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Uncovering the role of reaction intermediates is crucial to developing an understanding
of heterogeneous catalysis because catalytic reactions often involve complex networks
of elementary steps. Identifying the reaction intermediates is often difficult because
their short lifetimes and low concentrations make it difficult to observe them with
surface sensitive spectroscopic techniques. In this paper we report a different
approach to identify intermediates for the formic acid decomposition reaction on
Pd(111) and Pd(332) based on accurate measurements of isotopologue specific
thermal reaction rates. At low surface temperatures (~400 K) CO, formation is the
major reaction pathway. The CO, kinetic data show this occurs via two temporally
resolved reaction processes. Thus, there must be two parallel pathways which we
attribute to the participation of two intermediate species in the reaction. Isotopic
substitution reveals large and isotopologue specific kinetic isotope effects that allow
us to identify the two key intermediates as bidentate formate and carboxyl. The
decomposition of the bidentate formate is substantially slower than that of carboxyl.
On Pd(332), at high surface temperatures (643 K to 693 K) we observe both CO and
CO, production. The observation of CO formation reinforces the conclusion of
calculations that suggest the carboxyl intermediate plays a major role in the water—
gas shift reaction, where carboxyl exhibits temperature dependent branching
between CO, and CO.
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1. Introduction

Catalysis plays a pivotal role in a wide range of chemical processes including the
production of commodity chemicals, fertilizers, pharmaceuticals, efficient energy
conversion and storage, and environmental remediation. It does so by making
chemical reactions possible under conditions where they would otherwise be
impractically slow. Often, these processes involve a complex network of elemen-
tary reactions that proceed through transient, hard to probe intermediates that
effectively control the rate of product formation. Consequently, a key challenge in
research aimed at understanding and improving heterogeneous catalysis is the
identification of these intermediates and the determination of their binding
energies and the energetic barriers to their formation and decay.

A common approach to identifying intermediates is based on the use of
chemically specific surface spectroscopic methods to directly observe species that
are formed and decay during the reaction process. Examples of such spectros-
copies include IR adsorption spectroscopy,™* electron energy loss spectroscopy,®
X-ray photoelectron spectroscopy, surface enhanced Raman and IR absorption
spectroscopy,®® and low-energy electron diffraction.® However, in some cases the
limited sensitivity and time resolution of these techniques make it difficult or
impossible to observe all the relevant intermediates. For example, theory indi-
cates carboxyl is an intermediate in the decomposition of formic acid on Pd and
in the water-gas shift reaction® (WGSR) but direct evidence from surface
spectroscopies for the carboxyl intermediate is lacking.™

In this paper, we take a different approach to the problem of intermediates in
formic acid decomposition on Pd based on the time profile of the formation of
products after the initiation of the decomposition reaction with a short molecular
beam pulse. If multiple intermediates are involved, the measured product formation
rate is the sum of multiple components with differing rates. Thus, the observation of
multiple components can establish the existence of multiple pathways and, there-
fore, that multiple intermediates or active sites are involved. Accurate measurements
of the rates of these components as a function of temperature provide information
on the energy barriers and entropic parameters of the species involved. Comparison
of these results with theoretical calculations of reaction pathways for hypothesized
intermediates may enable identification of the intermediates.

Formic acid is a simple and abundant organic compound that has attracted
considerable interest as a promising hydrogen carrier and renewable energy
storage medium."” Pd-based catalysts are highly active for decomposition of for-
mic acid into CO, and H, (HCOOH — CO, + H,, AH° = —14.9 kJ mol !).*"
Formic acid decomposition is also interesting because it can proceed through
a dehydration pathway (HCOOH — CO + H,0, AH® = 26.2 k] mol ). Since formic
acid can decompose into both the products and reactants of the WGSR (CO + H,O
= CO, + H), understanding formic acid decomposition provides insights into
the potential energy landscape of this important reaction. Furthermore, inter-
mediates in the pathways for formic acid decomposition are also likely to be
important in the WGSR. For example, Mavrikakis and coworkers® found that
density functional theory (DFT) calculations on the WGSR on Cu(111) indicate
that carboxyl (C*OOH) is a key intermediate of the reaction while bidentate
formate (HCO*O*) is only a spectator species.
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There has been an extensive effort to clarify which intermediate species are
formed in the decomposition of formic acid, but results remain controversial. The
most prominent intermediate in this surface reaction is formate, which denotes
a molecule with the composition HCOO but depending on its adsorption
configuration is labelled monodentate (HCOO*) or bidentate formate (HCO*O¥*).
(The latter is sometimes referred to as bridge-bonded formate). This intermediate
has been more thoroughly studied as it can easily be formed on oxygen covered Pt
or Pd; oxygen adatoms promote the deprotonation of the acidic OH in the parent
formic acid molecule. Avery® reported some of the first evidence for the existence
of a HCOO* structure on O/Pt(111) at 130 K using high resolution electron energy
loss spectroscopy and found it undergoes a fast irreversible conversion to
HCO*O* when the surface is annealed to 190 K. Since then there have been
observations of a formate intermediate in formic acid decomposition on many
surfaces using a variety of surface analytical techniques.*>**''° In addition,
Campbell and coworkers® measured the heat of adsorption of formic acid on O/
Pt(111) using single crystal adsorption calorimetry (SCAC). They assigned a fast
feature in the calorimeter response to the formation of HCOO* and a slow feature
to the formation of HCO*O*. The difference between the formation enthalpies of
these two species is about 0.45 eV. DFT studies find this energy difference is larger
than 0.45 eV and that there is a small (or no) barrier to decomposition into CO,
and H.**?* As these calculations were for an oxygen-free surface whereas the
SCAC experiments were on O/Pt(111), there is a clear need for further calculations
to characterize the effect of co-adsorbed oxygen. In other DFT calculations,
Mavrikakis and coworkers determined that C*OOH plays a major role in the
overall reactivity of formic acid;” they also suggested that the carboxyl-
intermediate is the major intermediate in the WGSR.?

In this article, we report high temporal resolution kinetics experiments using
the recently developed velocity-resolved kinetics (VRK) technique*?* and DFT
calculations of the decomposition of formic acid on Pd. We do this for both the
close packed Pd(111) facet and the stepped Pd(332) facet, which has a step density
of 1/6. We observe both CO, and CO products. The rate of CO, formation shows
two clearly resolved components, one decaying much more rapidly than the other.
To identify the intermediates involved in these pathways, we measured the
decomposition rate for three different isotopologues of formic acid (HCOOH,
DCOOH and HCOOD). Large and isotopologue specific kinetic isotope effects
(KIEs) demonstrate that the key intermediates in this reaction are a bidentate
formate species, which decomposes slowly, and a carboxyl intermediate, which
decomposes much more rapidly. By comparing CO, and CO formation data on
Pd(111) and Pd(332), we see that the B-type steps present on Pd(332) increase the
importance of the carboxyl intermediate to the reaction and consequently also
enhance the formation of CO. Finally, we briefly discuss the implications for these
results for the WGSR and suggest directions for future work on formic acid
decomposition.

2. Methods

2.1. Experimental

We study the decomposition of formic acid by initiating the reaction with a short
molecular beam pulse (approximately 30 ps full width at half maximum) of formic
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acid seeded in helium incident on the surfaces of Pd(111) and Pd(332) single
crystals and measure the time evolution of the reaction products using multi-
photon laser ionization and ion imaging in the recently developed VRK
technique.

The molecular beam of formic acid is produced by bubbling helium (7 bar)
through liquid formic acid at room temperature (296 K) and expanding this gas
mixture (~1% formic acid in He) through a custom pulsed nozzle (nozzle diam-
eter = 1 mm) operating at 25 Hz. The absence of impurities is verified using mass
analysis of the incident molecular beam. The supersonic molecular beam pulse
passes through two differential pumping chambers and enters the surface-
scattering chamber where it impinges upon the Pd surface (MaTeck GmbH) at
an incidence angle of 30° to the surface normal. The formic acid flux incident on
the surface is estimated to be 1.5 & 0.5 x 10" molecules per cm® per pulse.?* The
surface is prepared by sputtering with Ar* (3 keV) for 15 min and then annealing at
1050 K for 15 min. Surface cleanliness is verified using Auger electron spectros-
copy. Further information about the apparatus and experimental procedures have
been described elsewhere.?®

In this work, we use a Pd single crystal surface that is polished to expose two
different facets - (111) and (332). We estimate the step density of the Pd(111) facet
is <0.1% based on the specified accuracy (<0.1°) of the polished face of the crystal
relative to the 111 facet. The step density of the Pd(332) crystal is 1/6 (16.7%).The
facets are spatially well separated and are large enough to prevent molecular
beam exposure of both facets at the same time. The use of this two-facet crystal
allows us to rapidly switch between the two facets and observe the influence of
increased step density on the mechanism and reactivity, while other experimental
conditions are held constant. Using the reflection of a HeNe-laser from the
surface, we align the (111) and (332) facets so that their surface normal is parallel
to the scattering plane, i.e. the plane defined by the molecular beam and the
ionization laser propagation directions.

Desorbing reactant and product molecules are ionized ~20 mm from the
surface, using non-resonant multiphoton ionization with a focused Ti:Sapphire
laser beam (<100 fs, =16 mJ mm™ > at 1 kHz). A pulsed homogeneous electric field
projects the ions onto a time-gated microchannel plate (MCP)-Phosphor anode
imaging detector. The mass-to-charge ratio of the detected ions is selected by
setting the time-gate on the MCP with respect to the pulsed-field extraction. The
ion image appearing on the phosphor screen is recorded with a CCD camera.

The flux of desorption products as a function of time is obtained by recording
the product density, which is proportional to the number ions produced by the
laser pulse, as a function of the time delay between the ionizing laser and the
pulsed molecular beam. Velocities of both reactants and the scattered/desorbing
products are obtained from ion images and are used to convert the observed
product density to flux. We determine the flight time of the desorption products
to the ionization laser using our knowledge of the laser-surface distance and the
measured ion velocities. This is then subtracted from the time delay between the
ionizing laser and the pulsed molecular beam to get the residence/reaction time
at the surface associated with a given detected ion. To account for the arrival time
of the incident molecular beam at the surface, we measure its time-profile and
incident velocity in a separate experiment where the laser focus is moved to the
position of the incident beam in the center of the ion optics and the molecular
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density as a function of the delay between the ionization laser and pulsed
molecular beam is recorded. We model this observed time-profile as a Gaussian.
With this information and the known distance between laser and surface, the
mean arrival time of the formic acid at the surface is determined. This infor-
mation and the density to flux conversion described above are used to determine
the fluxes of desorbing species as a function of residence time, referred to here-
after as the “kinetic trace” of the reaction.

2.2. Computational

DFT calculations for formic acid on Pd(111) and Pd(332) were performed using
VASP 5.3.5.°*° The GGA XC functional PBE* is employed with the help of the
Tkatchenko-Scheffler*® method to reckon with the van der Waals energy-
corrections as it was previously found to work well for formic acid adsorption
on Pd(111).3* The optimized lattice constant for the Pd crystal is a, = 3.945 A,
which agrees within 1% with the experimental lattice constant.’® The plane wave
energy cut-off is set to 450 eV and partial electronic occupations were modeled
with the Methfessel-Paxton (N = 1) smearing scheme® with a width of ¢ = 0.1 eV.
The interaction between valence and core electrons is described by the projector
augmented-wave method.** The electronic self-consistent loop breaks if the total
energy is below 10> eV. Optimized structures are found using the conjugate
gradient algorithm when the energy change between two ionic steps is below
10" eV. The nudged elastic band (NEB) method* enables us to determine
reaction saddle points. Only atoms of the adsorbed species were allowed to move
while slab atoms are fixed during optimization and NEB calculations.

The Pd(111) surface is modeled as a slab of three (3 x 3) Pd layers arranged in
ABC stacking with a vacuum layer of 20 A. For the Pd(332) surface, three (6 x 3) Pd
layers arranged in steps along the first axis with a vacuum layer of 20 A were
utilized (see ESI S4 Fig. S67). The Brillouin zone is sampled by an 8 x 8 x 1 I-
point centered and 2 x 8 x 1 I'-point centered k-point mesh, for Pd(111) and
Pd(332) surfaces, respectively.

Vibrational frequencies for adsorbates are calculated using VASP 5.3.5. To
calculate the Hessian matrix, we perform 4 displacements for each direction and
0.015 A width for each nucleus. The frequencies of the deuterated isotopologues
are calculated through diagonalization of the Hessian matrix, obtained for
hydrogenated species, and replacing H-atoms with D-atoms as necessary for each
isotopologue.

3. Results and discussion

To study the kinetics of formic acid decomposition, we record ion images cor-
responding to the CO, product of the decomposition reaction of formic acid on
the surfaces of Pd(111) and Pd(332) single crystals over the temperature range of
373 to 473 K. In almost all cases, the ion images show broad angular distributions
symmetric about the surface normal and broad speed distributions consistent
with desorption of thermally equilibrated products. Examples of speed distribu-
tions can be found in the ESI Section S1.t On Pd(111), we also see a small
contribution of hyperthermal CO,. Similar to our previous work on formic acid
oxidation on Pt but unlike the case of CO oxidation on Pt, the temporal profile of
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kinetic traces for both speed components are identical.**?*” Using the VRK analysis
described in Section 2.1, we integrate the images over speed and angular distri-
butions to obtain the product flux vs. reaction time - the kinetic trace. It is
important to note that at the surface temperatures considered in this study,
desorption of any unreacted formic acid as well as CO, product occurs rapidly.
Thus, the CO, kinetic traces are controlled by the formation rate.

On Pd(111) the reactive signal (yield) of CO, from sequential 90 seconds scans
is constant while on Pd(332) it decreases slightly. We attribute this decrease to the
build-up of a steady-state coverage of hydrogen atoms (H*) which reduces the
initial sticking probability of formic acid. We estimate the upper limit of the
steady-state hydrogen coverage in our experiments to be ~0.02 ML at 383 K*® and
lower at higher surface temperatures. Importantly, as verified by experiments on
the CO, formation rates in the presence of background hydrogen gas, the kinetic
information extracted from the CO, formation rates are not affected by the
presence of co-adsorbed hydrogen. The decrease in the reactive signal is reversed
by flashing the sample to 873 K. For further details, see ESI Section S2.t

In contrast, the effect of CO co-adsorption on the CO, formation rates on
Pd(332) show that co-adsorbed CO at high coverages ([CO,q] = 0.28 ML at 413 K)
does change the shape of the CO, kinetic traces. However, the CO build up due to
formic acid decomposition is not enough to induce this effect even after running
the molecular beam of formic acid for up to 84 minutes. Based on this experiment
and the fact that we restricted the data acquisition time to be less than 6 minutes
before flashing the surface to remove CO build up, we can be certain that the
effect of co-adsorbed CO on our kinetic traces is negligible. For further details, see
ESI Section S2.7

3.1. Observation of two channels in CO, formation

Fig. 1 shows typical kinetic traces for CO, formation at 403 K on Pd(111) and
Pd(332). On both facets we observe an initial feature with a rapid rise and rapid
decay followed by a second feature that decays much more slowly. This obser-
vation indicates that the kinetic traces are composed of two components origi-
nating from two reaction pathways.

To describe each of these components, we use a function f{t,k,0), which is the
convolution of a Gaussian distribution of width ¢ (to represent the arrival time
distribution of the molecular beam pulse) with an exponential function with
a decay rate k to represent the decrease in product flux from a first order reaction.

© 2

f(tko) = [ e+ ¢~37dy (1)

J -0

The kinetic traces can then be described as
flux(¢) = af(t,k1,0) + arf(t,k»,0). 2

Here the term ayf{t,k;,0) describes the time evolution of the fast component, i.e.
the initial peak seen for reaction times ~100 ps. It is slightly broader than the
incident molecular beam pulse, however, this increase in width does not vary with
surface temperature and is unfortunately too small to allow us to extract mean-
ingful kinetic information for the fast component. The term a,f{¢,k,,o) describes
the slow component, which has reaction times up to several milliseconds. This
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Fig. 1 Observation of two temporally resolved CO, formation channels in formic acid
decomposition on Pd. Typical peak normalized kinetic traces of CO, on Pd(111) (left) and
Pd(332) (right) at 403 K using HCOOH. The VRK data are fit according to eqgn (2) (Pd(111): ky
>80 000s tand k, = 1200 s~ Pd(332): k; > 80 000 s *and k, = 900 s ). The inset in the
right panel shows an enlarged view of the slow component which decays over several
milliseconds at this temperature whereas the fast component is on the timescale of the
incident molecular beam (dashed line).

component has an exponential decay with a temperature dependent rate constant
ko(T).

For all of our data, the reaction rate of the slow channel for CO, formation on
the higher-step density Pd(332) facet is lower than it is on Pd(111). For example,
K401 = 1200 s7* at 403 K, and k59432 = 900 s~'. The contribution of the fast
component is systematically larger on Pd(332) than on Pd(111) (43% for Pd(332)
vs. 8% for Pd(111) at 403 K).

The observation of two features in the kinetic traces strongly suggests
a mechanism for formic acid decomposition with two pathways for CO, forma-
tion. These two pathways could arise from either the existence of two active sites
or two reaction intermediates. Below, we will use isotope substitution experi-
ments to reveal that two intermediates are involved.

3.2. Observation of CO formation in the decomposition reaction

At higher surface temperatures, we find there is a reactive process producing CO on
Pd(332). Working at higher surface temperatures is necessary to observe CO
because the desorption-lifetime of CO is too long at low surface temperatures to be
observed in our VRK experiments (~240 min at 403 K).* The lifetime ranges from
100 to 600 ps for temperatures between 643 and 693 K, making it easily observable.

Fig. 2a shows typical VRK data for CO formation from formic acid decompo-
sition on Pd(332). The kinetic trace has both a fast and a slow component. Based
on analysis of ion images, we identify the fast component in the trace is not
related to formic acid decomposition on Pd, but results from laser induced
multiphoton dissociation of gaseous formic acid followed by non-resonant multi-
photon ionization of CO, see insets of Fig. 2 and ESI Section S31 for further
discussion.****
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Fig.2 CO formation from formic acid decomposition on Pd. Experimental kinetic trace of
CO on Pd(332) at 663 K from HCOOH (left panel, (a)) and corresponding Arrhenius plot of
the rate constant of CO formation (right panel, (b)). (@) The kinetic traces of CO exhibit two
components. The fast component is the result of photodissociation of formic acid, see ESI
Section S37t for further discussion. The slow component is reactive signal arising from
formic acid decomposition. The two insets show representative ion images at the cor-
responding reaction time. The image seen at short times reflects large CO recoil velocities
produced in the photodissociation of gas-phase formic acid. Note that photodissociation
of formic acid leading to CO™ and OH*/H or CO* and H,O™ with fs-pulses of a Ti:Sapphire
laser has been reported previously.**** (b) Comparison of the extracted rate constants for
the slow component with previous Arrhenius parameters for CO desorption from
Pd(332).3° This comparison indicates that the rate of CO formation observed is desorption
limited under these conditions.

We fit the experimental data for the slower component in Fig. 2a and find the
derived rate constant agrees with the experimental desorption rate constant of CO
from Pd(332)* as shown in Fig. 2b. We conclude that the rate of CO formation
from formic acid decomposition is limited by the CO desorption rate. On Pd(111)
we are not able to detect any reactive signal of CO formation.

3.3. Isotope labeling experiments

To gain information on which intermediates are involved in the slow and fast
decomposition channels, we performed isotopic labeling experiments and
observed KIEs. In this section, we describe an intuitive picture of what can be
inferred from such KIEs, and how we can use them to make an assignment of
reaction intermediates. A quantitative comparison of the magnitude of the KIE
and temperature dependence will be given in Section 4 to support these
assignments.

Formic acid has two structurally nonequivalent H atoms, one involved in the
O-H bond and the other involved in the C-H bond. Substituting D for H at these
two positions (i.e. HCOOD or DCOOH) provides diagnostic capability, as these
substitutions will have different effects on the rate of formation and decompo-
sition of hypothetical intermediates. For example, the C-H bond must break to
form carboxyl; hence, substitution of D for H in the hydroxyl position (HCOOD),
will have little effect on the carboxyl formation rate (it is a secondary KIE). On the
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other hand, substitution of H for D at the carbon position (a primary KIE) will
lower the carboxyl formation rate. This is because the C-D bond possesses lower
zero-point energy (ZPE) than the C-H bond, whereas isotopic substitution does
not appreciably change the ZPE of the transition state. Hence, the barrier to C-H
bond cleavage is increased and the rate of carboxyl formation is reduced. Thus,
the rate of formation of carboxyl will be lower for DCOOH than for HCOOH.

To facilitate the discussion, we introduce a concise notation for the trends in
the KIE dycoop and dpcoon, which denote the direction of change in the rate for
HCOOD and DCOOH, respectively, relative to the rate for HCOOH. We focus here
on whether there is an increase, no change or a decrease in rate with isotopic
substitutions and indicate the trends as +, =, or — respectively.

Applying similar arguments to those presented above for the carboxyl forma-
tion rate, we construct a table of predicted KIEs for the branching into the fast
channel and the KIEs for the rate of the slow channel. As discussed in Section 1,
previous work suggested three species might be involved: monodentate formate
(HCOO¥*), bidentate formate (HCO*O*), and carboxyl (C*OOH). Table 1 shows
predicted KIEs for all plausible choices of intermediates. In making these
predictions we assume that the intermediates decay exclusively to CO,. We will
show later how CO formation affects the fast channel branching fraction and that
it does not change the assignments made here.

Table 1 displays expected KIEs for the four plausible choices of how to assign
intermediates to the fast and slow channels. For the fast component, mono-
dentate formate, bidentate formate and carboxyl are all possible intermediates.
For the slow component we exclude monodentate formate as a candidate inter-
mediate, since our own and previous’ DFT calculations show that it is not stable
and would not survive the millisecond time scale of the slow component’s decay.
The final row in Table 1 shows the experimentally observed isotope effects on the
fast channel branching fraction and the slow channel decay rate over the range
373 K to 473 K. The observed pattern of isotope effects supports an assignment
where the fast channel reflects the formation and decomposition of carboxyl
while the slow channel arises from a bidentate formate intermediate. In Section 4,
we will critically examine and confirm these assighments by comparison of the
results of detailed theoretical calculations and measurements of decomposition
rates as a function of temperature.

3.4. Theoretical calculations of formic acid decomposition

Motivated by our interpretation of the kinetic isotope effect data and previous
DFT work on the decomposition reaction,” we performed DFT calculations of the
minimum energy paths, transition state configurations and barriers for the
elementary steps shown in Fig. 3 for reactions on both Pd(111) and Pd(332). To
the best of our knowledge, no calculations have been previously published for
formic acid decomposition on the Pd(332); there are calculations for the stepped
Pd(211) surface,*” but this surface has a different step type. For these calculations,
we use the PBE exchange correlation energy functional with the TS-dispersion
correction because we have shown that it provides a better description of the
binding energy of formic acid adsorption on Pd(111) than the PW91 or RPBE-D3
functionals.®* Further support for this choice is given by the work of Hu and
coworkers** who compared the performance of different DFT functionals and van

420 | Faraday Discuss., 2024, 251, 412-434  This journal is © The Royal Society of Chemistry 2024


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3fd00174a

View Article Online
Faraday Discussions

Paper

—/= —/+ PaA1sqoO

—I/= =+ =/— —/= +*O0«ODH HOOxD

== +/— —/= =/— HOO«%D +«O0x«OOH

=/ +/—= —/= =/—= HOOx«D +*OODH

—I= =/= =/= =/= %*0xO0H *OO0DH

[oUuURYD MO[S (s+4a)a [oUUeRYD MO[S [ouueyd Ised MO[S 158

HOO0Odg/AO0OHY Ty 03 3jel HOO0Ddg/A00DH) SOUURYD MO[S PUR ISB]

uonIsodwosap ayerpawIaiu] u29M3I2q UOnORIj JUuryouelg HOoDAg S[puueyd

\DOOUI%

9JBI UOHBULIO} 9)BIPOULIdIU]

MOI[S R ISeJ 03 JUIWUIISSE
9)BIPIUWLIdUIT J[qISSOd

HOODH 03 uostedwod ul HOODA

/AOODH 0 sanbojodoios! ayy 4oy AjAldadsal ‘9sealdul ‘abueyd OU ‘9sea4dap JO) + JO ‘= '— Se UMOYS aJe sabueyd ay] ‘pd UO 91ge3S 30U S| 3 MOYS 38y} SYNsal | 4Q
U0 paseq jauueyd MOJS 3y} 40} 3ieIpawlIaiul 9191ssod e se . OO DH 2PN)IX8 INg |auUURYD 1S.) 3Y) J0J S9)1RIPaLLISIUI 3]q1SSOd Se 834U} J]. J3PISUOD S\ “(HOOxD) 1AXx0gied
pue (+OxODH) 21eUWIO) 31.IUBPI] ‘(xOODH) 21eWIO) 91LIUSPOUOW (SIRIPSLLISIUI UOIDea) UoIsoduwodap 91eWlo) se pazisayiodAy usag aAey jeyy saidads aaly)
10} UBAIB aJe synsal sy ‘uonnIsgns adolos! Yiim el uoisoduwodsp j1auueyd MO)s pue Uoidel) Bulydueld jauueyd ise) Ul sebueyd paalasqo pue paydipald T aldel

'90UB217 paModun 'g uong LNy suowwoD aAireal) e sepun pasusol|siapiesiyl |[EGEGEEL ()
"95:7€'6T £T/20/9202 U0 Papeojumoqd 202 € €T U0 paus!ignd 801y sseoy uedo

Faraday Discuss., 2024, 251, 412-434 | 421

This journal is © The Royal Society of Chemistry 2024


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3fd00174a

Open Access Article. Published on 13 3 2024. Downloaded on 2026/02/13 19:34:56.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Faraday Discussions Paper
Bidentate
Formate
H
Molecular Beam o)\ %SO
e €0,
5, KT, ol
_[’H]/
T
H ks,
o kgcoon ,
Iy — 'O_\<o +[|T'|]
o0 - kf-1
& H]
T
ks, GO
—_— co

-[H] OIOH

k
Carboxyl +[OH]
Intermediate

Fig. 3 Simplified reaction scheme proposed by Mavrikakis and coworkers” for formic acid
decomposition on Pd(111).

der Waals correction schemes for formic acid adsorption on Pt(111) and found
that PBE-TS is one of the best performing functionals. Binding energies and
geometrical parameters are summarized in the ESI Section S4.7

Fig. 3 shows that adsorbed formic acid may undergo O-H bond or C-H bond
dissociation. O-H bond dissociation leads to the formation of bidentate formate,
the minimum energy path for which is shown for Pd(332) and Pd(111) in Fig. 4. In
the initial formic acid adsorption structure the carbonyl O-atom is at a top-site
while the hydroxyl group is above a bridge site. On Pd(332), the most favorable
adsorption site is similar but the carbonyl O-atom is located at the step while the
hydroxyl group is orientated towards the terrace. To form bidentate formate, the
molecule rotates the O-atom of the hydroxyl group towards a top site while the

04 [PA(111) I Pd(332) [ ——HCOOH 144
02 | 402
3 0 ¥ 0
= .
o 0.40 eV
E 0.2 - 0.37 eV 702
w Ly
04 % E 4-04
-0,6 — - -0,6
)
08| L {08
N

Reaction coordinate

Fig. 4 Reaction pathways to form bidentate formate from HCOOH (black) and from
HCOOD (green) on Pd(111) and Pd(332) obtained from NEB calculations using PBE-TS
functional. Initial (1), transition (Il) and final states (lll) are shown. Energy level IV corre-
sponds to final state (IIl) without interaction between products. O-atoms are shown in red,
C-atoms in dark grey, H-atoms in white, and Pd-atoms in cyan. The Pd-atoms on the steps
are distinguished by a light grey color. The energy values include ZPE correction.
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hydrogen atom moves to an fcc-hollow site. This reaction pathway is the same for
Pd(111) and Pd(332). The energy barrier for this reaction is slightly lower on the
step-site than on the terrace. Deuteration of the OH-bond increases the ZPE
corrected barrier for bidentate formation by ~0.04 eV.

Fig. 5 shows corresponding reaction paths for C-H bond dissociation leading
to carboxyl. Here, the calculations suggest that the molecule first rotates to bring
the C-H bond close to a Pd atom and subsequently the C-H bond breaks. The
initial rotation shows no isotope dependence; however, the bond dissociation
step proceeds over an additional barrier, which is higher for DCOOH compared to
HCOOH by 0.02 eV on Pd(111) and 0.04 eV on Pd(332).

We turn next to the decomposition of the intermediates; both bidentate
formate and carboxyl intermediates can form CO,. Consistent with our assign-
ment of bidentate formate to the slow channel, we find that the barrier for CO,
formation from bidentate formate is significantly larger than from carboxyl (see
Fig. 6 and 7).

We have identified two reaction paths for decomposition of bidentate formate
to CO, (see Fig. 6). The first (Fig. 6a) describes a two-step dissociation where the
bidentate formate first breaks one O-Pd bond to bring the C-H bond closer to the
surface, before the C-H bond breaks forming CO, and an H atom bound to Pd.
The first step is associated with a ZPE corrected energy barrier of 0.78 eV (0.79 eV)
on Pd(111) and 0.85 eV (0.86 eV) on Pd(332), almost independent of deuteration
(i.e. HCO*O* vs. DCO*O*). The subsequent C-H bond dissociation is barrier less.
The second reaction path (Fig. 6b) involves rotation of the bidentate formate
molecule from an upright to a flat adsorption geometry, bringing the C-H bond
closer to the surface, where it can dissociate. The barrier along this path is 0.90 eV
(0.93 eV) for HCO*O* (DCO*O*) on Pd(111) and 0.86 eV (0.90 eV) for HCO*O*
(DCO*0*) on Pd(332). As we will show in Section 4 below, only this reaction path
can explain the observed KIE.

06 pd(111) v Pd(332) IV ——HCOOH 106
I 2 ——DCOOH

04} ; 404
_. 02} 0.48ev 043¢V 050 ev 0386V 0346V 0.50eV 40,2
S 048evV | i 0.52ev | 0:27eV 0386V 034eV 0.54eV
<@ H¥ I v 10.24eV ;
=~ 0 V¥ 2R T 2 - ) v.x Yo% 0
) 3
[}
c 0. 57 eV
o 02f 02

0.53 eV

%wuwwa;mumwwwx
M

Reaction coordinate

Fig. 5 Reaction pathway for carboxyl formation from HCOOH (black) and from DCOOH
(green) on Pd(111) and Pd(332) obtained from NEB calculations using PBE-TS functional.
On the scheme the initial state (1), the first transition state (Il), the intermediate state (lll), the
second transition state (IV) and the final state (V) are shown. Energy level VI corresponds to
final state V without interaction between products. Atom representation is the same as in
Fig. 4. The energy values include ZPE correction.
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Fig. 6 Reaction pathway for carbon dioxide formation from two isotopologues of
bidentate formate (HCO*O*) (black) and from DCO*O* (green) on Pd(111) and Pd(332).
Panel (a) shows the sequential reaction pathway proposed by Mavrikakis and coworkers’
and panel (b) shows a concerted reaction pathway with a larger KIE found in this work. In
(a) (1) denotes the initial, (I1) the transition, (Ill) the intermediate and (IV) the final state. In (b)
(I) denotes the initial, (Il) the transition and (lll) the final state. Atom representation is the
same as in Fig. 4. The energy values include ZPE correction.

The reaction paths for carboxyl decomposition to form CO, are shown in Fig. 7.
Here, the reaction coordinate involved elongation of the O-H bond; hence the
change in barrier height upon isotopic substitution is significant. The barrier to
decomposition of C*OOH is 0.05 eV lower than that of C¥*OOD on Pd(111). The
difference between isotopes is 0.02 eV on Pd(332), where the barrier is ~0.15 eV
lower compared to Pd(111).

The reaction path for the carboxyl intermediate to form CO by C-OH bond
dissociation is shown in Fig. 8. Here, the rotation about the CO bond facilitates
formation of a Pd-O bond in the adsorbed OH product. The transition state is
located on a bridge site while the final CO is bound at an fcc hollow and the OH on
a bridge site. The ZPE corrected energy barrier is 0.18 eV higher on Pd(332)
compared to Pd(111) and there is a negligible effect of isotope substitution on the
barrier height. This suggests there should be little or no KIE in this reaction on
either Pd(111) or Pd(332).
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Fig. 7 Reaction pathway for CO, formation from two isotopologues of carboxyl C*OOH
(black) and from C*OOD (green) on Pd(111) and Pd(332) obtained from NEB calculations
using PBE-TS functional. On the scheme the initial (I), transition (Il) and final state (Ill) are
shown. Atom representation is the same as in Fig. 4. The energy values include ZPE
correction.
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Fig. 8 Reaction pathway for CO formation from two isotopologues of carboxyl C*OOH
(black) and from C*OOD (green) on Pd(111) and Pd(332) obtained from NEB calculations
using PBE-TS functional. In the scheme the initial (1), transition (II) and final state (Ill) are
shown. Energy level IV corresponds to final state Il without interaction between products.
Atom representation is the same as in Fig. 4.

In Table 2 we summarize the classical barrier heights (neglecting ZPE
corrections) for the forward reactions and reaction energies and compare with
previous calculations. While not all previous publications have considered all
reactions reported here, we note that calculated barriers previously reported
based on use of the PW91 and RPBE exchange correlation functionals are
systematically higher than the results reported here. We attribute this effect to the
choice of the TS-dispersion correction scheme.

Finally, Fig. 9 shows an energy diagram of formic acid decomposition on
Pd(111) and Pd(332) summarizing the DFT calculations of this work (harmonic
frequencies of initial and transition states are summarized in the ESI Section
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Fig. 9 Zero-point energy corrected energy diagram of formic acid decomposition on
Pd(111) and Pd(332). The black lines show the bidentate formate pathway, blue the
carboxyl to CO, pathway and red the carboxyl to CO pathway. The grey line shows the
alternative pathway for bidentate formate dissociation as shown in Fig. 6b).

S4t). This energy landscape forms the basis for quantitative comparison to VRK
rate data and KIEs discussed in the following section.

4. Quantitative comparison of experimentally
observed and theoretically predicted CO,
formation rates

We measured kinetic trace data like that shown in Fig. 1 for CO, production as
a function of temperature for formic acid decomposition on both Pd(111) and
Pd(332). In most cases, the data show well-resolved fast and slow components.
Depending on the isotopologue, in some case the two components are not clearly
distinguishable at higher surface temperature; however, we can still fit a first
order rate constant to the slow component. Using eqn (2) to fit the kinetic traces,
we derive the temperature dependent rate constant k, for the slow channel as
a function of temperature for the three isotopologues HCOOH, HCOOD and
DCOOH. The results are shown in Fig. 10. The rate constants exhibit Arrhenius
behavior over this temperature range. The Arrhenius parameters derived from the
data are presented in Table 3.

A distinctive KIE is seen, which as discussed above is consistent with our
assignment of the slow channel to the decomposition of the bidentate formate
intermediate. Specifically, bidentate decomposition rate constants are indistin-
guishable from one another for experiments carried out with HCOOH or HCOOD,
whereas experiments employing DCOOH lead to rate constants that are smaller by
a factor of 2 to 3 over the temperature range studied.

kT Ors(T) E,

(3)

n

o) =T (1-ew( - 2%)) (@)

i=1
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Fig. 10 Rate constants for the bidentate formate decomposition to CO, (slow channel)
from HCOOH (black circles), HCOOD (blue crosses) and DCOOH (red squares) on Pd(111)
(left) and Pd(332) (right). Error bars indicate 1¢ uncertainty. Within the resolution of our
experiment the extracted rate constants for HCOOH and HCOOD are equal. Solid
(dashed) lines are predicted rate constants from theory for the sequential (concerted)
pathway. See text.

Table 3 Summary of Arrhenius parameters for the bidentate formate decomposition to
CO; (slow channel) from HCO*O* and DCO*O* on Pd(111) and Pd(332)

Pd(111) Pd(332)
Species Als™t E,/eV Als™t E,/eV
HCO*O* 1013103 0.79 + 0.02 1014.7£0-6 0.95 + 0.05
DCO*O* 1013-2£0:5 0.83 £ 0.04 1013703 0.90 =+ 0.02

We next apply harmonic transition state theory (TST) with the aim of better
understanding the reaction path of bidentate formate decomposition to CO,. For
this, we use TST rate constants defined in eqn (3). Here, k;, is Boltzmann’s
constant, 4 is Planck’s constant, T is the surface temperature and E, is the ZPE
corrected energy barrier. Q;s and Qs are the partition functions of the initial and
transition state, respectively. We assume these are well described by a product of
simple harmonic oscillator partition functions (eqn (4)), where, »; is the harmonic
frequency of the ith degree-of-freedom.

The predictions of TST for the bidentate decomposition rate constants are
shown as solid and dashed lines in Fig. 10. Solid lines are the results of using TST
assuming the reaction path of Fig. 6a, which describes a sequential mechanism
where Pd-O bond dissociation is followed by Pd-H bond formation. The dashed
lines are the TST predictions using the reaction path from Fig. 6b, which
describes concerted rearrangement of Pd-O and Pd-H bonding. Red and black
line show TST predictions of the KIE.
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For the sequential mechanism, the magnitudes of the rate constants found
from TST are in remarkable agreement (within a factor of 2) with experimentally
derived rate constants. However, the predicted KIE is much smaller than that
observed. The concerted mechanism correctly predicts the large KIE, but fails to
predict the rate constants accurately, likely due to DFT’s inability to predict highly
accurate reaction barrier heights. By adjusting the classical barrier height for the
concerted reaction by only —0.1 eV on Pd(111) and —0.03 eV on Pd(332), we
achieve quantitative agreement with the measured rate constants. The difference
in the predicted KIEs reflects differences between the two transition states. In the
sequential mechanism, elongation of the C-H bond is not required to reach the
transition state; instead the Pd-O bond must be stretched. Consequently, the ZPE
corrected energy of the TS with respect to the initial state E, is not strongly
affected by isotopic substitution. On the other hand, for concerted decomposi-
tion, dramatic C-H bond elongation is required to reach the transition state, such
that the ZPE along the C-H bond nearly disappears at the transition state. Under
such conditions, E, becomes strongly isotope dependent, reflecting the lower ZPE
of the deuterated initial state with respect to the protiated initial state. This
results in a large KIE as seen in experiment.

These comparisons strongly suggest that the mechanism of bidentate formate
decomposition on Pd involves a concerted rearrangement of Pd-O and H-Pd
bonding. We favor the concerted mechanism despite the fact that our DFT
calculations give a barrier for the concerted reaction that is 0.18 eV higher on
Pd(111) and 0.12 eV higher on Pd(332) than that of the sequential reaction. This
energy ordering is the basis of the conclusion from prior theoretical studies
favoring the sequential reaction mechanism. However, it is doubtful that a DFT
computed transition-state energy difference of this magnitude is trustworthy.

It is worth noting that vibrational anharmonicity is another important factor
relevant to this discussion. We speculate that a more accurate description of the
partition functions including vibrational anharmonicity might show that the
concerted reaction is entropically favored, even if it is not energetically favored.
Such an analysis goes beyond the scope of this work, as it requires a challenging
characterization of the potential energy surface beyond the harmonic
approximation.

Although the arguments above favoring a concerted mechanism are strong, we
cannot exclude the possibility that a different sequential mechanism might
exhibit a large KIE. Using a PW91 functional, Zhang et al.** calculated a sequential
bidentate formate decomposition pathway, which exhibits a small barrier to C-H
bond dissociation, i.e. a barrier between structures like III and IV in Fig. 6a. While
this barrier is small, it could lead to a large KIE. Our calculations show no such
barrier, likely due to a different choice of exchange-correlation functional.
Regardless of the exact mechanism, the observed KIE can only be described by
a transition state that requires extensive C-H bond elongation.

It is also useful to compare the branching fraction of the fast channel, ¢{T),
with the theoretically predicted contribution of the carboxyl intermediate to the
total CO, formation rate. To derive the branching fraction from experiment
¢£P(T), we use data like that shown in Fig. 1 to determine the area under the
kinetic traces corresponding to the fast channel and divide this by the total area
under the trace.

Theoretical branching fractions ¢f""(T) are a product of two terms:
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KDFT(T) KPFT(T) ]
DET(T) + kPIT(T)  KPFT(T) + kDI (T) ®

PI(T) =

Carboxyl Formation fraction ~ CO, Product fraction from Carboxyl

The first term reflects the branching between carboxyl and bidentate formate
formation in the initial decomposition of formic acid. The second term reflects
the likelihood that carboxyl decomposes to CO, (+H) and not to CO (+OH).

More specifically, kP (T) and kf5 ' (T) denote the rate constants for formation
of the carboxyl and bidentate formate, respectively. Py (T) and krs () are the
rate constants for carboxyl decomposition to CO, and CO, respectively. As
described above, we have used our DFT computed reaction pathways along with
the help of TST to compute the temperature and isotope dependent branching
fractions.

Fig. 11a shows how these predictions compare to experiments done on
Pd(111). Here, theoretical values are shown as solid lines and experimentally
derived values are shown as points with error bars. Theory drastically underes-
timates the branching fraction; however, by reducing the barrier to carboxyl
formation by only 0.14 eV and increasing the barrier to CO formation by 0.10 eV,
agreement is within experimental uncertainty. See the dashed lines in Fig. 11a.
We do not consider these adjusted barrier heights to be established values; our
point is simply to show that relatively small errors in the DFT barrier heights are
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Fig. 11 Experimental isotopologue specific branching fractions of the fast component on
Pd for different facets and surface temperatures as well as the DFT predicted contribution
of the carboxyl intermediate to the total CO, formation rate. Panel (a) and (b) show the
experimental branching fractions on Pd(111) and on Pd(332) for HCOOH (black), HCOOD
(blue) and DCOOH (red). The error bars indicate a 2¢ error interval. The solid lines show the
DFT predicted contribution of the carboxyl intermediate to the total CO, formation rate.
The dashed lines show the predicted results when the DFT based barriers for carboxyl and
CO formation on Pd(111) are adjusted by —0.14 eV and 0.10 eV, respectively and where
they are adjusted on Pd(332) by —0.20 eV and —0.25 eV, respectively. The branching
fractions are in general larger on Pd(332) compared to Pd(111) but have the same trend
with isotopologues on both surfaces (DCOOH < HCOOH < HCOOD).
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likely responsible for the underestimation of the branching fraction. We note that
the isotopic substitution trends agree with experiment with or without these
adjustments.

For Pd(332), the measured branching fraction is larger than in the case of
Pd(111), a result that is reproduced by theory. Though the DFT prediction of the
branching fraction is 10 times smaller than the experiment, it does substantially
better than the Pd(111) prediction where the disagreement is a factor of 100 off.
For Pd(332), we get reasonable agreement for the theoretical and experimental
magnitude of the branching fraction by decreasing the energy barrier for carboxyl
formation by 0.20 eV and for CO formation by 0.25 eV, see Fig. 11b. However, the
dependence of the branching fraction on temperature is not given correctly by
theory: the experimental branching fraction decreases with temperature whereas
theory predicts an increase. We leave this as a challenge to theory.

Despite the difficulties in obtaining quantitative agreement between theory
and experiment, it is important to note that there is agreement on the ordering of
rate constants for the different isotopologues; this agreement supports our
assignment of the carboxyl intermediate as the origin of the fast CO, formation
channel.

5. Conclusions

In this work, we used velocity resolved kinetics to temporally resolve two parallel
CO, formation channels in the decomposition of formic acid on both Pd(111) and
Pd(332). We observe large KIEs, indicating that formic acid is first rapidly con-
verted to one of two intermediates, bidentate formate (HCO*O*) or carboxyl
(C*OOH). The bidentate formate intermediate decomposes slowly to CO,, while
the carboxyl intermediate decomposes rapidly to both CO, and CO. We investi-
gated possible reaction pathways with DFT and were able to make quantitative
comparisons of rates and KIEs that are consistent with these mechanistic
insights. We also identified a new concerted dissociation reaction mechanism for
the bidentate formate decomposition reaction that is consistent with the
observed KIEs.

This work presents clear evidence for the presence of the carboxyl intermediate
in formic acid decomposition and shows that this intermediate can decompose to
both CO and CO, under mild reaction conditions. These observations are
therefore consistent with previous theoretical studies that identified the carboxyl
intermediate in the WGSR (CO + H,O = CO, + H,).’ The formic acid decompo-
sition reaction involves the relevant elementary steps currently discussed for the
WGSR except for the H,O activation. In the future we plan to focus on developing
a micro-kinetic model that captures quantitatively the experimental CO, forma-
tion rates as well as the temperature dependent yields for formic acid, CO,, Hj,
CO and H,0. We hope that such a model will be able to capture the kinetically
controlled branching between the reactant and products of the WGSR and can be
quantitatively verified against experimental rates.
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