apoptosis process, mitochondria change
both in structure and in function.” Hence, we tried to further
use PLIM to monitor the change of mitochondrial polarity
during cell apoptosis. Complex 2d and the commercial dye
propidium iodide (PI), or Annexin-FITC were incubated together
with live HepG2 cells, cells in apoptosis and dead cells, respec-
tively. As illustrated in Fig. 5(B), the emission lifetimes in cells in
different states vary. The PLIM signals in living cells show the
shortest phosphorescence lifetime, whereas those for dead cells
exhibit the longest phosphorescence lifetime. In a sharp
contrast, the control Model complex has indicated almost zero-
difference in the PLIM signals during cell apoptosis (Fig. S367).
Therefore, the PLIM technique clearly indicates polarity
decreasing in mitochondria during cell apoptosis through the
use of the phosphorescent probe complex 2d, which can
unambiguously differentiate live, apoptotic, and dead cells.

Conclusions

In summary, a novel series of highly emissive phosphorescent
iridium(m) complexes containing o-carborane modified N*N
ligands have been designed and synthesized. Among them, an
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efficient polarity-sensitive phosphorescent probe (complex 2d)
has been developed for the first time. It exhibits a visual color
change of phosphorescence emission as a function of polarity
and unique mitochondria affinity. This cell-staining complex
has shown the ability to discriminate cancer cells and normal
cells by PLIM. Moreover, this phosphorescence probe can be
used to track cell apoptosis to indicate living cells, cells in
apoptosis, and dead cells. Hopefully, this new type of o-
carborane-functionalized phosphorescent probe could be
further improved to detect mitochondrial disorders in the
future.

Experimental
General

In this paper, all the synthetic steps were carried out under an
inert argon atmosphere using standard Schlenk and glovebox
techniques unless otherwise noted. Commercial reagents were
used without any further purification. All the solvents are
freshly distilled, for example, THF and toluene were distilled on
sodium/benzophenone as well as acetonitrile and EtOH on
CaH,. Dimeric [(C"N),Ir(u-Cl)], complex was prepared by liter-
ature plrocedures.511L Intermediate compound B;,H;,(Et,S), was
synthesized by a modified method according to literature
reports.5>%3% Compounds a,%%t b,%% 11¢,5°*+ 11d,%*%4 and
11£%%%+ were synthesized according to the literature. All NMR
spectra (‘*H-, **C-, and ''B-) were obtained at ambient temper-
ature on Bruker DRX-400 or Bruker DRX-500 spectrometers.
Chemical shifts are reported relative to CHCI;/CDCl; (6 'H =
7.26 ppm, 6 "*C = 77.0 ppm) and external Et,0-BF; (6 ''B =
0 ppm), respectively. Mass spectra were measured with a Bruker
Daltonics Autoflex IITM MALDI-TOF MS spectrometer, Micro-
mass GC-TOF for EI-MS (70 eV) and a ESI-MS (LCQ Fleet,
Thermo Fisher Scientific). Melting points were measured with
an X4 digital melting point displayer. Phosphorescence
measurements were carried out using a Hitachi F-4600 fluo-
rescence spectrophotometer. Electronic absorption spectra
were recorded with Shimadzu UV-2550 spectrophotometers.
Phosphorescence lifetimes were determined by an Edinburgh
Instruments laser impulse fluorometer with picosecond time
resolution. Elemental analyses for C, H and N were performed
on a Vario MICRO elemental analyzer. IR data were collected on
a Bruker Vacuum FT-IR Spectrometer 80 V. X-ray diffraction
data were collected on a Bruker Smart CCD Apex DUO diffrac-
tometer with graphite monochromated Mo Ko radiation (A =
0.71073 A) using the »-26 scan mode.

Synthesis of 1a

A mixture of a (0.66 g, 2.2 mmol, 1.1 equiv), 2-(tributylstannyl)
pyridine (0.74 g, 2 mmol), and Pd(PPh;), (0.23 g, 5% mmol) in
dry toluene (40 mL) was refluxed for 24 h under argon atmo-
sphere. After cooling down to room temperature, the solvent
was evaporated under reduced pressure and the residue was
purified by column chromatography on silica gel using ethyl-
acetate/n-hexane (1 : 8, v/v) as eluent. Drying in vacuum affor-
ded a yellowish white powder of 1a (0.49 g, 83%).
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"H NMR (CDCl;): 6 8.80 (d,J = 1.9 Hz, 1H), 8.69 (d, ] = 4.2 Hz,
1H), 8.41 (m, 2H), 7.91 (dd, J = 2.2, 8.4 Hz, 1H), 7.85 (t, J =
7.6 Hz, 1H), 7.36 (m, 1H), 4.01 (s, 1H, carborane-CH), 3.40-1.71
(br, 10H, B-H). *C NMR (CDCl,): 6 157.34, 154.47, 149.36,
147.79,137.05, 136.13, 129.24, 124.45, 121.38, 120.45, 121.6 (py-
C), 73.75 (B-C) and 60.19 (B-C). "'B NMR (CDCl;): 6 1.6 (1B),
—0.6 (1B), —5.5 (2B), —7.7 (2B), —8.5 (2B) and —9.4 (2B). IR
(KBr): (v cm ') 2588. EI-MS (m/z): 298.20.

Synthesis of 1b

This compound was prepared in a manner analogous to the
synthesis of 1a using b (0.63 g, 2.0 mmol) and 2-(tributylstannyl)
pyridine (1.10 g, 3 mmol), and Pd(PPhj;), (0.12 g, 5% mmol) to
afford a yellowish white powder of 1b (0.51 g, 81%).

'H NMR (CDCl,): 6 8.94 (d, ] = 2.4 Hz, 1H), 8.72 (d,] = 4.5 Hz,
1H), 8.46 (dd,J = 8.5, 7.8, 2H), 8.07 (dd, = 2.6, 8.5 Hz, 1H), 7.87
(td,J = 1.7, 7.8 Hz, 1H), 7.38 (ddd, J = 1.1, 4.9, 7.6 Hz, 1H), 1.75
(s, 1H, carborane-CHj3), 3.40-1.61 (br, 10H, B-H). *C NMR
(CDCl,): 6 157.81, 154.50, 150.88, 149.44, 139.29, 137.09, 126.88,
124.55, 121.48, 120.54 (py-C), 78.93 (B-C) and 77.21 (B-C), and
23.20 (CH;). "B NMR (CDCl,): 6 0.6 (2B), —1.2 (2B), —6.3 (3B)
and —6.7 (3B). IR (KBr): (v cm™") 2588. EI-MS (m/z): 312.00.

Synthesis of 1c

This compound was prepared in a manner analogous to the
synthesis of 1a using ¢ (0.38 g, 1.0 mmol) and 2-(tributylstannyl)
pyridine (0.55 g, 1.5 mmol), and Pd(PPh;), (0.06 g, 5% mmol) to
afford a yellowish white powder of 1c (0.29 g, 76%).

"H NMR (CDCl,): 6 8.74 (d,J = 2.1 Hz, 1H), 8.65 (d, ] = 4.2 Hz,
1H), 8.33 (d, J = 7.9, 1H), 8.22 (d, J = 8.5 Hz, 1H), 7.81 (m, 2H),
7.48 (m, 2H), 7.33 (dd, J = 5.1, 6.6 Hz, 1H), 7.25 (dd, J = 6.9,
7.3 Hz, 1H), 7.17 (dd, J = 4.8, 8.0 Hz, 2H), 3.40-1.80 (br, 10H, B-
H). "*C NMR (CDCl,): 6 157.14, 154.48, 150.48, 149.27, 138.71,
137.04, 130.61, 130.09, 128.62, 126.80, 124.42, 121.44, 119.99,
85.22 (B-C) and 82.02 (B-C). "'B NMR (CDCl,): 6 0.9 (2B), —6.1
(3B), 6.9 (3B) and —8.6 (2B). IR (KBr): (v cm™*) 2596. EI-MS (m/z):
374.30.

Synthesis of 1d

This compound was prepared in a manner analogous to the
synthesis of 1a using d (0.52 g, 2.0 mmol) and 2-(tributylstannyl)
pyridine (1.10 g, 3 mmol), and Pd(PPh;), (0.12 g, 5% mmol) to
afford a yellowish white powder of 1d (0.53 g, 90%). "H NMR
(CDCl,): 6 8.69 (d, J = 4.3 Hz, 1H), 8.67 (d, J = 5.2 Hz, 1H), 8.47
(d,J = 1.7 Hz, 1H), 8.43 (d, J = 7.9 Hz, 1H), 7.85 (td, J = 1.7,
7.8 Hz, 1H), 7.43 (dd, J = 2.1, 5.2 Hz, 1H), 7.37 (m, 1H), 4.24 (s,
1H, carborane-CH), 3.30-1.70 (br, 10H, B-H). >*C NMR (CDCl,):
6 157.03, 154.51, 150.88, 149.75, 149.18, 143.00, 137.07, 124.44,
121.83, 121.33, 118.02 (py-C), 74.04 (B-C) and 58.76 (B-C). ''B
NMR (CDCl,): 6 1.4 (2B), —0.2 (1B), —5.4 (3B), —8.0 (2B) and
—9.6 (2B). IR (KBr): (v cm™*) 2573. EI-MS (m/z): 298.20.

Synthesis of 1f

This compound was prepared in a manner analogous to the
synthesis of 1a using f (0.66 g, 2.0 mmol) and 2-(tributylstannyl)
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pyridine (1.10 g, 3 mmol), and Pd(PPh;), (0.12 g, 5% mmol) to
afford a yellowish white powder of 1f (0.61 g, 82%).

"H NMR (CDCl,): 6 8.70 (d, J = 4.1 Hz, 1H), 8.58 (d,/ = 1.4 Hz,
1H), 8.44 (d,J = 5.2 Hz, 1H), 8.30 (d,/ = 8.0 Hz, 1H), 7.80 (td, ] =
1.9, 7.8 Hz, 1H), 7.51 (d, J = 7.3 Hz, 2H), 7.34 (dd, = 5.3, 7.7 Hz,
1H), 7.23 (m, 2H), 7.16 (m, 2H), 3.40-1.80 (br, 10H, B-H). *C
NMR (CDCly): 6 156.79, 154.67, 149.37, 140.03, 136.91, 130.56,
130.11, 128.60, 124.28, 124.04, 122.35, 121.11, 85.20 (B-C) and
82.32 (B-C). "B NMR (CDCl;): 6 1.6 (2B), 0.7 (3B), —6.9 (3B) and
—8.3 (2B). IR (KBr): (v cm™ ") 2597. EI-MS (m/z): 373.20.

Synthesis of 1g

Sodium hydride (60% dispersion in mineral oil, 0.03 g, 0.75
mmol) was suspended in dry DMF (5 mL). After being cooled
down to —20 °C, a solution of 1a (0.21 g, 0.68 mmol) in DMF (5
mL) was slowly added to the suspension. The mixture was
stirred at room temperature for 1 h, then 2-iodopropane (0.17,
1.0 mmol) was added at —20 °C, and further stirred at room
temperature overnight. The reaction was quenched by saturated
aqueous NH,CI solution, and extracted with diethyl ether (30
mL x 3). The organic layer was washed with water (30 mL x 3)
and dried over MgSO,. The solvent was evaporated under
reduced pressure. The residue was purified by column chro-
matography on silica gel using ethylacetate/n-hexane (1 : 4, v/v)
as eluent. Drying in vacuum afforded a pale yellow powder of 1g
(0.12 g, 51%).

'H NMR (CDCl,): 6 8.91 (d, ] = 0.6 Hz, 1H), 8.72 (d,J = 3.5 Hz,
1H), 8.47 (t,J = 9.3 Hz, 2H), 8.05 (d, ] = 8.7 Hz, 1H), 7.88 (t, ] =
7.5 Hz, 1H), 7.39 (m, 1H), 3.50-1.80 (br, 10H, B-H), 1.73 (sept,
1H, J = 7.0 Hz, -CHCHj), 1.09 (d, J = 7.0 Hz, 3H, -CH3;), 1.06 (d,
J = 7.0 Hz, 3H, -CH;). *C NMR (CDCl;): 6 157.83, 154.48,
150.90, 149.41, 139.33, 137.04, 126.73, 124.52, 121.48, 120.52,
121.6 (py-C), 88.60 (B-C), 82.22 (B-C), 31.64, and 23.90
(isopropyl-C). "'B NMR (CDCl;): 6 0.4 (3B), —6.5 (4B) and —8.6
(3B). IR (KBr): (v cm ™) 2585. EI-MS (m/z): 340.10.

Synthesis of 1h

This compound was prepared in a manner analogous to the
synthesis of 1g using 1a (0.24 g, 0.68 mmol) and 1-iodo-2-
methylpropane (0.18 g, 1.0 mmol) to afford a yellowish white
powder of 1h (0.13 g, 54%).

'H NMR (CDCl;): 6 8.92 (s, 1H), 8.73 (s, 1H), 8.50 (d, J =
7.6 Hz, 2H), 8.05 (d,J = 8.7 Hz, 1H), 8.05 (d, /= 8.1 Hz, 1H), 7.91
(t,/ = 6.7 Hz, 1H), 7.41 (m, 1H), 3.60-1.80 (br, 10H, B-H), 1.83-
1.70 (m, 2H, -CHCHy), 0.85 (d,J = 7.0 Hz, 6H, -CH;). *C NMR
(CDCl): 6 157.76, 154.52, 151.07, 149.41, 139.45, 137.14, 126.95,
124.57, 121.55, 120.52, 121.6 (py-C), 82.26 (B-C), 80.99 (B-C),
43.88, 28.43, and 23.30 (isobutyl-C). *'B NMR (CDCl;): 6 —0.1
(3B), —6.6 (4B) and —7.5 (3B). IR (KBr): (v cm™ ") 2591. EI-MS (m/
2): 354.30.

Synthesis of 1e

This compound was prepared in a manner analogous to the
synthesis of 1g using 1d (0.21 g, 0.68 mmol) and iodomethane
(0.15 g, 1.0 mmol) to afford a yellowish white powder of 1e
(0.14 g, 63%).

This journal is © The Royal Society of Chemistry 2017
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"H NMR (CDCl,): 6 8.74 (d, ] = 6.1 Hz, 1H), 8.44 (d,] = 7.9 Hz,
1H), 7.85 (t,J = 7.5 Hz, 2H), 7.55 (d,J = 3.4 Hz, 1H), 7.37 (m, 2H),
1.78 (s, 1H, CH;), 3.50-1.71 (br, 10H, B-H). ">*C NMR (CDCl;):
6 157.50, 154.79, 150.04, 149.49, 140.34, 137.14, 124.91, 124.53,
122.48, 121.21, 118.20 (py-C), 79.55 (B-C), 58.95 (B-C), and
23.44 (CH;). "'B NMR (CDCl3): 6 0.9 (2B), —1.4 (2B), and —6.6
(6B). IR (KBr): (v cm ™) 2590. EI-MS (m/z): 311.20.

Synthesis of 1i

This compound was prepared in a manner analogous to the
synthesis of 1g using 1d (0.21 g, 0.68 mmol) and 2-iodopropane
(0.17, 1.0 mmol) to afford a yellowish white powder of 1i (0.13 g,
58%).

'H NMR (CDCl;): 6 8.73 (s, 1H), 8.44 (d, ] = 7.8 Hz, 1H), 7.86
(t,J = 7.2 Hz, 2H), 7.53 (d, J = 3.4 Hz, 1H), 7.38 (m, 2H), 3.50-
1.71 (br, 10H, B-H), 1.76 (sept, / = 7.0 Hz, 1H, -CHCHj), 1.09 (d,
J = 7.0 Hz, 3H, -CHj3), 1.08 (d, J = 7.0 Hz, 3H, -CH3;). *C NMR
(CDCl,): 6 157.34, 154.64, 149.84, 149.38, 140.12, 136.96, 124.78,
124.36, 122.46, 121.25 (py-C), 88.58 (B-C), 82.51 (B-C), 31.82,
and 24.02 (isopropyl-C). ''B NMR (CDCl,): 6 0.2 (3B), —6.4 (4B)
and —8.4 (3B). IR (KBr): (v cm ') 2595. EI-MS (m/z): 338.30.

Synthesis of 1j

This compound was prepared in a manner analogous to the
synthesis of 1g using 1d (0.24 g, 0.68 mmol) and 1-iodo-2-
methylpropane (0.18 g, 1.0 mmol) to afford a yellowish white
powder of 1j (0.13 g, 55%).

'H NMR (CDCl,): 6 8.73 (d,J = 5.0 Hz, 3H), 8.45 (d, ] = 7.9 Hz,
1H), 7.86 (t, ] = 8.4 Hz, 1H), 7.52 (dd, J = 1.9, 5.1 Hz, 1H), 7.38
(dd,J = 5.1, 6.8 Hz, 1H), 3.60-1.80 (br, 10H, B-H), 1.79-1.76 (m,
3H, -CHCH,), and 0.84 (d, J = 7.0 Hz, 6H, -CH;). *C NMR
(CDCl,): 6 157.31, 154.60, 149.82, 149.34, 140.19, 136.93, 124.78,
124.34, 122.50, 121.21 (py-C), 82.19 (B-C), 81.35 (B-C), 43.81,
28.39, and 23.23 (isobutyl-C). "'B NMR (CDCl,): 6 0.5 (2B), —0.3
(2B), —6.6 (3B), and —7.3 (3B). IR (KBr): (v cm™*) 2595. EI-MS (m/
2): 353.20.

Synthesis of 4a

5-0-Carboranyl-2-bromopyridine (a) (1.30 g, 4.33 mmol) was
charged into a flask which was evacuated and recharged by
argon. Anhydrous m-xylene (35 mL) was injected by a syringe,
followed by addition of hexa-n-butyldistannane (1.18 mL, 50
mol%). Argon was bubbled through the stirred solution for 1 h
before Pd(PPh;), (0.12 g, 0.101 mmol) was added from a tip
tube. The reaction mixture was heated to 130 °C for 3 days until
all starting material was consumed, then poured into aqueous
EDTA (1 M, 25 mL). After the mixture was stirred for 15 min, the
phases were separated. The aqueous phase was extracted with
chloroform, and the combined organic phases were dried over
Na,S0,. After evaporation of the solvents, the crude product was
flash chromatographed (alumina, 5 : 1 hexanes/ethylacetate) to
afford 4a as a white yellow solid (0.33 g, 35%).

'H NMR (CDCl;) 6 (ppm): 6 8.82 (d, J = 2.3 Hz, 2H), 8.41 (d,
J = 8.5 Hz, 2H), 7.95 (dd, J = 2.3, 8.5 Hz, 2H), 4.01 (s, 2H, car-
borane), 3.15-1.70 (br, 20H, B-H). >C NMR 6 (ppm): 155.72,
147.98, 136.33, 130.02, 120.82, 73.46 (B-C) and 60.11 (B-C). *'B
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NMR 6 (ppm): 1.6 (2B), —0.5 (1B), —5.5 (3B), —7.7 (2B), —8.5 (1B)
and —8.9 (1B). EI-MS (m/z): 440.20.

Synthesis of 2a

[(dfppy).Ir(n-CD)], (0.2432 g, 0.2 mmol), 1a (0.14 g, 0.44 mmol)
were dissolved in methanol (10 mL) and CH,Cl, (10 mL). The
resulting mixture was refluxed for 8 h under argon. After cooling
down to room temperature, 10-fold excess of KPF, was added.
The mixture was stirred for 2 h, and then filtered to remove
insoluble inorganic salts. The resulting solution was evaporated
to dryness under reduced pressure. The residue was chroma-
tographed on silica gel with elution by PE/ethyl acetate 1 : 3 (v/v)
to give 2a as a yellow solid. Yield: 166 mg (41%).

'H NMR (500 MHz, ®d-acetone): 8.89 (m, 2H), 8.52 (dd, J =
2.3, 8.7 Hz, 1H), 8.37 (m, 3H), 8.26 (m, 3H), 8.07 (m, 3H), 7.97 (d,
J = 5.5Hz, 1H), 7.91 (d, ] = 5.5 Hz, 1H), 7.22 (d, J = 6.2 Hz, 2H),
6.78 (m, 1H), 5.84 (dd, J = 2.2, 8.5 Hz, 2H), 5.15 (s, 1H,
carborane-CH), 3.15-1.72 (br, 10H, BH). >C NMR (°d-acetone):
156.87, 154.07, 150.89, 149.77, 149.67, 149.07, 140.06, 139.67,
139.48, 138.58, 133.17, 129.31, 125.78, 124.58, 124.09, 123.90,
123.42, 123.15, 113.61, 113.41, 98.96, 98.85, 71.63 (B-C) and
60.92 (B-C). ''B NMR (°d-acetone): —0.7 (2B), —0.5 (1B), —5.9
(3B), —8.1 (2B) and —9.5 (2B). Cs,H;,B;oN,F4IrPF, caled: C,
40.19; N, 5.51; H, 2.97. Found: C, 39.80; N, 4.97; H, 2.85. MALDI-
TOF: [M — PF¢] (m/z) 871.832. IR (KBr): (v cm™ ') 2589 (B-H).
Melting point: 233-235 °C.

Synthesis of 2b

This compound was prepared in a manner analogous to the
synthesis of 2a using [(dfppy).Ir(n-Cl)], (0.2432 g, 0.2 mmol) and
1b (0.13 g, 0.44 mmol) to afford a yellow powder. Yield: 260 mg
(63%).

'H NMR (500 MHz, ®d-acetone): 8.95 (d, J = 8.6 Hz, 2H), 8.63
(dd,J= 2.2, 8.7 Hz, 2H), 8.38 (m, 3H), 8.28 (m, 2H), 8.07 (m, 2H),
7.93 (d,J = 5.6 Hz, 1H), 7.81 (m, 1H), 7.22 (m, 2H), 6.92 (m, 1H),
6.79 (m, 1H), 5.87 (m, 2H), 3.25-1.70 (br, 10H, BH), 1.68 (s, 3H,
-CH,). *C NMR (°d-acetone): 163.78, 163.68, 163.55, 163.46,
162.51, 162.14, 161.72, 161.63, 161.51, 161.41, 159.44, 159.33,
157.00, 153.32, 152.23, 150.29, 149.93, 149.17, 149.13, 139.09,
138.90, 125.38, 124.48, 123.54, 123.27, 113.01, 112.94, 112.88,
98.24, 98.03, 97.88, 97.67, 71.31 (B-C), 75.81 (B-C), and 21.47
(CH;). '"B NMR (°d-acetone): 1.1 (2B), —1.6 (2B) and —6.8 (6B).
C35H3,B1oF4N,IrPF, caled: C, 40.82; N, 5.44; H, 3.13. Found: C,
40.70; N, 5.17; H, 3.05. MALDI-TOF: [M — PF¢] (m/z) 885.258. IR
(KBr): (v cm™') 2587 (B-H). Melting point: 238-240 °C.

Synthesis of 2¢

This compound was prepared in a manner analogous to the
synthesis of 2a using [(dfppy).Ir(n-Cl)], (0.2432 g, 0.2 mmol) and
1c (0.16 g, 0.44 mmol) to afford a yellow orange powder. Yield:
253 mg (58%).

'H NMR (500 MHz, ®d-acetone): 8.79 (d, J = 8.8 Hz, 2H), 8.51
(d,J = 8.5 Hz, 2H), 8.34 (d,J = 8.3 Hz, 2H), 8.17 (m, 3H), 8.02 (m,
2H), 7.78 (m, 2H), 7.34 (m, 5H), 7.15 (d, J = 5.4 Hz, 2H), 7.00 (d,
J=9.0 Hz, 1H), 6.77 (d, ] = 8.9 Hz, 1H), 5.78 (d, J = 5.9 Hz, 2H),
3.20-1.80 (br, 10H, BH). >C NMR (°d-acetone): 163.03, 162.94,
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163.55, 157.55, 154.10, 154.01, 153.90, 153.24, 153.15, 151.05,
149.96, 149.29, 142.34, 140.32, 140.10, 139.79, 131.57, 130.38,
129.76, 129.10, 128.80, 126.31, 124.97, 124.36, 123.90, 123.66,
123.42, 114.30, 114.07, 113.85, 113.61, 99.06, 98.83, 98.70,
98.47, 85.74 (B-C) and 79.40 (B-C). "'B NMR (°d-acetone): 1.7
(2B), —0.4 (2B) and —7.2 (6B). CsoH34B1oF4N4IrPF,. Caled: C,
43.99; N, 5.13; H, 3.14. Found: C, 43.60; N, 5.01; H, 3.02. MALDI-
TOF: [M — PF4] (m/z) 947.185. IR (KBr): (v cm™') 2586 (B-H).
Melting point: 237-239 °C.

Synthesis of 2d

This compound was prepared in a manner analogous to the
synthesis of 2a using [(dfppy),Ir(n-Cl)], (0.2432 g, 0.2 mmol) and
1g (0.15 g, 0.44 mmol) to afford a yellow powder. Yield: 267 mg
(630/0).

"H NMR (500 MHz, °d-acetone): 8.95 (d, J = 8.5 Hz, 2H), 8.62
(dd, J = 2.3, 8.7 Hz, 2H), 8.39 (m, 3H), 8.28 (t,J = 4.2 Hz, 2H),
8.08 (m, 2H), 8.03 (d, J = 5.6 Hz, 1H), 7.93 (d, J = 5.3 Hz, 1H),
7.81 (m, 1H), 7.23 (m, 2H), 6.93 (m, 1H), 6.79 (m, 1H), 5.85 (m,
1H), 3.20-1.80 (br, 10H, BH), 1.64 (sept, /] = 7.0 Hz, 1H,
-CHCHj3), 0.90 (d, J = 7.0 Hz, 3H, -CHj,), 0.87 (d, J = 7.0 Hz, 3H,
-CH,). C NMR (%d-acetone): 163.86, 163.76, 163.61, 163.51,
162.65, 162.59, 162.18, 162.13, 161.81, 161.72, 161.57, 161.41,
159.49, 159.40, 159.34, 157.08, 153.42, 153.31, 152.31, 152.26,
150.34, 149.81, 149.18, 149.06, 139.10, 138.98, 128.87, 125.46,
124.66, 123.27, 112.99, 112.85, 98.30, 98.09, 97.87, 97.71, 88.58
(B-C), 78.84 (B-C), 30.78, 22.32 and 22.06. ''B NMR (°d-
acetone): 0.1 (3B), —6.7 (4B) and —8.4 (3B). C3;H3¢B1oF4N4IrPFs.
Caled: C, 42.00; N, 5.30; H, 3.43. Found: C, 41.60; N, 5.01; H,
3.22. MALDI-TOF: [M — PFg] (m/z) 921.135. IR (KBr): (v cm ™)
2588 (B-H). Melting point: 236-237 °C.

Synthesis of 2e

This compound was prepared in a manner analogous to the
synthesis of 2a using [(dfppy),Ir(n-Cl)], (0.2432 g, 0.2 mmol) and
1h (0.16 g, 0.44 mmol) to afford a yellow powder. Yield: 240 mg
(56%).

'H NMR (500 MHz, ®d-acetone): 8.95 (d, ] = 8.5 Hz, 2H), 8.65
(dd, ] = 2.3, 8.7 Hz, 2H), 8.40 (m, 3H), 8.28 (dd, J = 3.5, 11.7 Hz,
2H), 8.10 (m, 1H), 8.03 (d, J = 5.6 Hz, 1H), 7.98 (d, J = 5.3 Hz,
1H), 7.82 (m, 1H), 7.27 (m, 1H), 7.20 (ddd, J = 1.2, 6.0, 7.3 Hz,
1H), 6.93 (m, 1H), 6.79 (m, 1H), 5.86 (dd, J = 2.3, 8.4 Hz, 2H),
3.10-1.80 (br, 10H, BH), 0.90-0.82 (m, 3H, -CHCH,), 0.72 (d, ] =
7.0 Hz, 3H, -CHj), 0.66 (d, J = 7.0 Hz, 3H, -CH;). "*C NMR (°d-
acetone): 163.36, 162.95, 157.79, 154.04, 153.02, 151.13, 150.74,
149.98, 149.71, 139.91, 139.69, 129.63, 126.17, 125.27, 123.95,
113.71, 113.58, 99.05, 98.83, 98.64, 98.43, 82.74 (B-C), 78.17 (B-
C), 43.16, 22.22 and 22.07. ''B NMR (®d-acetone): 0.9 (2B), —0.6
(2B) and —6.9 (6B). C35H ;5B oF4N,IrPF,. Caled: C, 42.00; N, 5.29;
H, 3.43. Found: C, 41.50; N, 5.11; H, 3.21. MALDI-TOF: [M — PF]
(m/z) 926.260. IR (KBr): (v cm ") 2589 (B-H). Melting point: 236~
238 °C.

Synthesis of 3a

This compound was prepared in a manner analogous to the
synthesis of 2a using [(dfppy).Ir(1-Cl)], (0.2432 g, 0.2 mmol) and
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1d (0.14 g, 0.44 mmol) to afford a yellow powder. Yield: 174 mg
(430/0).

"H NMR (500 MHz, °d-acetone): 9.06 (d, J = 8.2 Hz, 2H), 8.91
(d,J = 1.8 Hz, 1H), 8.36 (m, 3H), 8.25 (dd, J = 5.6, 12.1 Hz, 2H),
8.06 (dd,J = 8.3, 19.3 Hz, 2H), 7.95 (dd, J = 2.1, 5.9 Hz, 1H), 7.90
(dd, J = 5.7, 10.3 Hz, 2H), 7.79 (m, 1H), 7.24 (m, 1H), 7.18 (m,
1H), 6.77 (m, 1H), 5.79 (dd, J = 2.3, 8.5 Hz, 1H), 5.74 (dd, ] = 2.3,
8.6 Hz, 1H), 5.48 (s, 1H, carborane CH), 3.10-1.75 (br, 10H, BH).
3C NMR (°d-acetone): 164.23, 163.46, 163.41, 163.35, 162.18,
162.07, 160.10, 160.00, 156.72, 154.58, 153.70, 153.65, 153.60,
151.21, 150.89, 149.64, 149.58, 145.02, 139.85, 139.64, 139.58,
129.28, 127.17, 125.74, 123.87, 122.42, 113.42, 113.39, 113.24,
98.84, 98.79, 98.62, 98.41, 98.36, 73.08 (B-C) and 59.73 (B-C).
"B NMR (°d-acetone): 0.6 (2B), —5.4 (3B), —7.9 (3B) and —9.5
(2B). C34H30B1oN,F4IrPFg caled: C, 40.19; N, 5.51; H, 2.97.
Found: C, 40.07; N, 5.37; H, 2.89. MALDI-TOF: [M — PF¢] (m/z)
873.396. IR (KBr): (v cm ') 2594 (B-H). Melting point: 230-
232 °C.

Synthesis of 3b

This compound was prepared in a manner analogous to the
synthesis of 2a using [(dfppy).Ir(n-Cl)], (0.2432 g, 0.2 mmol) and
1e (0.14 g, 0.44 mmol) to afford a yellow powder. Yield: 263 mg
(64%).

'H NMR (500 MHz, °d-acetone): 9.17 (d, J = 8.2 Hz, 1H), 8.98
(d, J = 1.9 Hz, 1H), 8.37 (dd, J = 3.4, 5.9 Hz, 3H), 8.25 (d, ] =
5.3 Hz, 1H), 8.07 (m, 3H), 7.91 (dd, = 6.1, 9.4 Hz, 2H), 7.80 (m,
2H), 7.20 (m, 2H), 6.78 (m, 2H), 5.77 (dd, J = 2.3, 8.5 Hz, 2H),
3.15-1.70 (br, 10H, BH), 1.92 (s, 3H, -CH;). *C NMR (°d-
acetone): 163.25, 163.20, 163.16, 163.11, 162.01, 161.91, 156.97,
154.45, 153.60, 153.55, 153.47, 151.43, 150.58, 149.69, 149.59,
139.76, 139.41, 126.07, 125.97, 123.85, 123.80, 113.35, 113.27,
113.13, 98.70, 98.65, 98.49, 98.44, 98.27, 98.22, 78.45 (B-C),
77.84 (B-C) and 22.24 (CHj). '"B NMR (°d-acetone): 0.9 (2B),
—1.8 (2B), and —6.7 (6B). C35H;,B1oF,N,IrPF, caled: C, 40.82; N,
5.44; H, 3.13. Found: C, 40.71; N, 5.27; H, 3.01. MALDI-TOF: [M
— PFq] (m/z) 887.635. IR (KBr): (v cm™ ') 2589 (B-H). Melting
point: 232-234 °C.

Synthesis of 3¢

This compound was prepared in a manner analogous to the
synthesis of 2a using [(dfppy),Ir(n-Cl)], (0.2432 g, 0.2 mmol) and
1f (0.16 g, 0.44 mmol) to afford a yellow powder. Yield: 240 mg
(550/0).

"H NMR (500 MHz, °d-acetone): 8.98 (d, J = 7.7 Hz, 1H), 8.70
(d,J = 5.8 Hz, 1H), 8.34 (dd, J = 7.5, 14.7 Hz, 3H), 8.10 (m, 4H),
7.77 (m, 3H), 7.58 (d, J = 8.0 Hz, 3H), 7.38 (t,J = 7.4, 1H), 7.22
(m, 4H), 6.75 (t,J = 7.7 Hz, 2H), 5.70 (ddd, = 1.8, 8.5, 10.8 Hz,
2H), 3.10-1.80 (br, 10H, BH). ">*C NMR (°d-acetone): 163.71,
162.75, 162.58, 161.57, 159.53, 155.80, 153.53, 153.08, 152.77,
150.34, 150.23, 148.68, 148.54, 139.49, 139.16, 129.99, 128.08,
123.29, 122.82, 112.95, 112.82, 98.24, 98.05, 85.33 (B-C) and
79.94 (B-C). "'B NMR (°d-acetone): 1.9 (2B), —0.4 (2B) and —6.9
(6B). CyoH34B10F,N,IrPF,. Caled: C, 43.99; N, 5.13; H, 3.14.
Found: C, 43.58; N, 5.00; H, 3.03. MALDI-TOF: [M — PF¢] (m/z)
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949.685. IR (KBr): (v cm ') 2590 (B-H). Melting point: 231-
233 °C.

Synthesis of 3d

This compound was prepared in a manner analogous to the
synthesis of 2a using [(dfppy),Ir(1-Cl)], (0.2432 g, 0.2 mmol) and
1i (0.15 g, 0.44 mmol) to afford a yellow powder. Yield: 262 mg
(62%).

'H NMR (500 MHz, °d-acetone): 9.15 (d, ] = 8.2 Hz, 1H), 8.94
(d,J = 1.7 Hz, 1H), 8.36 (m, 3H), 8.22 (d, ] = 5.2 Hz, 1H), 8.06 (m,
4H), 7.88 (t,] = 6.5 Hz, 2H), 7.79 (m, 1H), 7.20 (m, 2H), 6.77 (m,
2H), 5.76 (ddd, J = 2.3, 8.5, 16.6 Hz, 2H), 3.10-1.70 (br, 10H,
BH), 1.95 (sept, ] = 7.0 Hz, 1H, -CHCHj), 1.05 (d, ] = 7.0 Hz, 3H,
-CH;), 1.01 (d, J = 7.0 Hz, 3H, -CH;). **C NMR (°d-acetone):
163.69, 163.61, 162.70, 161.66, 161.55, 161.44, 159.47, 159.37,
156.61, 153.93, 153.01, 151.05, 150.13, 149.18, 149.05, 139.38,
139.01, 125.56, 125.51, 123.32, 122.69, 113.02, 112.86, 112.71,
98.24, 98.02, 97.81, 89.27 (B-C), 80.28 (B-C), 31.09, 27.68 and
22.58. ''B NMR (°d-acetone): 0.1 (3B), —6.7 (4B) and —8.4 (3B).
Cs,H36B10F4N,IPF,. Caled: C, 42.00; N, 5.30; H, 3.43. Found: C,
41.60; N, 5.11; H, 3.26. MALDI-TOF: [M — PF¢] (m/z) 915.525. IR
(KBr): (v cm™") 2581 (B-H). Melting point: 235-237 °C.

Synthesis of 3e

This compound was prepared in a manner analogous to the
synthesis of 2a using [(dfppy),Ir(n-Cl)], (0.2432 g, 0.2 mmol) and
1j (0.16 g, 0.44 mmol) to afford a yellow powder. Yield: 231 mg
(54%).

'H NMR (500 MHz, ®d-acetone): 9.17 (d, J = 8.2 Hz, 1H), 8.98
(s, 1H), 8.38 (m, 3H), 8.24 (d, J = 5.1 Hz, 1H), 8.07 (m, 3H), 7.92
(dd, = 5.5, 5.4 Hz, 3H), 7.80 (m, 2H), 7.23 (t,J = 6.2 Hz, 1H),
7.17 (t,J = 6.6 Hz, 1H), 6.78 (m, 1H), 5.78 (ddd, J = 2.2, 5.8,
8.2 Hz, 2H), 3.15-1.80 (br, 10H, BH), 1.90-1.62 (m, 3H,
-CHCH,), 0.73 (d, J = 7.0 Hz, 3H, -CHj,), 0.70 (d, ] = 7.0 Hz, 3H,
-CH;). *C NMR (%d-acetone): 164.27, 164.18, 163.32, 163.27,
162.24, 162.14, 160.02, 159.95, 157.09, 154.43, 153.62, 153.57,
153.51, 153.47, 151.54, 150.76, 149.66, 149.53, 141.63, 139.89,
139.58, 130.07, 129.26, 126.27, 126.05, 123.96, 123.76, 123.26,
113.59, 113.46, 113.32, 98.78, 98.56, 98.35, 83.28 (B-C), 79.48
(B-C), 43.14, 27.99 and 22.04. "'B NMR (°d-acetone): 0.7 (2B),
—0.7 (2B) and —6.8 (6B). C33H;B1F,N,IrPF,. Caled: C, 42.00; N,
5.29; H, 3.43. Found: C, 41.60; N, 5.01; H, 3.11. MALDI-TOF: [M
— PF,] (m/z) 929.514. IR (KBr): (v cm™ ') 2583 (B-H). Melting
point: 236-237 °C.

Synthesis of 4

This compound was prepared in a manner analogous to the
synthesis of 2a using [(dfppy).Ir(n-Cl)], (0.2432 g, 0.2 mmol) and
4a (0.19 g, 0.44 mmol) to afford a yellow powder. Yield: 240 mg
(52%).

'H NMR (500 MHz, °d-acetone): 8.94 (d, J = 8.5 Hz, 2H), 8.54
(d, ] = 8.3 Hz, 2H), 8.42 (d, J = 8.4 Hz, 2H), 8.28 (d,J = 1.6 Hz,
2H), 8.09 (t,/ = 7.8 Hz, 2H), 7.98 (d,J = 5.4 Hz, 2H), 6.91 (m, 4H),
5.91 (dd, J = 2.2, 8.4 Hz, 2H), 5.18 (s, 2H, carborane CH), 3.02-
1.60 (br, 20H, BH). *C NMR (°d-acetone): 163.63, 163.54,
162.26, 162.22, 161.92, 161.84, 161.50, 161.42, 159.78, 159.69,
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155.00, 152.17, 152.13, 149.49, 148.67, 139.30, 138.30, 133.31,
127.15, 125.07, 123.66, 122.88, 113.40, 98.45, 98.27, 98.09, 70.96
(B-C) and 60.40 (B-C). '"B NMR (°d-acetone): 0.9 (4B), 0.1 (2B),
—5.7 (6B), —8.2 (4B), and —9.3 (4B). C36H40B,oN,F,IrPF, caled:
C, 37.33; N, 4.84; H, 3.48. Found: C, 37.01; N, 4.67; H, 3.31.
MALDI-TOF: [M — PF¢] (m/z) 1013.225. IR (KBr): (v cm™ ") 2589
(B-H). Melting point: 245-247 °C.
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