Issue 14, 2022

Antimicrobial peptide-based materials: opportunities and challenges

Abstract

The multifunctional properties of antimicrobial peptides (AMPs) make them attractive candidates for the treatment of various diseases. AMPs are considered as alternatives to antibiotics due to the increasing number of multidrug-resistant (MDR) bacteria. However, bare AMPs have limited therapeutic potentials due to a low residence time in the blood circulatory system and susceptibility to proteases and an alkaline wound environment. These limitations are the major hurdles for AMPs to succeed as commercial drugs. In contrast, AMP-based materials, for instance, NPs, hydrogels, electrospun fibres, dressings and implants, could overcome these challenges and provide therapeutic efficacies to the conjugated AMPs superior to those of bare AMPs in different disease models. In this review, we discuss the preparation of different compositions of AMP-based materials and their therapeutic potential for the treatment of microbial infections in the brain, eyes, mouth, skin, lungs, and gastrointestinal and urinary tracts. Apart from antimicrobial potential, the applications of AMP-based materials in the regeneration of skin/bone, prevention of implant-associated infections, detection/imaging of bacteria, cancer therapy and gene delivery are discussed in this review. Lastly, we discuss different challenges that hinder the commercialization of AMP-based materials. Overall, this review provides a comprehensive account of the current progress and prospects of AMP-based materials for clinical applications.

Graphical abstract: Antimicrobial peptide-based materials: opportunities and challenges

Article information

Article type
Review Article
Submitted
26 11 2021
Accepted
07 2 2022
First published
07 2 2022

J. Mater. Chem. B, 2022,10, 2384-2429

Antimicrobial peptide-based materials: opportunities and challenges

A. Rai, R. Ferrão, P. Palma, T. Patricio, P. Parreira, E. Anes, C. Tonda-Turo, M. C. L. Martins, N. Alves and L. Ferreira, J. Mater. Chem. B, 2022, 10, 2384 DOI: 10.1039/D1TB02617H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements