Co-deposition of conductive additives and lithium peroxide during discharge to boost the performance of lithium-oxygen batteries

Abstract

Lithium-oxygen batteries (LOBs) have been regarded as a promising energy storage system for applications in electric vehicles and aviation. However, the development of high-performance LOBs has been hindered by the challenges associated with the insulating discharge products, like low energy efficiency and poor rate performance. Here, we report that the insulating lithium peroxide (Li2O2) can deposite with the carbon nanotubes (CNTs) additive during discharge process and eventually be woven into a conductive network. The constructed network enhances the conductivity of Li2O2 and accelerates the kinetics of electrode reactions. As a result, the battery containing 1.0 mg mL–1 CNTs in the electrolyte exhibits a high areal capacity of 5.7 mAh cm–2 and superior rate performance at 1.41 A g–1CNT. Furthermore, the introduction of ruthenium nanoparticles to the CNTs results in stable cycling for 550 hours. This research opens up a new avenue for addressing the issues caused by the insulating discharge products in LOBs.

Supplementary files

Article information

Article type
Paper
Submitted
12 6 2024
Accepted
29 7 2024
First published
07 8 2024

J. Mater. Chem. A, 2024, Accepted Manuscript

Co-deposition of conductive additives and lithium peroxide during discharge to boost the performance of lithium-oxygen batteries

Y. Liang, Y. Yu, Z. Li, J. Wang, J. Yan, G. Huang and X. Zhang, J. Mater. Chem. A, 2024, Accepted Manuscript , DOI: 10.1039/D4TA04077E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements