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Conductive hydrogels for tissue repair
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Conductive hydrogels (CHs) combine the biomimetic properties of hydrogels with the physiological and

electrochemical properties of conductive materials, and have attracted extensive attention in the past

few years. In addition, CHs have high conductivity and electrochemical redox properties and can be

used to detect electrical signals generated in biological systems and conduct electrical stimulation to
regulate the activities and functions of cells including cell migration, cell proliferation, and cell
differentiation. These properties give CHs unique advantages in tissue repair. However, the current
review of CHs is mostly focused on their applications as biosensors. Therefore, this article reviewed the

new progress of CHs in tissue repair including nerve tissue regeneration, muscle tissue regeneration, skin

tissue regeneration and bone tissue regeneration in the past five years. We first introduced the design
and synthesis of different types of CHs such as carbon-based CHs, conductive polymer-based CHs,
metal-based CHs, ionic CHs, and composite CHs, and the types and mechanisms of tissue repair
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promoted by CHs including anti-bacterial, antioxidant and anti-inflammatory properties, stimulus

response and intelligent delivery, real-time monitoring, and promoted cell proliferation and tissue repair
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1. Introduction

Every cell in the human body is surrounded by a membrane with
ion channels, which can produce a transmembrane voltage.
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related pathway activation, which provides a useful reference for further preparation of bio-safer and
more efficient CHs used in tissue regeneration.

Therefore, all cells in vivo, not only excited nerve and muscle cells,
can generate and receive steady-state bioelectrical signals, which
can be used as a key factor to regulate and control the number (cell
proliferation and apoptosis), location (migration and orientation)
and type (cell differentiation) of each cell. For example, the
transepithelial potential (TEP) of intact skin was 10-60 mV, which
varies between different parts of the body and epidermis. When
the skin is injured, the TEP of the injured site is disrupted,
resulting in an endogenous electric field (EF), directed from the
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edge to the inside of the wound, which can stimulate host cell
proliferation and migration, and ultimately promote tissue growth
and re-epithelialisation.”” Recent experiments have shown that
this type of bioelectrical signal mechanism may play a more
prominent role than previously thought. For example, Zhao and
his colleagues found that an endogenous EF can control the
electrotaxis of cell migration in wound healing by affecting key
signaling pathways such as PI3K/Pten (phosphoinositide 3-
kinases/phosphatase and tensin homolog), membrane growth
factor receptors and integrins.>® And by adding electrical stimu-
lation to repaired tissue, subsequent studies have confirmed that
electrical stimulation (ES) can enhance the proliferation of fibro-
blasts and promote wound healing through the activation of the
TGFB1-ERK-NF-kB signaling pathway.* In addition, an external EF
can also promote angiogenesis by stimulating endothelial cells to
produce the VEGF,” and activate Rho-ROCK and PI3K-Akt
signaling pathways.*” These new discoveries in cell and tissue
electrophysiological behaviors have inspired us to develop a new
generation of biomaterials that can activate specific genes and
stimulate tissue regeneration at the molecular level.

Conductive hydrogels (CHs), which combine the advanta-
geous properties of hydrogels with the physiological and elec-
trochemical characteristics of conductive materials, have
received considerable attention. Their three-dimensional
porous structure, hydrophilicity and controllable chemical
and physical properties resemble the extracellular matrix in
tissues, making them favourable substrates for cell growth,
migration and proliferation.*® Moreover, the use of CHs not
only expands the coverage of current to the entire wound,* but
also overcomes the inconvenience in use and high-voltage risk
of electrode-based electrical stimulation strategies."* On the
other hand, unlike non-CHs, CHs with high conductivity and
electrochemical redox characteristics are useable for the
detection of electric signals generated in biological systems and
deliver electrical stimulation to regulate the activities and
functions of cells and tissues. Recently, several reports of elec-
tricity auto-generating hydrogel dressings combined with
triboelectric nanogenerators have further enriched the CH
family."*™” These aforementioned properties make CHs have
unique advantages in tissue repair. However, the current review
of CHs mainly focuses on their application in sensors, and their
potential for tissue repair has only been developed in recent
years. Therefore, it is necessary and timely to review the role of
conductive materials in tissue repair, which will play a guiding
role for a wide range of scientists interested in the application of
conductive materials.

Therefore, this paper mainly focuses on the new progress of
CHs in tissue repair in the past five years. First, the design and
synthesis strategies of carbon-based CHs, conductive polymer-
based CHs, metal-based CHs, and ionic CHs, were briefly
introduced. Subsequently, the applications of CHs in nerve,
muscle, skin, and bone repair were discussed, and several
beneficial functions of conductive materials for tissue repair
were further listed. Overall, this review will provide a useful
reference for further preparation of safer and more efficient
CHs for tissue repair (Fig. 1).
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Fig.1 Fabrication, applications and the mechanisms of CHs for tissue
repair.

2. Fabrication of CHs for tissue repair
2.1 Carbon-based CHs

Benefitting from the good environmental stability, high conduc-
tivity and low production cost, carbon-based materials, including
carbon nanotubes (CNTs), graphene, activated carbon, carbon
fiber, carbon dots and porous carbon, are considered to be ideal
materials for preparing CHs."®* As a typical representative, carbon
nanotubes and graphene-based conductive hydrogels have been
widely explored.”* Combined with the good in situ forming
characteristics of hydrogels, a large number of CHs were prepared
by simply mixing CNTs*** or graphene oxide (GO)***** into
hydrogels and their application in promoting tissue repair was also
verified. Among them, a cardiac-derived extracellular matrix
protein,* -7 superposition provided by the pyrene group,* and
Pluronic F127 (PF127)* were confirmed to promote the dispersion
of CNT/GO in hydrogels. Although in situ physical encapsulation
has the great advantage of a simple process, the potential hazards
of conductive components after hydrogel degradation still cannot
be ignored. Therefore, many modification tactics have been
applied to improve the dispersion and immobilization of carbon-
based materials in CHs, such as dopamine coating,*** carboxyl
functionalization,**** amino modification,**** double bond func-
tionalization,” amphiphilic crosslinking agent-assisted,” PEG-
modification® and P-cyclodextrin grafting.>*** For example, to
further increase the dispersion of CNTs, carboxyl functionalized
CNTs were selected and grafted to the end of PEG through ester-
ification, which not only improved the surface hydrophilicity of
CNTs but also reduced their aggregation.” And inspired by the
dopamine chemistry, Liang and Zhao et al. prepared polydop-
amine coated CNT/graphene by dopamine/tannic acid self-
polymerization under alkaline conditions, and prepared two
kinds of multifunctional self-healing antibacterial antioxidant

© 2023 The Author(s). Published by the Royal Society of Chemistry
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conductive hydrogel dressings based on gelatin and hyaluronic
acid (HA), respectively.*»**** In the above example, the dispersion
of CNTs/GO was greatly improved by polydopamine coated on the
surface. At the same time, dopamine on the surface of CNTs/GO
can also be used as a crosslinking agent to connect itself with
dopamine grafted onto gelatin or hyaluronic acid by dopamine
chemistry (Fig. 2A and B).*** In addition, conductive biomedical
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hydrogels based on carbon nanofibers® and graphene quantum
dots> have also been reported.

As the hottest two-dimensional nanomaterials, the booming
transition metal carbide, nitride, or carbon nitride (MXene) family
emerge due to its advantages of metal conductivity, high aspect
ratio, solution processability and wide tunability.>** When MXenes
are incorporated into a hydrogel system, they provide an exciting
multifunctional platform for the CHs used in tissue repair.*"** For
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Fig. 2 Carbon-based CHs. (A) CNT-based CHs. Reproduced from ref. 39 with the permission of Elsevier, copyright 2019. (B) Graphene oxide
(GO)-based CHs. Reproduced from ref. 40 with the permission of Wiley-VCH, copyright 2019. (C) MXene-based CHs. Reproduced from ref. 57

with the permission of Elsevier, copyright 2021.
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example, when ultra-small CeO, nanoparticles were uniformly
deposited on Ti;C,Tx MXene nanosheets by the facial hydro-
thermal method to form a MXenes@CeO, heterogeneous struc-
ture, they could endow CHs with antioxidant properties (Fig. 2C).>”
The polydopamine coating also gives MXenes better tissue adhe-
sion.”® With the assistance of light, MXenes were introduced as
a microchemical reaction center to form hydrogen bonds and
covalent bonds with &-polylysine (e-PL)/polyvinyl pyrrolidone (PVP),
which accelerated the formation of an &PL/PVP hydrogel.*”
However, most of the reported MXene hydrogels are based on
Ti;C, T, which is the most mature member of the MXene family in
terms of synthesis and property research. Therefore, there is still
much room for further optimization of MXene-based hydrogels for
target applications. In general, CHs based on carbon-based
materials have been widely developed, but are limited by their
potential in vivo thrombosis and metabolic risks, and their use still
needs to bwe carefully considered. But at the same time, it should
also be noted that according to the different use scenarios, the
defect will not necessarily seriously restrict its development. For
example, in skin wound repair, the potential problems of carbon-
based CHs can be almost ignored because they only come into
contact with limited skin wounds.

2.2 Conductive-polymer-based CHs

Organic polymers are usually not conductive. It was not until
Shirakawa, MacDiarmid and Heeger found the conductivity of
a halogen-doped crystalline polyacetylene film in 1977 that
organic conductive polymers began to enter people's vision. The
conjugated T electrons generated in the polymer backbone can
be effectively delocalized along the polymer chain, resulting in
charge transfer along the polymer chain, thus exhibiting
conductive behavior.®** On this basis, conductive polymers
such as polyacetylene (PA), polyaniline (PANI), polythiophene
(PT) and polypyrrole (PPy) were successively developed.
However, due to the aromatic ring on the skeleton, conductive
polymers are essentially hydrophobic.®®*® Therefore, the
combination of conductive polymers and hydrogels to prepare
CHs greatly expands the application of conductive polymers in
biomedicine.®**” Our research group has long been committed
to the preparation of conductive materials based on aniline
oligomer/PANI and its application in the biomedical field.
Based on the previous research on conductive polymers,**”* we
introduced an aniline trimer and aniline tetramer into hydro-
gels, through the amide/ester bond constructed by the amino
group on the aniline trimer, and the hydroxyl group on poly(-
glycerol sebacate) (PGS),”> PCL-PEG™ or dextran’’® with the
cyanic acid group on hexamethylene diisocyanate (HDI), the
Schiff base bond between the amino group on the aniline trimer
and the aldehyde group on oxidized hyaluronic acid,”® the
amide bond between the carboxyl group on the carboxylated
aniline trimer and the amino group on chitosan.” In addition
to chemical grafting, in situ polymerization is also an effective
strategy for constructing CHs with uniformly dispersed
conductive polymers. So, by in situ polymerization of aniline
under the action of ammonium persulfate, Zhao et al. grafted
PANI onto quaternized chitosan, and further crosslinked it by
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using oxidized-dextran’® and benzaldehyde modified polyester™
to construct PANI-based CHs for skin wound repair (Fig. 3A).”
In some other study by Wu et al., the crosslinking agent was
replaced by benzaldehyde-terminated PEG” and N-acryloyl gly-
cinamide.*” However, its need for acid doping to exert conduc-
tivity seriously limits its further application.

Similarly, in situ polymerization of pyrrole was also used to
prepare CHs with uniformly dispersed PPy. In an example,
during the crosslinking process of APS-triggered double-bonded
chitosan, PPy was in situ polymerized to form chitosan-modified
PPy nanoparticles, which were further loaded into a Schiff base
hydrogel through electrostatic interaction.®* In addition, further
studies also confirmed that chitosan contributed to the
dispersion of the pyrrole monomer and enhanced the unifor-
mity of PPy in PPy-chitosan hydrogels formed by in situ poly-
merization.?® Liu et al. achieved a complete end-capping
through the reaction of the pyrrole monomer with the acrylate
group at the end of the hyperbranched polymer. Subsequently,
Fe*" was used to in situ polymerize pyrrole® to form conductive
PPy nanoparticles, which can further act as crosslinking sites to
enhance the strength of the network and give the hydrogel
conductivity (Fig. 3B).*® However, the in situ polymerization
method does not guarantee the complete reaction of the pyrrole
monomer and may produce potential toxicity. Furthermore,
when PPy was directly mixed into a hydrogel,**-** its conductivity
decreased due to the loss of the dopant in a weak alkaline
physiological environment (pH 7.4), and is likely to leach,
resulting in biological toxicity. In response to this problem, it
has been shown that the covalent bond between 3-sulfopropyl
methacrylate (3SPMA) and hydrogel could also prevent PPy
leaching when an anionic 3SPMA monomer was copolymerized
in the hydrogel to in situ doped PPy." In some other typical
examples, polydopamine is coated on the surface of PPy nano-
particles, which improves their dispersion in hydrogels;*
meanwhile, the photothermal conversion ability of PPy can also
realize NIR-assisted photothermal sterilization and reduce
infection (Fig. 3B).">* However, although this can effectively
reduce the potential toxicity of PPy, it still cannot completely
eliminate the hidden dangers.

Polythiophene has always been a topic of interest to many
researchers. In a recent study, researchers combined the strong
light absorption and conductivity of polythiophene with the effi-
cient reactive oxygen species (ROS) generation characteristics of
selenium viologens (SeV®"), and then dipped it into a poly-
acrylamide hydrogel to prepare a new anti-sandwich photo-
electronic wound dressing, which greatly improved the repair of
infected wounds (Fig. 7A).” However, polythiophene is generally
difficult to disperse in water. So, as one of the most widely used
polythiophenes, hydrophobic poly(3,4-ethylenedioxythiophene)
(PEDOT) is surrounded by a hydrophilic poly (styrene sulfonate)
(PSS) shell to form PEDOT:PSS nanopatrticles, which can be easily
suspended in water buffer. In a typical example, PEDOT:PSS was
used for bioprinting with gelatin methacryloyl (GelMA) to form
a complex 3D cell load structure. In addition to the photo-
polymerization of GelMA under visible light, PEDOT:PSS can also
form secondary crosslinking with Ca®" to enhance the network
(Fig. 3C).”* It has also been found that both boron nitrogen

© 2023 The Author(s). Published by the Royal Society of Chemistry
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nanosheets and poly(N-isopropylacrylamide) (PNIPAM) can form
sufficient dynamic hydrogen bond crosslinking points with PSS,
which not only ensured the self-healing and adhesion of PNIPAM-
based hydrogels, but also enhanced the conductivity of PEDOT:PSS
due to the weakened Coulomb interaction between PEDOT and
PSS chains.”> In the above example, PSS acts as a dopant to
increase the dispersion of PEDOT in water. Similarly, sulfated
alginate® and chitosan® have also been proved to achieve similar
effects, but this should not be as effective as PSS. In conclusion,
CHs based on conductive polymers have been greatly developed,
but uneven dispersion, monomer toxicity and other issues are still
the main factors that plagued their development.

2.3 Metal-based CHs

Metals have high conductivity, interesting optical and catalytic
properties, and are easy to manufacture and modify. Therefore,
CHs based on metal nanomaterials have also been studied in the
field of tissue repair recently. Among all the common metals, Ag is
the most widely used one in biological materials. In addition to
conductivity, Ag also has strong antibacterial properties, and it also
has been approved by the FDA. So, a large number of Ag-based
biomaterials are used for antibacterials in burn and infection
wound treatment.” In the presence of a reducing agent, it is easy
for silver ions to form Ag nanoparticles in situ and easy for them to
be loaded into hydrogels, which further expand their application.
For example, in the presence of sodium borohydride (NaBH,),
a rapid formation of silver nanocomposite CHs was achieved via in
situ addition of guar gum-grafted-polyacrylamidoglycolic acid
polymer, and silver nitrate (AgNO;) (Fig. 4A).*® Another study also
confirmed that silver ions can catalyze radical polymerization by
converting water molecules into hydroxyl radicals in the presence
of ammonium persulfate, and further in situ formed hydrogels.”
An interesting phenomenon is that, lignin with antioxidant prop-
erties can in situ reduce silver to form an Ag-lignin nanoparticles,”®
which can trigger a dynamic oxidation-reduction environment,
continuously produce catechol groups, and endow CHs with long-
term and repeatable adhesion.” And the self-polymerization of the
dopamine structure can also form a coating on the outer layer of
silver nanoparticles.”® In addition to nanoparticles, silver nano-
wires are also used as crosslinking units to prepare CHs.' For
example, when silver nanowires were combined with methacrylic
acid alginate, they can be printed on medical-grade patches for
personalized wound treatment.'” However, in addition to the
toxicity of silver itself and the potential thrombosis risk of nano-
particles, the in situ formation characteristics that bring the
advantages of silver nanoparticles will also be accompanied by the
introduction of toxic reducing agents during their preparation. All
these make the application of silver full of indeterminacy.

In addition to silver, gold is also a metal that was often used in
conductive biological materials, and gold nanoparticles'® and
nanorods'® have been used to construct CHs. For example, when
gold nanoparticles were encapsulated into semiconductor-like
metal organic framework ZIF-8, and then loaded into an inject-
able Schiff base hydrogel, the photocatalytic ROS generation
properties of gold nanoparticles in this hydrogel under visible light
played an antibacterial role and further promoted tissue repair.'”
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Besides, injectable CHs containing gold, LAPONITE® nano-
particles, and an extracellular matrix of cardiomyocytes can
improve phenotypic maturation of heart-specific protein.'® Like
Ag, the potential nanotoxicity is also a bottleneck that restricts the
development of gold nanomaterials.

In addition, the introduction of Fe*" was considered to
significantly improve the conductivity of hydrogels, and the
coordination between Fe®" and carboxylic acids and catechol
also enhanced the strength of hydrogels with poly(thioctic acid)
as the skeleton structure and composited with polydopamine
(PDA)."” Besides, a gallium-based liquid metal alloy circuit was
also encapsulated into an adhesive based on polyethylene glycol
(PEG) mixed polydimethylsiloxane (PDMS) to form an
epidermal electronic device.’® And CHs based on dopamine
crosslinking between polydopamine coated GeP nanosheets
and dopamine modified hyaluronic acid have also been devel-
oped.' In general, metal-based CHs have been widely devel-
oped, but also limited by the potential toxicity of nanomaterials,
so further efforts are still needed.

2.4 Ionic CHs

Some studies suggest that when electronic conductors (such PPy,
CNT, PANi and rGO) are incorporated into hydrogels to provide
conductivity, they always transmit discontinuous electrical signals
as information carriers, while the biological system essentially
transmits continuous signals through ions. In addition, electronic
conductors often have many problems, such as uneven dispersion
and conductive paths, unresolved toxicity and so on. In contrast,
ion-based CHs have become a global hot topic because they have
the required flexibility, good conductivity and adjustable
mechanical properties.”’® At the same time, the hydrogel is
macroscopically similar to a solid, but microscopically exhibits
liquid properties. Such characteristics also provide rich channels
for ion migration. This feature contributes to the charge conver-
sion between ionic CHs and tissues, and provides a possibility for
their application in tissue repair.'** Based on the interaction
between positive and negative charges, a large number of ionic
crosslinked CHs have been constructed. A typical representative
should be hydrogels formed by ion-metal coordination between
metal ions and a carboxyl-containing polymer, which include
polysaccharides like hyaluronic acid and alginate, and synthetic
polymers like polyacrylic acid. For example, tri-crosslinked
conductive self-healing hydrogels containing sodium alginate,
acrylamide, acrylated dopamine, acrylated guanine and Ca*>* were
constructed by using UV irradiation."* And macroporous ionic
CHs were formed by introducing biocompatible polyacrylic acid
(PAA) into an oxidized alginate (OSA)/gelatin (GT) hydrogel matrix.
By changing the concentration of PAA, the ionic conductivity (up to
35.36 & 7.72 x 107* S ecm ') and mechanical properties (up to
37.04 £ 2.75 kPa) of this hydrogel can be easily adjusted to match
the requirements of cardiac tissue (Fig. 4B)."® Besides, in the
classical conductive polymer PEDOT:PSS, anionic PSS chains can
not only increase the dispersion of PEDOT, but also interact with
positively charged molecules. For example, when cationic guar
gum is combined with PEDOT:PSS, conductive injectable self-
healing hydrogel dressing can be rapidly prepared in one minute

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Metal-based and ionic CHs. (A) Ag-based CHs. Reproduced from ref. 96 with the permission of Elsevier, copyright 2019. (B) PAA-based
ionic CHs. Reproduced from ref. 110 with the permission of Elsevier, copyright 2021. (C) Zwitterion-based CHs. Reproduced from ref. 114 with

the permission of Wiley-VCH, copyright 2021.

for wound healing in various sports.'** However, the stability of
these CHs cannot be guaranteed when the anions and cations
begin to move freely due to conduction.

Another kind of ionic conductivity is derived from amphoteric
ions. Because of their unique structure with the same positive and
negative charges, amphoteric ions are known for their excellent
biocompatibility and high hydrophilicity. In a typical example,
based on zwitterionic carboxyl betaine, temperature-responsive N-
isopropylacrylamide and glucose-responsive methylacrylamide
phenylboric acid, multi-responsive skin-like ionic CHs were
developed and they could even produce/detect electrical signals in
response to the temperature, strain, and glucose concentration
(Fig. 4C)."* Another zwitterion poly[3-(dimethyl(4-vinylbenzyl)

© 2023 The Author(s). Published by the Royal Society of Chemistry

ammonium) propyl sulfonate] (SVBA) was also introduced into
a poly-acrylamide network, to prepare a conductive dressing with
effective antibacterial properties, strong adsorption, high perme-
ability and good electrical activity."*®

However, ionic conductivity depends on the free movement of
anions and cations, and most of the ions in ionic CHs are limited
to varying degrees within the hydrogel, which greatly limits the
application of ionic CHs. So, when sodium chloride is introduced
into a chitosan-based hydrogel, the migration of chloride ions and
sodium ions in the hydrogel matrix makes them have excellent
conductivity."® And the ionic conductivity was also achieved by
incorporating lithium chloride salt into organic hydrogels.™
Besides, the introduction of ionic liquids also brings new members
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to ionic CHs. In one case, the imidazolidine ionic liquid monomer
and acrylamide were first polymerized by using free radicals, and
then mixed with 10% PVA solution for 5 freeze-thaw cycles to form
a polyvinyl alcohol/acrylamide-ionic liquid hydrogel. The intro-
duction of ionic liquid not only endows the hydrogel with broad-
spectrum antibacterial activity against bacteria and fungi, but
also endows it with excellent conductivity (1.04 S m™*).*"” Similarly,
another polymeric ionic liquid 1-vinyl-3-(3-aminopropyl)-
imidazolium tetrafluoroborate (VAPimBF,) was also used to
develop multifunctional CH dressings with konjac glucomannan.*
However, toxicity and ion leakage are still the biggest obstacles
restricting the application of ionic liquids. But this does not hinder
the rapid development of ionic liquids in tissue sensing, and some
recent reviews have also been well organized in this regard."*"*

2.5 Composite CHs

In addition to the above CHs, some composite CHs have also been
developed, such as a hydrogel/fiber composite scaffold with
conductivity in both hydrogel and fiber phases, which is fabricated
by electrospinning of PANI-based fibers, and then followed by
mixing with the hydrogel precursor solution that is composed of
oxidized polysaccharides, gelatin and graphene." Similarly, some
CHs combining carbon-based materials and conductive polymers,
such as CNTs and PPy, and CNTs and PEDOT:PSS,"* were also
developed. In addition, conductive boron nitride nanosheets (f-
BNNS) are also used to bind to PEDOT:PSS, and the dynamic
hydrogen bond crosslinking point formed between PSS and f-
BNNS also greatly improved the mechanical properties of the
composite CHs.”” On the other hand, PANI is also used to combine
with polydopamine modified silver nanoparticles and PVA to
construct CHs by supramolecular assembly. Due to the conduc-
tivity provided by Ag NPs and PANI, the hydrogel was used for real-
time monitoring of large-scale human movement and showed
a good therapeutic effect in diabetic skin wounds.'” And
a composite nano-CH based on silver-nanoparticles-decorated
reduced GO nanosheets was also prepared by in situ reduction of
GO by using silver.*” In addition, graphene is also combined with
zinc oxide™ and CNTs' to prepare CHs. However, most of the
mixing of conductive components lacks a certain chemical reac-
tion at present, and is limited to simple mixing. Moreover, the
conductivity of composite CHs has not been greatly improved in
order of magnitude, and the conductivity of hydrogels based on
atomic conductivity still lags far behind that of ionic CHs. When
the two are combined, atomic conductivity can almost be ignored.

3. CHs for various tissue repair
applications
3.1 Nerve tissue repair

Considering the inherent existence of an EF and synapses in the
nervous system, conductive biomaterials are widely used to
enhance nerve regeneration. CHs improve cell behaviors
through physical morphology, and chemical and biological
activities, and provide appropriate nutrition for nerve tissue
regeneration."® So, in this section, we will summarize the recent
advances in CHs to enable neural regeneration.
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Studies have shown that the neurite development on the
composite CH based double bond functionalized GO/CNT is
strongly stimulated,*” and the growth of neurites in the hydrogel
loaded with 20 pg mL~' SWCNT increased by 3.3 times
(Fig. 5A).*° The nerve regeneration ability of CHs containing in
situ formed PPy nanoparticles was also confirmed by the
recovery of motor function in a zebrafish brain injury model.*
In further study of rats with spinal cord injury, collagen/
hyaluronic acid hydrogels loaded with bone marrow mesen-
chymal stem cells (BMSCs) and conductive antioxidant bifunc-
tional polypyrrole nanoparticles protect BMSCs from oxidative
damage, restore bioelectrical signal transmission, inhibit
secondary damage, and promote neuronal differentiation
through a synergy between conductivity and electrical stimula-
tion, resulting in significant nerve regeneration and functional
recovery (Fig. 5B).* In another example, a CH using tannic acid
as the crosslinking agent and dopant was prepared by using
electrostatic interaction between the protonated nitrogen group
on PPy and the phenolic hydroxyl group on tannic acid. This
strategy effectively simulates the 3D soft mechanical properties
and electrical transport functions of natural spinal cords.'”
However, the stability of crosslinking based on electrostatic
interaction is still doubtful.

The recruitment of endogenous stem cells and wound
regeneration are two important aspects of promoting in situ
nerve regeneration. However, current strategies rarely combine
both. So, through 3D coaxial printing, researchers constructed
a self-adaptive integrated delivery chip with a chemokine-
anchored outer CH shell and an enzyme-initiated vector/
plasmid DNA composite inner microchannel, which realized
therapeutic protein release, gene delivery and electrical
conduction, and significantly enhanced endogenous mesen-
chymal stem cell recruitment during nerve tissue repair.””® A
PPy-based microfluidic hollow hydrogel fiber, which combines
sodium alginate and polyacrylamide, has a conductivity of 0.32
S m~" which is higher than that of the natural sciatic nerve. It
was further found that the release of an endogenous nerve
growth factor (NGF) in Schwann cells could also be driven by the
use of a figure-eight coil to generate electromotive force through
electromagnetic induction, which contributed to the synergistic
effect of bioelectricity and neurotrophic factors on nerve
repair.’® In another example, researchers have obtained
a granular hydrogel with jamming-induced elasticity, repeat-
able injectability, shear-thinning and self-healing, and high
conductivity (about 10 S m ") by breaking the PEDOT:PSS-based
bulk hydrogel. This granular microstructure enables them to
easily encapsulate neural progenitor cells derived from an
induced pluripotent stem cell (iPSC).*** However, the conduc-
tive materials mentioned in the above studies lack an effective
spatial structure. Inspired by the physiological structure of the
peripheral nerve, with the help of the hierarchical nano-
structures of a Morpho butterfly wing, researchers first per-
formed oxygen plasma treatment on the wings to obtain
hydrophilic surfaces, and then further introduced hydrohalic
acid reduced GO nanosheets. Finally, a brain-derived neuro-
trophic factor (BDNF) was compounded and GelMA was used to
achieve gelation and encapsulation of the above substances.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 CHs for nerve and muscle repair. (A) The growth of neurites in the hydrogel loaded with 20 ng mL™ SWCNTSs increased by 3.3 times.
Reproduced from ref. 30 with the permission of Elsevier, copyright 2016. (B) Collagen/hyaluronic acid hydrogels loaded with bone marrow
mesenchymal stem cells (BMSCs) and conductive antioxidant bifunctional PPy nanoparticles protect BMSCs from oxidative damage, and
promote nerve regeneration and functional recovery through a synergy between conductivity and electrical stimulation. Reproduced from ref.
88 with the permission of American Chemical Society, copyright 2021. (C) CNT-based injectable and conductive cardiac patches. (a) The
methacrylated elastin-gelatin cryogel cardiac patches loaded with CNTs was prepared by low temperature crosslinking of double bonds. And the
patches support a compression force of about 400 N at 95% strain. (b) The injection diagram of the patches and the patches injected into the
lesion site. (c) After 4 weeks of treatment, the representative multi-layer cross-section of the pig heart in the myocardial infarction (Ml) control
group, human cardiomyocyte (HCM) injection treatment, EGC20 patch implant treatment, and the HCM-EGC20 cardiac patch (HECP) treatment
group. Statistical data of the (d) anterior wall thickness and (e) scar thickness of the left ventricle in different treatment groups. Reproduced from
ref. 33 with the permission of Springer Nature, copyright 2021.

Finally, the hydrogel scaffold not only showed the ability to
promote an increase in the neural stem cell neurite length and
guide cell orientation, but also showed good performance in
repairing 10 mm sciatic nerve defect in rats.***”'** However, the
biosafety of this bio-based material and the differences between

© 2023 The Author(s). Published by the Royal Society of Chemistry

different batches are still issues that cannot be ignored. And
due to the physical nature of the hydrogel material, it is still
difficult to induce nerve growth in a directed manner like nerve
conduits, and it is also difficult to achieve nerve growth and
docking inside the hydrogel.
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3.2 Muscle tissue repair

The contraction activity of muscle tissue is responsive to electrical
signals. Therefore, CHs with similar conductivity to that of natural
muscles are promising candidates for muscle tissue engineering
scaffolds. Based on our previous study on the enhancement of
intercellular interaction, maturation and the synchronous calcium
transient of neonatal rat primary myocardial cells (CMs) by using
aniline trimer based electroactive elastomers with micropatterned
surfaces,”” we further prepared 3D aligned conductive cryogels
with conductive and anisotropic compression properties based on
polydopamine coated CNTs by the one-way freezing technique,
and proved that it was a promising scaffold candidate for skeletal
muscle tissue engineering.”®* Cell therapy is a promising strategy
for regenerating heart tissue for myocardial infarction. Therefore,
based on the dynamic Schiff base crosslinking between a chitosan-
aniline tetramer (CS-AT) and dibenzaldehyde-terminated poly-
ethylene glycol (PEG-DA), our group prepared injectable self-
healing CHs as cell delivery carriers for myocardial infarction.
The conductivity of the hydrogel is about 10~ S cm™", which is
very close to that of the natural heart tissue. C2C12 myoblast and
H9C2 cardiomyocyte encapsulated hydrogels also showed good
activity and release behavior.” Unfortunately, the study lacks
further in vivo tests. Therefore, in a more complete study, mela-
mine with a - conjugated ring was used to synthesize a multi-
arm cross-linking agent PEGDA700-melamine, which further
cross-links thiol modified hyaluronic acid (HA-SH) to construct
injectable CHs after adding GO and adipose tissue-derived stromal
cells (ADSCs). Subsequently, a rat myocardial infarction model was
further used, and it was confirmed that these CHs significantly
improve cardiac function, increase the ejection fraction (EF), and
reduce the infarct size by increasing the expression of a-smooth
muscle actin (o-SMA) and connexin 43 (Cx43).*® However, this
method of introducing conductive components through -7
interaction is not very strong. When applied to tissues such as the
heart, it will cause great risks due to the leakage of nanomaterials
at any time. In another study, based on the Fe®* triggered simul-
taneous polymerization of pyrrole and bioadhesive dopamine on
hyperbranched polymer chains, a paintable hydrogel with
conductivity (6.51 + 0.12 x 10™* S em™') comparable to the
normal myocardium (=10~* S em™") can be tightly adhered to the
beating heart within four weeks, thus effectively promoting the
transmission of electrophysiological signals. Finally, cardiac
function reconstruction and myocardial infarction revasculariza-
tion were significantly improved (Fig. 3B).*>*** Besides, by grafting
an aniline tetramer and 4-formylbenzoic acid onto dextran and
further combining it with N-carboxyethyl chitosan (CEC), our
group constructed an injectable self-healing CH based on a Schiff
base, which showed sufficient electrical activity and a conductivity
of about 107> mS cm . Based on the self-healing ability, this
hydrogel can encapsulate cells in situ and support the continuous
release of C2C12 myoblasts, which promotes the regeneration of
skeletal muscle in a volumetric muscle loss injury model.”
Recently, we further developed a conductive porous nano-
composite cryogel based on gelatin (GT) and reduced graphene
oxide (rGO), and further loaded muscle-derived stem cells to
significantly improve the production of new muscle fibers and

3100 | Chem. Sci,, 2023, 14, 3091-3116

View Article Online

Review

blood vessels.” In addition, studies have shown that PAA can
endow hydrogels with micro-uniform conductivity. Compared with
the cardiomyocytes in a hydrogel embedded with an electronic
conductor, the cardiomyocytes cultured in the PAA composited
hydrogel showed better orientation and elongated sarcomeres.
After the hydrogel containing PAA was implanted in rats with
myocardial infarction, it significantly inhibited cardiac fibrosis,
promoted cardiac recovery and new capillary formation (Fig. 4B)."*°
As a conductive nanomaterial, CNTs have been confirmed to
support the growth of cardiomyocytes and stimulate action
potential in cardiomyocytes, and to simulate the role of the Pur-
kinje network." In order to obtain high conductivity, an ultra-high
CNT concentration (20 mg mL ') was incorporated into an
injectable macroporous cryogel based on methacryloyl gelatin and
methacryloyl elastin. Subsequent studies have shown that the
scaffold can promote myocardial cell maturation, calcium tran-
sient and synchronous contraction, and improve the electrical
response and left ventricle pumping function of the infarcted heart
in rats with myocardial infarction.*® However, the anatomical
structure and beating characteristics of a rat heart are different
from those of a human heart, which also affects the reliability of
the experimental results. Therefore, the researchers further tested
the effect of a scaffold loaded with cardiomyocytes differentiated
from human pluripotent stem cells on cardiac function recovery in
porcine myocardial infarction (Fig. 5C).** But the ultra-high
concentrations of CNTs may cause potential thrombosis risk,
which is still a huge hidden danger that cannot be ignored.

3.3 Skin tissue repair

The conductivity of normal skin tissue ranges from 10 ~7 to 2.6 x
107 S em "% Studies have confirmed that after a skin defect is
generated, the positive charge in the wound combines with the
negative charge around the entire skin to form an endogenous EF,
which is conducive to the migration of macrophages, neutrophils
and keratinocytes in the closure of the wound. However, wound
defects are often not conducive to the smooth charge transfer of
the endogenous EF. Therefore, additional EF stimulation has been
introduced as an alternative method (Fig. 6),"”'* because it has
been shown to guide the migration and proliferation of epithelial
cells and fibroblasts by activating ion channels and downstream
transduction signals, as well as inducing angiogenesis and
immune regulation.’® However, an external electrical stimulation
device also has the disadvantages of large volume, low wound
adaptability, easiness to cause skin inflammation and mental
stress. Moreover, due to the larger impedance of human skin
(~MQ ecm?) clinically used direct current stimulation may require
a higher voltage, which is harmful to the human body. Fortunately,
the use of CHs to cover the wound can effectively assist electrical
stimulation therapy, conducting current to the entire wound
area."* This has attracted wide attention in the past few years,
and related research has shown a rapid growth trend.®®¢”7373140142

Based on our previous research on conductive polymers, Zhao
et al. applied PANI-based CHs to skin wounds in 2017, and
confirmed that CHs containing PANI could better promote skin
tissue repair (Fig. 3A).” Since then, various CHs have been devel-
oped to deal with different types of skin wounds. For an incisional

© 2023 The Author(s). Published by the Royal Society of Chemistry
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wound, the coordination of protocatechuic aldehyde and Fe*
enhanced the tissue adhesion of the CHs."* For full-thickness
wounds, tissue adhesion based on dopamine,*****'” tannic
acid,* etc. not only supports the durable and strong adhesion of
CH dressings to the wound, but also gives the dressing antioxidant
properties.***>* For example, in a CH based on the Schiff base
reaction between N-carboxyethyl chitosan and an oxidized HA-
aniline tetramer, the aniline tetramer not only exerts conductive
properties, but also has antioxidant functions, which can effec-
tively remove excess ROS generated at the wound site.” In addi-
tion, in the face of the first major problem that seriously threatens
wound repair-bacterial infection, a large number of antibacterial
CH dressings based on Ag,””* antimicrobial peptides,” small
molecule compound diphlorethohydroxycarmalol,*** and drug
silver sulfadiazine® have been developed to effectively control
bacterial colonization. Adaptive CHs based on dynamic bonds
adapt and fill the wound by changing their shape under the action
of gravity or external force, and reconstruct their cross-linking
network through the continuous cracking and regeneration of
dynamic cross-linking bonds to promote the hemostatic repair of
irregular or deep, complex and frequently moving wounds.*>"**'%*
Furthermore, intelligent wound care strategies, including imme-
diate monitoring and response to wound conditions and multi-
tactile sensing reconstruction, have also been reported.'
However, skin wound repair is a complex and continuous process,
and conductive wound dressings that can truly coordinate and
promote healing at various stages still pose great challenges.

The priority for infected wounds is bacterial control. Therefore,
the antibacterial properties derived from  antibiotic
release,??32939407376142 photothermal properties of CNT,**** GO,***
and PPy, and even the synergistic antibacterial of GO's photo-
thermal antibacterial properties and BNN6's NO production anti-
bacterial properties etc. have been reported to effectively control
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the bacterial reproduction in skin wounds, and promote healing.**
In addition, the conductive PANI fragment had strong antibacte-
rial activity against biofilms of Pseudomonas aeruginosa and
Staphylococcus aureus, and also showed great application prospects
in infected chronic wounds.®*'*” Under the dual stimulation of
visible light and electricity, selenoviologen-appendant poly-
thiophene (SeV**-PT)-containing polyacrylamide hydrogels can
rapidly generate renewable and stable ROS, and quickly and effi-
ciently kill bacteria (6 s), which shortens the healing time of full-
thickness wounds infected by bacteria to 7 days (Fig. 7A).*°
Furthermore, for chronic wounds infected by typical drug-resistant
bacteria MRSA, the dynamic redox system of Ag-lignin in CHs
ensures lasting antibacterial properties and adhesion;”®
MXene@CeO, nanocomposites not only showed the photothermal
antibacterial properties of MXenes, but also combines the antiox-
idant properties of CeO, (Fig. 2C);*” Silver nanoparticle modified
reduced GO nanosheets (Ag@rGO) synergize the dual antibacterial
properties of Ag and photothermal properties of Ag@rGO;"** and
a triple antibacterial CH system combining antibiotic doxycycline
sustained release, quaternary ammonium cations and photo-
thermal properties of GO was also established (Fig. 9A).* Although
photothermal antibacterial can kill bacteria efficiently and quickly,
it should also be noted that short-term high temperature can also
cause damage to surrounding tissues, which in turn inhibits
repair. Therefore, appropriate temperature control in in vivo
treatment to balance sterilization and tissue damage is still
a problem.

In diabetic wounds, high glucose inhibits the production of
hypoxia-inducible factor-la. (HIF-1a), which is the transcription
factor that regulates the expression of the vascular endothelial
growth factor (VEGF). So, researchers prepared a hydrogel that
combines a hypoxia-inducible system with a conductive
network by an original sequential interpenetrating technology
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Fig. 6 Current of injury and effect of electrical stimulation on wound healing. (a) Normal skin has a transcutaneous current potential of 20—-50
mV; injured skin generates injury current. (b) (i) Electrical stimulation enhances blood flow and tissue oxygenation, inhibits bacterial growth and
decreases wound oedema in the inflammatory phase, (ii) increases wound contraction, keratinocyte and fibroblast proliferation, angiogenesis
and collagen deposition in the proliferative phase, and (iii) enhances collagen maturation and remodeling in the remodeling phase of wound

healing. Reproduced from ref. 138 with the permission of Wiley-VCH,
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Fig. 7 CHs for skin repair. (A) The selenoviologen-appendant polythiophene (SeV2*-PT)-containing polyacrylamide hydrogels rapidly generate
renewable and stable ROS, which quickly and efficiently kills bacteria (6 s), and shortens the healing time of infected wounds to 7 days. Reproduced
from ref. 90 with the permission of Wiley-VCH, copyright 2021. (B) Adhesion-enhanced phenylboronic acid, benzaldehyde bifunctional poly-
ethylene glycol-co-poly(glycerol sebacic acid)/dihydrocaffeic acid and L-arginine co-grafted chitosan/polydopamine-coated reduced GO/Met-
formin (PEGS-PBA-BA/CS-DA-LAG/GO/Met) hydrogels with pH/glucose dual stimuli-responsive metformin release ability show a promoting effect
on the healing of chronic athletic type Il diabetic foot wounds. (a) Schematic diagram of hydrogel preparation and application. (b) Adhesion and (c)
pH/glucose dual stimuli-responsive metformin release ability of the CHs. (d) Representative images of the rats' feet in the experimental and control
groups during repair. Reproduced from ref. 21 with the permission of American Chemical Society, copyright 2022.

based on fast “click chemistry” and slow enzyme-mediated
crosslinking. Specifically, the first CH network was rapidly
formed by thiol-ene click reaction between hyperbranched
poly(B-amino ester)-tetraaniline (PBAE-TA) and thiolated hya-
luronic acid (HA-SH). Subsequently, vanillin-grafted gelatin
(Geln-van) and laccase (Lac) were added to the hydrogel
through the Schiff base reaction to complete the second

3102 | Chem. Sci, 2023, 14, 3091-3116

network. The finally prepared hydrogel can mediate the oxygen-
consuming enzymatic reaction and up-regulate the expression
of HIF-1a and connexin 43, and further promote angiogenesis,
immune regulation, and the reconstruction of hair follicles and
the dermal collagen matrix in diabetic rat wounds.*** Deferox-
amine (DFO), an FDA-approved iron chelating agent for the
treatment of hemochromatosis, is also used to up-regulate the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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expression of HIF-1« and the VEGF in diabetic wounds through
pH-responsive release.” Other substances that are used to
promote blood vessel regeneration also included exosomes.'*®
In addition, in order to cope with the complex wounds caused
by diabetes, CHs with continuous real-time monitoring of
wound infection, mechanical strain, and blood glucose
(Fig. 4C),"* as well as intelligent management dressings inte-
grating bionics, drug response release, wound secretion detec-
tion and motion sensing have also been reported (Fig. 11).”°
Especially for diabetic foot wounds, CHs combined with
PDA@Ag and PANI not only promote angiogenesis, accelerate
collagen deposition, and inhibit bacterial growth, but also have
potential in epidermal sensors.'® Furthermore, rGO@PDA-
based CHs for pH/glucose dual-responsive release of metfor-
min, a specific drug for type II diabetic foot wounds, have also
been recently developed (Fig. 7B).**

It is well known that skin repair is divided into four phases:
haemostasis, inflammation, proliferation and remodelling.
According to the above studies, we can conclude that in the
haemostasis phase, conductive hydrogels, especially ionic
conductive hydrogels, can accelerate haemostasis by activating
the coagulation pathway with their own electrical charge. In the
inflammation phase, conductive materials facilitate the migra-
tion of macrophages and neutrophils, promote blood flow and
tissue oxygenation, inhibit bacterial growth, reduce trauma
oedema and play an antioxidant role. In the proliferation phase,
conductive materials can promote wound contraction, enhance
fibroblast proliferation, stimulate VEGF production by endo-
thelial cells, promote angiogenesis and accelerate collagen
deposition. In the remodeling phase, conductive hydrogels
promote collagen maturation and remodeling (Fig. 6). In
conclusion, in the past five years, CHs used for skin wound
repair have shown great growth. However, skin wound repair is
a complex and continuous process. There is still a long way to go
for achieving morphologically perfect and functionally
complete skin repair.

3.4 Bone repair

The mismatch between the modulus of conventional CHs and
the ultra-high mechanical strength of bone tissue leads to the
application of CHs in bone tissue repair and lags far behind that
in other tissues, and the related research is also relatively small
in amount. In one case, quaternized chitosan was used to
prepare antibacterial scaffolds for bone tissue engineering.**
On this basis, PANI was immobilized and introduced on a qua-
ternized chitosan backbone by ammonium persulfate initiated
in situ aniline polymerization. Subsequently, an injectable and
self-healing CH was prepared with dextran oxide as the cross-
linking agent.” In addition, the main osteogenic markers, such
as ALP and calcium, were enhanced when the chitosan grafted
PANI-based CHs were co-cultured with MC3T3-E1 cells.** When
PANI is encapsulated in a Ge]MA hydrogel which can be printed
by digital projection stereolithography, the CHs are proved to
promote mineral deposition.*** However, there is no significant
difference in its ability to promote mineral deposition
compared with the GeIMA hydrogel. When PANI was prepared
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into fibers by electrospinning and then compounding with
a hydrogel containing graphene, a hydrogel/fiber scaffold with
conductivity in both a hydrogel and fiber was constructed. The
experiment confirmed that the hydrogel/fiber composite was
better than a hydrogel alone in supporting adhesion, prolifer-
ation and morphology of human osteoblast-like cells.**®
However, the in vivo biological toxicity of PANI must also be
considered. In another hydrogel/fiber composite scaffold, CNTs
were introduced as a nanofiber structure into an adenine/
thymine functionalized heparin hydrogel, which was con-
structed by Watson-Crick base pairing. Compared with human
adipose-derived stem cells (ASCs) cultured on the normal
hydrogel, the spontaneous osteogenic ability of ASCs in the
above CNT-based CH scaffold after combination with bone
morphogenetic protein-2 (BMP-2) was 4 times higher."*® In the
further study of CNT-based CHs, the dispersion of CNTs was
enhanced by PEG modification, and the incorporation of CNTs
into a hydrogel after mixing with black phosphorus nanosheets
was also confirmed to help bone tissue regeneration, because
the in situ oxidation of phosphorus can produce stable release of
phosphate.*

However, the above studies were all limited to in vitro and
cellular-level tests. Therefore, the two recent studies further
verified the potential of CHs to promote bone tissue regenera-
tion in animal models. In one of the studies, B-CD-
functionalized reduced GO (rGO) was used as a conductive
component and mixed with a gelatin methacrylate (GM)/
acryloyl-B-cyclodextrin (Ac-CD) based photo-crosslinked hydro-
gel. Subsequent studies also confirmed that the CHs accelerated
the in vivo bone defect repair in a rat skull defect model by
promoting collagen deposition and mineralization.”® In another
study, in order to cope with the decrease in autophagy in BMSCs
derived from osteoporosis, rapamycin with an autophagy
regulation function was added to the silver nanowire based
CHs, which restored the decreased cell activity of BMSCs by up-
regulating the autophagy level, thereby significantly improving
bone integration, and inhibiting the infection in an osteopo-
rosis environment in vivo through the antibacterial effect of
silver (Fig. 8)."*

In conclusion, most studies remain at a simple level to explore
the effects of hydrogels on osteoblast differentiation, and still lack
more practical cases of CHs in animal experiments of bone injury
in vivo.

4. Mechanism of CHs promoting
tissue repair

The introduction of conductive materials in a hydrogel has
brought some special properties to make the CHs have better
performance in promoting tissue repair. In this part, we will

mainly discuss the role of the special properties of hydrogel
dressings given by conductive materials in promoting tissue repair.

4.1 Anti-bacterial

In the process of wound repair, bacterial infection is always the
biggest hidden danger hindering tissue repair, and this is often
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