Issue 22, 2019

Room temperature, near-quantitative conversion of glucose into formic acid

Abstract

Herein, a facile and efficient method was developed to selectively transform glucose into formic acid at room temperature. After parameter optimization, formic acid was obtained in an unprecedented 91.3% yield with a reaction time of 8 h in lithium hydroxide aqueous solution with hydrogen peroxide as the oxidant. The synergistic effects of the base and the oxidant promoted the glucose conversion at room temperature and enhanced the selectivity towards FA. Besides, the employed mild conditions have suppressed FA decomposition that often occurred under harsh conditions, which further improved the FA selectivity. A series of model compound tests were conducted to probe the possible intermediates based on which a plausible reaction pathway was proposed. In addition, the process is applicable to various carbohydrates such as cellobiose, starch, xylan, etc. This work opens up a simple, mild but effective method to produce FA from renewable biomass resources, which would remarkably alleviate the energy consumption, capital costs, handling risks, etc.

Graphical abstract: Room temperature, near-quantitative conversion of glucose into formic acid

Supplementary files

Article information

Article type
Paper
Submitted
30 6 2019
Accepted
30 8 2019
First published
31 8 2019

Green Chem., 2019,21, 6089-6096

Room temperature, near-quantitative conversion of glucose into formic acid

C. Wang, X. Chen, M. Qi, J. Wu, G. Gözaydın, N. Yan, H. Zhong and F. Jin, Green Chem., 2019, 21, 6089 DOI: 10.1039/C9GC02201E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements