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The construction of three-dimensional nanocarbon structures with well-defined molecular dynamics is
a challenging yet rewarding task in material science and supramolecular chemistry. Herein, we report the
synthesis of two highly defective, nitrogen-doped molecular cylinders, namely MC1 and MC2, with
a length of 1.4 nm and 2.7 nm, respectively. These molecular cylinders are constructed by connecting
the cycloparaphenylene endcaps and fused aromatic pillars using a cyclocondensation reaction,

affording a distinct donor—acceptor structure. An X-ray crystallographic analysis reveals a tilted
Received 31st August 2024 lindrical sh for MC1 d | ti t d calculati indicate th
Accepted 21st October 2024 cylindrical shape for , and nuclear magnetic resonance spectroscopy and calculations indicate the
occurrence of a dynamic swinging motion in solution. The elongation of conjugation in the cylinders

DOI: 10.1039/d4sc05849f attenuates the charge transfer character in the first excited state, resulting in remarkable length-
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Introduction

Complex three-dimensional (3D) nanocarbon structures with
dynamic motions are intriguing yet challenging synthetic
targets.”” In particular, controlling molecular motions has led
to molecular machines as a flourishing research field,*®
whereas the restriction of molecular motions often produce
structurally unique 3D organic architectures, such as cages,'>"*
belts,**> Mobius strips,'*® and interlocked systems.**** The
creation of distinctive molecular topologies is often associated
with the emergence of chirality,>>® unique optoelectronic
properties,” and encapsulation capabilities,”®** which stimu-
lates the development of synthetic chemistry,*®** material
science,®* and supramolecular chemistry.** Among the 3D
organic motifs, molecular cylinders are particularly attractive,
and their construction represents a formidable task. Using
phenine and porphyrin as building blocks, Isobe** and
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dependent photophysical properties.

Anderson® prepared nanometer size phenine cylinders and
porphyrin cylinders, respectively, using meticulously designed
synthetic methods. However, the rational synthesis, structural
elucidation, and investigation of molecular cylinders with
dynamic motions remain challenging.

Recently, our group have developed a modular cyclo-
condensation approach for the m-lengthening of the cyclo-
paraphenylenes (CPPs), which also allows for the incorporation
of N atoms to produce donor-acceptor (D-A) structures with
bright redshifted emission.*® With CPP as an endcap and a N-
doped aromatic moiety (NAM) as a pillar, a bridged dimeric
CPP exhibiting distinctive flipping motion by virtue of the free
rotating single bonds connecting the CPP and the NAM units
was synthesized (Fig. 1a).*” Following this design concept, we
envisioned that the installation of an additional pillar at the
opposite site would stop the flipping motion and force
a persistent cylindrical shape. However, under this circum-
stance, the rotation of the single bonds connecting the CPP and
the NAM units might not be fully restricted, resulting in
a swinging motion. The molecular cylinders can be described by
diameter (d), length (1), and angular displacement (¢) from the
vertical equilibrium position (transition state shown in Fig. 1a),
which is a phenomenon rarely observed in 3D nanocarbons.

Herein, we present the synthesis, structural elucidation, and
photophysical properties of two discrete molecular cylinders,
MC1 and MC2, which possess tunable length, swinging
dynamics, and length-dependent photophysical properties.
These cylindrical molecules can be geometrically viewed as
molecular fragments of N-doped (12,12)-carbon nanotubes
(CNTs),* but they swing away from the perfect cylindrical shape
in the crystalline state. The incorporation of both electron-

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 Synthesis and structure of molecular cylinders MC1 and MC2. (a) Molecular design and dynamic motion. (b) Synthesis of MC1 and MC2. (c)

High-resolution MALDI-TOF MS spectra.

donating CPP endcaps and electron-withdrawing NAM pillars
into the molecular backbone leads to unique photophysical
properties.*®

Results and discussion
Design and synthesis

The construction of the proposed cylindrical structure hinges
on a cyclocondensation reaction between a CPP tetraamine
compound and an aromatic tetraketone compound. As shown
in Fig. 1b, the synthesis of the key tetraamine intermediate
started from a Suzuki macrocyclization reaction between the
previously reported U-shaped compound 1 and dibromo-
benzothiadiazole 2. The reaction concentration was carefully
controlled at 1 mM to ensure an optimal reaction yield of 50%
for macrocycle 3. Subsequently, tetraamine intermediate 4 was
obtained in 43% yield using a strategy previously developed by

© 2024 The Author(s). Published by the Royal Society of Chemistry

us, which involved a one-pot reductive aromatization-sulfur
extrusion strategy using LiAlH,.*” A cyclocondensation reaction
between 4 and tetraketone 5 afforded a mixture of cyclic and
linear products, from which the desired product MC1 was iso-
lated in 8% yield using gel-permeable chromatography (GPC).
Compound 5 was synthesized according to a reported method,*
and a branched trihexylsilyl substituent was used to ensure
a sufficient solubility for the target molecules. To maintain
a highly diluted reaction environment that ensures macro-
cyclization is favored over undesired polymerization, 4 and 5
were simultaneously injected to a stirring solvent over a period
of 2 h (see ESIf for details). Elongated tetraketone 6 was then
prepared according to a reported method,* and the longer
cylinder MC2 was synthesized and isolated in 14% yield under
the same reaction conditions and operational technique. The
slightly higher yield of MC2 than MC1 may be due to its better
solubility provided by branched trihexylsilyl substituent. The
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Fig. 2 Crystal structure of MC1 and structural analysis. (a) Single crystal structures from top and side views. (b) StrainVis analysis of MC1 without
substituents from DFT optimization. (c) Packing structure of MC1. Aliphatic substituents and solvent molecules are omitted for clarity. (d)
Mapping of MC1 and MC2 on CNT and the representative vector-based descriptions.

reaction sequence comprises only three linear steps from
available starting materials; therefore, this concise synthetic
approach can be expected to be readily applicable to other tet-
raketones to produce a variety of cylinders. The molecular
structures of MC1 and MC2 were unambiguously confirmed by
means of X-ray crystallography and spectroscopy analyses (vide
infra). The chemical compositions of MC1 (C,,gH,5,NSi4) and
MC2 (Cjz64H420N16Sig) were confirmed via high-resolution
matrixassisted laser desorption/ionization (MALDI) mass spec-
troscopy, which showed a mass/charge ratio (m/z) of 3454.9168
and 5240.1512, respectively, matching well with the theoretical
values of 3454.9115 and 5240.1584 (Fig. 1c).

X-ray crystallographic analysis

Yellow prism crystals of MC1 and red ellipsoidal crystals of MC2
were obtained via slow diffusion of n-hexane into a CHCl,
solution at —20 °C (Fig. S11). However, the fragibility of the MC2
crystals prevented us from performing X-ray crystallographic
measurements, and the MC1 crystal gave weak diffraction
patterns on a conventional X-ray diffractometer. Fortunately,
measurements could be performed on a monochromated X-ray
beam at KEK PF BL-17A beamline, affording data with sufficient
resolution. As shown in Fig. 2a, the crystal structure of MC1
showed a tilted cylindrical shape (a parallelogram shape from
the side view) of nanometer size with an averaged diameter (d)
of 16.4 A, a tilting angle () of 62°, a length () of 14.3 A, and
a height (k) of 12.7 A. Such a geometry is beneficial for allevi-
ating the strain of the sterically congested aliphatic chains. The

18834 | Chem. Sci, 2024, 15, 18832-18839

endcapping CPP unit exhibited a slight deviation from the cycle,
and the torsional angles of the aryl rings ranged from 23° to 51°
(Fig. S2t). The decrease in symmetry from a perfect cylinder to
a tilted cylinder also reduced the volume from 2308 A* (¢ = 90°)
t0 2031 A’ (@ = 62°) (Fig. S31). Measurement of the m-orbital axis
vectors (POAV)** indicated that the ipso-carbons have a struc-
tural deformation from planarity, with POAV values ranging
from 2.79° to 3.88° (Fig. 2a and S4t). These values are larger
than those of [12]CPP (averaged at 2.7°),** suggesting a more
deformed CPP structure when confined into the tilted cylinder.
The POAV values are slightly larger for the upper site (with acute
angle of the parallelogram) than for the bottom site (with obtuse
angle of the parallelogram), which is in agreement with the
strain energies obtained by performing a StrainVis analysis
(Fig. 2b),** and can be attributed to the intrusion of the NAM
pillar into the cavity of the cylinder. The total strain energy
calculated from the crystal structure was 108 kcal mol ™", which
is much lower than the strain energy of 281 kcal mol™" for the
perfect cylinder (Fig. S57).

The MC1 molecules were packed in the P2,/c space group
(Table S1t), in which the cylinders assembled in a top-to-side
fashion with the electron-rich CPP endcaps located spatially
close to the electron-withdrawing NAM pillar (Fig. 2¢ and S67).
This packing mode is different from that of Isobe's cylinders*
with a layered stacking of molecules, which could be ascribed to
the unique D-A structure of MC1. The intercylinder interactions
are mainly CH-7 and 7-7 interactions between the donor and
acceptor parts, and the aliphatic chains of the adjacent

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc05849f

Open Access Article. Published on 23 10 2024. Downloaded on 2025/11/01 5:33:36.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Edge Article

Con(Hg # He, Hg # Hy) Dy (Hg = He, Hg = Hg)

MC1
7.2

0.0 0.0

View Article Online

Chemical Science

H
e Hf He
JL 293K
L M
1 I 1 T T
9.8 9.3 8.8 8.3 78  ppm
He H, 293K Hn Hy
S W M
T T T T T T
10.2 97 9.2 8.7 8.2 7.7 ppm

Mc2 A
7.9
[ BE:
0.0

energy in kcal mol~!

Fig. 3 NMR spectra and DFT calculations. (a) Variable temperature NMR spectra of MC1 and MC2 measured in dichloromethane-d,/CS, and
MC2 measured in tetrahydrofuran-dg, respectively. Illustrative structures with different symmetries are shown. (b) Calculated stationary and

transition state structures for MC1 and MC2.

cylinders and the hexane solvent molecules fill up the cavity of
the central molecule (Fig. S67). The analysis of the interior and
interstitial void space resulted in a void volume of 4966 A®
which occupies 41% of the cell volume (Fig. 2¢). Owing to its
porous nature, the MC1 crystal could find application in guest
adsorption and catalysis.*

Then, we analyzed the defective nature and N-doping of MC1
and MC2 using the geometric measures for finite nanotube
molecules developed by Isobe et al.*® Theoretically, the perfect
upright cylinders can be mapped into the (12,12)-CNT structure,
and the vector indices of length index (¢;), atom-filling index
(Fa), and bond-filling index (Fp,) can be applied. The ¢ values
measures the length of the cylinder, and the F, and F values
quantify the occupancy of atoms and bonds of the cylinder in
the mother CNT structure, which determines the defectiveness.
As shown in Fig. 2d, the F, values of MC1 and MC2 are 56% and
40% and F, values of MC1 and MC2 are 46% and 32%,
respectively, which are much smaller than those of the most
defective finite nanotube molecule reported to date (F, = 67%
and F, = 57%),** revealing that MC1 and MC2 possess a highly

© 2024 The Author(s). Published by the Royal Society of Chemistry

hollow structure. The ¢; values of MC1 and MC2 are 6.0 and 11.0,
respectively, which correspond to an actual length of 14.9 A and
27.4 A by multiplying the lattice constant, in consistent with the
value obtained from the crystal structure. Note that the value of
11.0 for MC2 exceeds that of the longest finite nanotube mole-
cule reported (¢; = 7.0). Taken together, these results indicate
that the molecular cylinder MC2 is the longest, most defective
finite nanotube molecule synthesized so far. In addition, using
an oblique coordinate system,*” the positions of 8 nitrogen
atoms in MC1 and 16 nitrogen atoms in MC2 can be pinpointed

(Fig. S77).

Solution-phase structure and dynamics

The solution-phase structures of MC1 and MC2 were deter-
mined using nuclear magnetic resonance (NMR) spectroscopy.
The introduction of solubilizing alkyl chains allowed obtaining
well-resolved "H NMR signals at 293 K. A simple, symmetric
spectral pattern was observed for both MC1 and MC2, in which
the protons at the upper (H,, H, Hg) are equivalent with those
at the bottom (H,, H,, H,), inconsistent with a C,j, symmetric

Chem. Sci., 2024, 15, 18832-18839 | 18835
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Fig. 4 Photophysical properties. (a) UV-vis absorption (solid line) in toluene and fluorescence (dashed line) spectra of MC1, MC2, and 10. (b)
Electron—hole analysis of the So — S; excitation. Blue and green regions denote hole and electron distributions, respectively (isovalue = 0.001).
(c) Fluorescence spectra measured in toluene solution and in the film state.

tilted cylinder structure observed in the crystalline state
(Fig. 3a). This observation suggests that the Cy, tilted cylinder
structure is not persistent in the solution phase; instead, the
molecule swing back and forth like a pendulum on the NMR
time scale to give a time-averaged D,;, structure. Lowering the
temperature led to broadening of the signals, implying a slow-
down of the dynamic motion (Fig. 3a and S8, S97). Unfortu-
nately, the H,/H,/H. and H; / H/b / H/C protons of the C,y, structure
could not be distinguished even at the instrumental tempera-
ture limit of 193 K. The proton signals on the NAM pillar could
be assigned using two-dimensional COSY and NOESY spectra
(Fig. S10 and S117). In general, the protons from the NAM panel
appeared at the relatively lower field than those from the CPP
units due to a considerable deshielding from the fused aromatic
moiety.

18836 | Chem. Sci, 2024, 15, 18832-18839

Next, we investigated the swinging dynamics via theoretical
calculations. First, we performed a torsional scan analysis on
the energetics by freezing the dihedral angles between CPP and
NAM at the semiempirical PM6 level to locate the transition
state (TS, Fig. S121),** and more precise energetics were ob-
tained by performing geometry optimizations with density
functional theory (DFT) calculations at the M062X/6-31G(d,p)
level (Fig. 3b). TS structures with nearly upright geometries
were found with an activation energy of 7.2 keal mol™" for MC1
and 7.9 kecal mol " for MC2, respectively. These values are lower
than the activation energy for the ring-flipping of the single-
pillar CPP dimer (10.1 kcal mol "), which is consistent with
a coalescence temperature close or below 193 K, as observed in
variable-temperature NMR measurements.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Photophysical properties

MC1 and MC2 exhibited distinct length-dependent photo-
physical properties. The absorption spectra of MC1 and MC2
displayed a prominent peak at around 340 nm, with shoulder
peaks extending to 500 nm for MC1 and 550 nm for MC2
(Fig. 4a). However, time-dependent DFT calculations suggested
that the seemingly similar absorption spectra possessed
different origins. For MC1, the maximum absorption (i) at
333 nm corresponds to the electronic transitions from
HOMO-1 to LUMO+8/LUMO+9, and the shoulder peaks at
lower energy regime stem from the partially allowed HOMO to
LUMO transition (Fig. S13 and Table S27). The occupied and
unoccupied molecular orbitals involved in the transitions are
spatially separated and localized at the CPP and NAM units,
respectively, similar to our previously reported D-A nano-
hoops.*® In contrast, the A;,.x and shoulder peaks of MC2 are
due to HOMO-6 to LUMO+7/HOMO-7 to LUMO+6 and
HOMO-—8 to LUMO/HOMO-9 to LUMO+1 transitions, with the
orbitals being exclusively distributed on the NAM unit (Fig. S14
and Table S37). This result suggests that the NAM moiety serves
as a chromophore for MC2, whereas the contribution from CPP
is negligible. The absorption spectrum of substructure 10,
which was synthesized for comparison, was very similar to that
of MC2, confirming that NAM is responsible for the observed
absorption of MC2.

The fluorescence spectra of MC1 and MC2 were also distinct.
A clear bathochromic shift from 560 to 600 nm was observed for
MC1 when the fluorescence was measured in solvents with
increased polarity (Fig. 4a). The Er (30) plot gave a good line-
arity, which suggests a positive solvatofluorochromism, i.e. the
dipole moment of S; is higher than S, state (Fig. S15%).*
Meanwhile, MC2 showed typical LE fluorescence spectra with
vibronic progression in CCly, toluene, and dioxane, whiledis-
played a redshifted spectrum in N,N-dimethylformamide
(DMF). This behavior is also reminiscent of the solvent depen-
dence of 10. A quantitative electron-hole analysis® on the
critical S, — S; excitation was performed to gain further insight
into the observed emission (Fig. 4b, S16, and Table S47). Both
CPP and NAM units of MC1 were found to participate in S; (CT)
excitation, whereas the S; excitation was confined on the central
NAM moiety for MC2 and 10. As a result, the S; state of MC1
possessed 41% of charge transfer (CT) contribution and 59% of
local excitation (LE) contribution, whereas only LE contributed
to the S; state of MC2 and 10. This explains the existence of
solvatofluorochromism of MC1 and the spectral featuring of
vibronic progression for MC2.>* The anomalous spectra in DMF
can be explained in terms of the aggregation caused by inter-
molecular interactions in a polar solvent.* This hypothesis was
further supported by measuring the fluorescence in toluene
solution and in the film state (Fig. 4c). In both cases, the
spectral pattern was almost identical for MC1, but a redshifted
behavior from solution to the film state was observed for MC2
and 10. The fluorescence quantum yield (®) of MC1 was deter-
mined to be 63% in toluene (Fig. S177), which is surprisingly
high for a nanometer-sized molecular cylinder. This result,
together with the unique D-A structure and length dependence,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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suggests that such molecular cylinders are good candidates for
the exploration of new photophysical mechanisms and
applications.*

Conclusions

In summary, two N-doped molecular cylinders, MC1 and MC2,
with a well-defined D-A structure and tunable length were
synthesized using cyclocondensation as a key macrocyclization
approach. Their structures can be viewed as molecular frag-
ments of N-doped (12,12)-CNTs. An X-ray crystallographic
analysis revealed the tilted cylindrical geometry and porous
nature of the crystal packing, and a swinging motion was
revealed in solution by spectroscopic and computational
methods. The molecular cylinders exhibited unique length-
dependent photophysical properties. Moreover, the shorter
cylinder possessed considerable CT characteristics, and the
elongation of the aromatic pillar weakens the contribution from
the CPP units. The molecules reported here may serve as
discrete molecular models for the understanding of the effect of
heteroatom doping in CNTs,**** and open a new avenue for the
development of cylindrical shaped molecular hosts, dynamic
systems, and functional materials.>

Data availability

The data supporting this article have been included as part of
the ESLt

Author contributions

K. L. and Z. S. conceived the design. Z. S., S. S., and J. W.
supervised the project. K. L., X. L., and C. G. performed the
synthesis, compound characterization and data analysis. S. Y.,
R. Y, and S. S. performed the crystallographic studies. All
authors analyzed and discussed the results, and K. L. and Z. S.
wrote the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Z. S. acknowledge financial support from National Natural
Science Foundation of China (Grant No. 22222110, 22371206)
and the Haihe Laboratory of Sustainable Chemical Trans-
formations (24HHWCSS00009). S. S. acknowledges experi-
mental support from KEK Photon Factory Program Advisory
Committee (Grant No. 2023G604) for the use of BL-17A
beamline.

Notes and references

1 L. Feng, R. D. Astumian and ]. F. Stoddart, Nat. Rev. Chem,
2022, 6, 705-725.

Chem. Sci., 2024, 15, 18832-18839 | 18837


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc05849f

Open Access Article. Published on 23 10 2024. Downloaded on 2025/11/01 5:33:36.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

2 X. Wang, F. Jia, L.-P. Yang, H. Zhou and W. Jiang, Chem. Soc.
Rev., 2020, 49, 4176-4188.

3 Y. Segawa, H. Ito and K. Itami, Nat. Rev. Mater., 2016, 1,
15002.

4 R. A. Bissell, E. Cordova, A. E. Kaifer and J. F. Stoddart,
Nature, 1994, 369, 133-137.

5 L. Feng, Y. Qiu, Q.-H. Guo, Z. Chen, J. S. W. Seale, K. He,
H. Wu, Y. Feng, O. K. Farha, R. D. Astumian and
J. F. Stoddart, Science, 2021, 374, 1215-1221.

6 L. Zhang, Y. Qiu, W.-G. Liu, H. Chen, D. Shen, B. Song,
K. Cai, H. Wu, Y. Jiao, Y. Feng, J. S. W. Seale, C. Pezzato,
J. Tian, Y. Tan, X.-Y. Chen, Q.-H. Guo, C. L. Stern, D. Philp,
R. D. Astumian III, W. A. Goddard and ]J. F. Stoddart,
Nature, 2023, 613, 280-286.

7 N. P. M. Huck, W. F. Jager, B. de Lange and B. L. Feringa,
Science, 1996, 273, 1686-1688.

8 N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada
and B. L. Feringa, Nature, 1999, 401, 152-155.

9 P. Stacko, J. C. M. Kistemaker, T. van Leeuwen, M.-C. Chang,
E. Otten and B. L. Feringa, Science, 2017, 356, 964-968.

10 Q.-F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato, T. Ozeki,
Y. Sei, K. Yamaguchi and M. Fujita, Science, 2010, 328,
1144-1147.

11 Y. Ni, T. Y. Gopalakrishna, H. Phan, T. Kim, T. S. Herng,
Y. Han, T. Tao, J. Ding, D. Kim and J. Wu, Nat. Chem.,
2020, 12, 242-248.

12 G. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi and K. Itami,
Science, 2017, 356, 172-175.

13 K. Y. Cheung, K. Watanabe, Y. Segawa and K. Itami, Nat.
Chem., 2021, 13, 255-259.

14 Y. Han, S. Dong, J. Shao, W. Fan and C. Chi, Angew. Chem.,
Int. Ed., 2021, 60, 2658-2662.

15 K. Y. Cheung, S. Gui, C. Deng, H. Liang, Z. Xia, Z. Liu, L. Chi
and Q. Miao, Chem, 2019, 5, 838-847.

16 W. Fan, T. M. Fukunaga, S. Wu, Y. Han, Q. Zhou, J. Wang,
Z. Li, X. Hou, H. Wei, Y. Ni, H. Isobe and J. Wu, Nat.
Synth., 2023, 2, 880-887.

17 Y. Segawa, T. Watanabe, K. Yamanoue, M. Kuwayama,
K. Watanabe, J. Pirillo, Y. Hijikata and K. Itami, Nat.
Synth., 2022, 1, 535-541.

18 D. Ajami, O. Oeckler, A. Simon and R. Herges, Nature, 2003,
426, 819-821.

19 Y. Tanaka, S. Saito, S. Mori, N. Aratani, H. Shinokubo,
N. Shibata, Y. Higuchi, Z. S. Yoon, K. S. Kim, S. B. Noh,
J. K. Park, D. Kim and A. Osuka, Angew. Chem., Int. Ed.,
2008, 47, 681-684.

20 Y. Segawa, M. Kuwayama, Y. Hijikata, M. Fushimi,
T. Nishihara, J. Pirillo, J. Shirasaki, N. Kubota and
K. Itami, Science, 2019, 365, 272-276.

21 J. H. May, J. M. Van Raden, R. L. Maust, L. N. Zakharov and
R. Jasti, Nat. Chem., 2023, 15, 170-176.

22 Y.-Y. Fan, D. Chen, Z.-A. Huang, J. Zhu, C.-H. Tung, L.-Z. Wu
and H. Cong, Nat. Commun., 2018, 9, 3037.

23 A. By, Y. Zhao, H. Xiao, C.-H. Tung, L.-Z. Wu and H. Cong,
Angew. Chem., Int. Ed., 2022, 61, €202209449.

24 S. Hitosugi, W. Nakanishi, T. Yamasaki and H. Isobe, Nat.
Commun., 2011, 2, 492.

18838 | Chem. Sci, 2024, 15, 18832-18839

View Article Online

Edge Article

25 Y. Tian, Y. Guo, X. Dong, X. Wan, K.-H. Cheng, R. Chang,
S. Li, X. Cao, Y.-T. Chan and A. C.-H. Sue, Nat. Synth.,
2023, 2, 395-402.

26 S. Sato, A. Yoshii, S. Takahashi, S. Furumi, M. Takeuchi and
H. Isobe, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 13097-
13101.

27 X. Zhang, H. Liu, G. Zhuang, S. Yang and P. Du, Nat.
Commun., 2022, 13, 3543.

28 T. Iwamoto, Y. Watanabe, T. Sadahiro, T. Haino and
S. Yamago, Angew. Chem., Int. Ed., 2011, 50, 8342-8344.

29 E. Ubasart, O. Borodin, C. Fuertes-Espinosa, Y. Xu, C. Garcia-
Simo6n, L. GoOmez, J. Juanhuix, F. Gandara, 1. Imaz,
D. Maspoch, M. von Delius and X. Ribas, Nat. Chem., 2021,
13, 420-427.

30 S. Hitosugi, A. Matsumoto, Y. Kaimori, R. lizuka, K. Soai and
H. Isobe, Org. Lett., 2014, 16, 645-647.

31 E. Kayahara, T. Hayashi, K. Takeuchi, F. Ozawa, K. Ashida,
S. Ogoshi and S. Yamago, Angew. Chem., Int. Ed., 2018, 57,
11418-11421.

32 E.]J.Leonhardt and R. Jasti, Nat. Rev. Chem, 2019, 3, 672-686.

33 Y. Xu and M. von Delius, Angew. Chem., Int. Ed., 2020, 59,
559-573.

34 Z. Sun, K. Ikemoto, T. M. Fukunaga, T. Koretsune, R. Arita,
S. Sato and H. Isobe, Science, 2019, 363, 151-155.

35 M. Hoffmann, C. J. Wilson, B. Odell and H. L. Anderson,
Angew. Chem., Int. Ed., 2007, 46, 3122-3125.

36 H. Deng, Z. Guo, Y. Wang, K. Li, Q. Zhou, C. Ge, Z. Xu,
S. Sato, X. Ma and Z. Sun, Chem. Sci., 2022, 13, 14080-14089.

37 K. Li, Z. Xu, H. Deng, Z. Zhou, Y. Dang and Z. Sun, Angew.
Chem., Int. Ed., 2021, 60, 7649-7653.

38 K. Ikemoto, S. Yang, H. Naito, M. Kotani, S. Sato and
H. Isobe, Nat. Commun., 2020, 11, 1807.

39 M. Hermann, D. Wassy and B. Esser, Angew. Chem., Int. Ed.,
2021, 60, 15743-15766.

40 S. More, R. Bhosale, S. Choudhary and A. Mateo-Alonso, Org.
Lett., 2012, 14, 4170-4173.

41 A. Mateo-Alonso, N. Kulisic, G. Valenti, M. Marcaccio,
F. Paolucci and M. Prato, Chem.-Asian J., 2010, 5, 482-485.

42 R. C. Haddon, Pure Appl. Chem., 1986, 58, 137-142.

43 Y. Segawa, S. Miyamoto, H. Omachi, S. Matsuura, P. Senel,
T. Sasamori, N. Tokitoh and K. Itami, Angew. Chem., Int.
Ed., 2011, 50, 3244-3248.

44 C. E. Colwell, T. W. Price, T. Stauch and R. Jasti, Chem. Sci.,
2020, 11, 3923-3930.

45 M.-H. Sun, S.-Z. Huang, L.-H. Chen, Y. Li, X.-Y. Yang,
Z.-Y.Yuan and B.-L. Su, Chem. Soc. Rev., 2016, 45, 3479-3563.

46 T. Matsuno, H. Naito, S. Hitosugi, S. Sato, M. Kotani and
H. Isobe, Pure Appl. Chem., 2014, 86, 489-495.

47 R. Saito, G. Dresselhaus and M. S. Dresselhaus, Physical
properties of carbon nanotubes, Imperial College Press,
London, 1998.

48 J. Xia, M. R. Golder, M. E. Foster, B. M. Wong and R. Jasti, J.
Am. Chem. Soc., 2012, 134, 19709-19715.

49 C. Reichardt, Chem. Rev., 1994, 94, 2319-2358.

50 Z. Liu, T. Lu and Q. Chen, Carbon, 2020, 165, 461-467.

51 W.Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang
and Y. Ma, Adv. Funct. Mater., 2012, 22, 2797-2803.

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc05849f

Open Access Article. Published on 23 10 2024. Downloaded on 2025/11/01 5:33:36.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Edge Article Chemical Science

52 D. Wasserfallen, M. Kastler, W. Pisula, W. A. Hofer, Y. Fogel, 54 P. Ayala, R. Arenal, M. Riimmeli, A. Rubio and T. Pichler,

Z. Wang and K. Miillen, J. Am. Chem. Soc., 2006, 128, 1334~ Carbon, 2010, 48, 575-586.

1339. 55 M. Inagaki, M. Toyoda, Y. Soneda and T. Morishita, Carbon,
53 H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, 2018, 132, 104-140.

Nature, 2012, 492, 234-238. 56 U. H. F. Bunz, Acc. Chem. Res., 2015, 48, 1676-1686.

© 2024 The Author(s). Published by the Royal Society of Chemistry Chem. Sci,, 2024, 15, 18832-18839 | 18839


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc05849f

	Molecular cylinders with donortnqh_x2013acceptor structure and swinging motionElectronic supplementary information (ESI) available. CCDC 2363037. For...
	Molecular cylinders with donortnqh_x2013acceptor structure and swinging motionElectronic supplementary information (ESI) available. CCDC 2363037. For...
	Molecular cylinders with donortnqh_x2013acceptor structure and swinging motionElectronic supplementary information (ESI) available. CCDC 2363037. For...
	Molecular cylinders with donortnqh_x2013acceptor structure and swinging motionElectronic supplementary information (ESI) available. CCDC 2363037. For...
	Molecular cylinders with donortnqh_x2013acceptor structure and swinging motionElectronic supplementary information (ESI) available. CCDC 2363037. For...
	Molecular cylinders with donortnqh_x2013acceptor structure and swinging motionElectronic supplementary information (ESI) available. CCDC 2363037. For...
	Molecular cylinders with donortnqh_x2013acceptor structure and swinging motionElectronic supplementary information (ESI) available. CCDC 2363037. For...

	Molecular cylinders with donortnqh_x2013acceptor structure and swinging motionElectronic supplementary information (ESI) available. CCDC 2363037. For...
	Molecular cylinders with donortnqh_x2013acceptor structure and swinging motionElectronic supplementary information (ESI) available. CCDC 2363037. For...
	Molecular cylinders with donortnqh_x2013acceptor structure and swinging motionElectronic supplementary information (ESI) available. CCDC 2363037. For...
	Molecular cylinders with donortnqh_x2013acceptor structure and swinging motionElectronic supplementary information (ESI) available. CCDC 2363037. For...
	Molecular cylinders with donortnqh_x2013acceptor structure and swinging motionElectronic supplementary information (ESI) available. CCDC 2363037. For...


