Issue 21, 2019

Niobium oxide prepared through a novel supercritical-CO2-assisted method as a highly active heterogeneous catalyst for the synthesis of azoxybenzene from aniline

Abstract

High-surface area Nb2O5 nanoparticles were synthesised by a novel supercritical-CO2-assisted method (Nb2O5-scCO2) and were applied for the first time as a heterogeneous catalyst in the oxidative coupling of aniline to azoxybenzene using the environmentally friendly H2O2 as the oxidant. The application of scCO2 in the synthesis of Nb2O5-scCO2 catalyst resulted in a significantly enhanced catalytic activity compared to a reference catalyst prepared without scCO2 (Nb2O5-Ref) or to commercial Nb2O5. Importantly, the Nb2O5-scCO2 catalyst achieved an aniline conversion of 86% (stoichiometric maximum of 93% with the employed aniline-to-H2O2 ratio of 1 : 1.4) with an azoxybenzene selectivity of 92% and with 95% efficiency in H2O2 utilisation in 45 min without requiring external heating (the reaction is exothermic) and with an extremely low catalyst loading (weight ratio between the catalyst and substrate, Rc/s = 0.005). This performance largely surpasses that of any other heterogeneous catalyst previously reported for this reaction. Additionally, the Nb2O5 catalyst displayed high activity also for substituted anilines (e.g. methyl or ethyl-anilines and para-anisidine) and was reused in consecutive runs without any loss of activity. Characterisation by means of N2-physisorption, XRD, FTIR and TEM allowed the correlation of the remarkable catalytic performance of Nb2O5-scCO2 to its higher surface area and discrete nanoparticle morphology compared to the aggregated larger particles constituting the material prepared without scCO2. A catalytic test in the presence of a radical scavenger proved that the reaction follows a radical pathway.

Graphical abstract: Niobium oxide prepared through a novel supercritical-CO2-assisted method as a highly active heterogeneous catalyst for the synthesis of azoxybenzene from aniline

Supplementary files

Article information

Article type
Paper
Submitted
26 7 2019
Accepted
11 9 2019
First published
11 9 2019
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2019,21, 5852-5864

Niobium oxide prepared through a novel supercritical-CO2-assisted method as a highly active heterogeneous catalyst for the synthesis of azoxybenzene from aniline

Y. Tao, B. Singh, V. Jindal, Z. Tang and P. P. Pescarmona, Green Chem., 2019, 21, 5852 DOI: 10.1039/C9GC02623A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements