Issue 56, 2016

Crystal structure, luminescence properties and energy transfer of Eu3+/Dy3+ doped GdNbTiO6 broad band excited phosphors

Abstract

GdNbTiO6 is used as a host material for phosphors for the first time. Lanthanide ion (Eu3+/Dy3+) doped GdNbTiO6 phosphors were prepared by solid-state reaction, and the crystal structure, luminescence properties, and relevant luminescence mechanisms were investigated. The crystal structure of Eu3+/Dy3+ doped GdNbTiO6 was refined from powder XRD data by the Rietveld method, which is made up of irregular (Gd/Eu/Dy)3+O813− polyhedra and slightly distorted Nb(Ti)O6 octahedra forming a layered structure. The luminescence properties of the GdNbTiO6:Eu3+/Dy3+ phosphors were studied under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation. The GdNbTiO6 host shows a broad emission band about the 400–650 nm region centered at 509 nm owing to the Nb(Ti)O6 octahedral groups, which has spectral overlap with f–f excitation transitions of Eu3+/Dy3+ in the doped samples. For red phosphor GdNbTiO6:Eu3+, a dominant emission peak at 614 nm was attributed to the 5D07F2 transition of Eu3+, which confirmed that Eu3+ ions are located at sites without inversion symmetry. The phosphor GdNbTiO6:Dy3+ shows bright yellow-green emission prevailing at 577 nm upon 273 nm excitation. With increasing activator concentration, the emission derived from the characteristic f–f transitions of Eu3+/Dy3+ is enhanced while the host emission is weakened, which is due to the energy transfer from the host to Eu3+/Dy3+. Considering the facile synthesis and excellent Eu3+/Dy3+ doped luminescence properties of this compound, self-activated GdNbTiO6 may be a good candidate as a host phosphor for use in various optical devices.

Graphical abstract: Crystal structure, luminescence properties and energy transfer of Eu3+/Dy3+ doped GdNbTiO6 broad band excited phosphors

Article information

Article type
Paper
Submitted
31 3 2016
Accepted
18 5 2016
First published
19 5 2016

RSC Adv., 2016,6, 50797-50807

Crystal structure, luminescence properties and energy transfer of Eu3+/Dy3+ doped GdNbTiO6 broad band excited phosphors

N. Liu, J. Y. Si, G. M. Cai and Y. Tao, RSC Adv., 2016, 6, 50797 DOI: 10.1039/C6RA08284J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements