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By harnessing an energy transfer process, new photocatalyzed
[2 + 2]-cycloadditions occurring between y-alkylidene—y-lactams
and unsaturated substrates have been developed. The reaction
mode is particularly powerful because it leads to the formation of
different high value sp>-rich frameworks and further diversity can
be introduced through cascade sequences wherein strain releasing
opening of the cyclobutane intermediates gives access to complex
polycyclic alkaloid frameworks.

Achieving greater structural novelty' and a higher sp® carbon
count® have been identified as key ways to improve both the
quality of pharmaceutical hits and the frequency with which
they can be found. Thus, these two features have become
essential prerequisites when developing new screening sets.
As a result, three-dimensionally rich spirocyclic compounds®
have attracted particular attention. Interest that has been
bolstered by the fact that the rigidity of these highly saturated
frameworks endows the compounds with further benefits; such
as, the lowering of the entropy penalty incurred when docking
at a receptor site®® and the potential to reduce receptor
promiscuity.’??

During our work on functionalizing y-lactams,* we noticed
that lactams of type 1 (1a or 1b, Scheme 1A) had an inclination
to isomerize substantially (from E to Z) when irradiated with
blue light in the presence of [Ru(bpy);]Cl, (1a/b — 2a/b). This
behavior was also seen with Ir(ppy)s, albeit with lower final Z/E
ratios; whereas, the direct irradiation of 1 without a catalyst led
to only 8.5% isomerization. Lactam 1a’ proved to be inert to the
isomerization conditions. Interestingly, this observation is in
keeping with the known isomerization of the structurally
similar heam-metabolite, bilirubine, which forms the basis of
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light therapy for neonatal jaundice.’ Thus, we began to develop
a strategy predicated on the hypothesis that this isomerization
involved an energy transfer reaction which might be harnessed
to give a series of novel photocatalytic [2 + 2]-cycloadditions.
The initial target groups would be architecturally complex
sp>-rich cyclobutanes formed by intra- or intermolecular reactions.
Cyclobutanes not only feature in many biologically active
compounds,® but are also useful intermediates due to their
potential to undergo ring strain releasing reactions.” There are
other methods to make cyclobutanes,® but these are mostly
eclipsed by the widespread use of [2 + 2]-photocycloadditions.’
Within this class the historic variant involves the olefin absorbing
UV light directly.” Milder and newer methods using visible light
and a photocatalyst operate either via an energy transfer (EnT)" or
single electron transfer (SET) mechanisms."* The photocatalytic
variants require some form of extended conjugation because it
affords the substrates with lower triplet state energies and lower
redox potentials to facilitate the generation of stabilized open shell
intermediates (resonance stabilization, Scheme 1B). This feature
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Scheme 2 Optimization of the intramolecular [2 + 2]-cycloaddition of
4a. *Determined by *H-NMR of the crude reaction mixture. “Isolated yield.
°E/Z isomerization was observed (E/Z = 2.4:1).

has, therefore, often limited reaction scope to substrates bearing
aromatic substituents. Photocatalyzed isomerization of conjugated
alkenes from E to Z is also an energy transfer process sometimes
used to access cis alkenes from their more readily synthesized trans
analogs."” It was for this reason that we believed the previously
observed isomerization might indicate that y-alkylidene—y-lactams
could be uniquely suitable non-aromatic substrates for photocata-
lyzed [2 + 2]-cycloadditions to form new cyclobutanes via an energy
transfer mechanism. Notably, a number of the N-substituted
cyclobutane products would share key structural features with
natural alkaloids and pharmaceuticals.***®

We began our investigation with the facile synthesis of the
v-alkylidene-y-lactam 4a from furan 3a and allylamine using
our previously developed photocatalytic protocol (Scheme 2).¥
Substrate 4a has a double bond on the amide side chain that
could partner with the exocyclic double bond in a cross [2 + 2]-
cyclization to yield the tightly packed sp’-rich polycycle 5a.
Indeed, when 4a was treated with PC1 in CH3CN (0.1 M) and
irradiated with blue LEDs, the desired reaction occurred; however,
the reactions did not reach completion even after 24 h (entries 1
and 2). In surveying photocatalysts, it was found that organic dyes
PC2, PC3 and methylene blue (MB), all of which have only
moderate triplet energies,"* were not competent catalysts for the
reaction (entries 3-5). In contrast, PCs 4 and 5, which have high
triplet energies,"* proved to be highly efficient converting 4a into
5a within 8 h in high yield (92 and 94% yield, respectively). The
reaction did not proceed in the absence of the photocatalyst or
light; although with the former, a small degree of double bond
isomerisation did take place (E:Z, 2.4:1, entry 8). Extended
conjugation in the substrates is a requirement as shown by
the inert nature of 4a’ to the reaction conditions (entry 10).
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Scheme 3 Photocatalytic intramolecular [2 + 2]-cycloaddition reactions
of unsaturated lactams of type 4 and 6.

We expanded the set of substrates 4 and showed that they all
reacted efficiently (85-95% yield, 1.6:1-2:1 dr, Scheme 3). Sub-
strates that include groups sometimes sensitive to radicals and/or
other photocatalyzed reactions they also successfully provided the
desired products (5d and 5e). Interestingly, framework 5 contains
the skeleton of the natural amino acid 2,4-methanoproline,'®
which, along with its analogs, has been shown to exhibit a range
of biological activities.'® It was also possible to relocate the partner
double bond in these intramolecular [2 + 2]-photocycloadditions;
for example, substrates of type 6 afforded polycyclic products 7 with
excellent diastereoselectivity (7a-7¢, 92-96% yield, Scheme 3).

Next, we sought to move on to the more challenging inter-
molecular variant of the reaction in which the y-alkylidene-y-
lactam would react with a second molecule containing an
electron deficient double bond. The reaction would give us
access to relatively rare 5,4-spirocycles of type 9 (Scheme 4). A
variety of combinations were tested in which lactams 8 were
combined with an excess (10 equiv.) of the unsaturated carbonyl
compound under the previously optimized conditions (0.5% of
PC5 in CH3CN). All the reactions worked well, affording the
products 9 in good to high yield (9a-9g, 60-82%) and with
excellent regioselectivity. Despite the fact that every reaction
furnished a mixture of diastereomers (1.6:1, by 'H NMR), the
products with a keto or aldehyde group were epimerized to a
single stereoisomer upon chromatographic purification (9a-9c,
9e-9g). Only in the case of 9d (bearing an ester group less able to
drive epimerization) did the reaction afford a 1:1 ratio of
diastereomers which remained unchanged during purification.
The intermolecular [2 + 2]-cycloaddition with the more electron-
rich alkene styrene also works, but it is quite messy.

An interesting result emerged when product 9g was treated
with formic acid. The acidic conditions catalyzed a retro-
Mannich reaction, presumably, driven by opening of the
strained cyclobutane ring, which was followed by nucleophilic
attack of the aromatic group on the resulting N-acyliminium
cation, to furnish lactam 10a as a sole product (92% yield). Such
N-containing aromatic polycycles of type 10 constitute the basic

This journal is © The Royal Society of Chemistry 2022
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Scheme 4 Photocatalytic synthesis of spirocyclic compounds of type 9
via intermolecular [2 + 2]-cycloaddition. °The reaction occurred similarly
using 0.5% of PC4.

skeleton of many natural alkaloids (10a has been used as a
precursor for the synthesis of erysotramidine, Scheme 5).7%”
The retro-Mannich ring opening of 9¢” was intriguing because
it opened up the possibility for developing cascade sequences
that could diversify the type of products accessible to us
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Scheme 5 Functionalization of y-alkylidene—y-lactams based on photo-
catalytic [2 + 2]-cyclization followed by cyclobutane ring opening. “The
second step was performed using PTSA-H,O (2 equiv.) in CH,Cl,.
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through this methodology (8 — 10-12, Scheme 5). In practice,
lactams 8, with internal nucleophilic groups at either R* or R?,
first underwent the [2 + 2]-photocycloaddition using an excess
(10 equiv.) of acrolein or methyl vinyl ketone. The intermediates
of type 9 were not isolated, but, instead, acid was added to attain
a range of alternative products. More specifically, when R' bore
an electron rich aromatic group, treatment with formic acid
catalyzed further transformation into products of type 10 (overall
8 — 10a-10c in one pot with yields ranging from 60 to 69%).
Similarly, when an appropriate nucleophile was appended to R?,
various products could be attained depending on the nature of
that nucleophile. For example, spirocycles 11a and 11b were
formed diastereoselectively in good yields in a single operation
starting from lactam 8 (for 11a formic acid was used while for
11b PTSA was employed, Scheme 5). These compounds consti-
tute the skeleton of marine Clavelina'’® and marineosins'’?
alkaloids. Furthermore, chain homologation (a form of C-H
activation) could be achieved for substrates with no internal
nucleophile through a similar acid catalyzed cyclobutane ring
opening reaction sequence. Thus, lactams of type 12 could be
synthesized in one pot (8 — 12a-12c, yields 61-72%, Scheme 5).
The retro-Mannich ring opening does not work with ester 9d,
because the ester group is less electron withdrawing compared
to aldehydes and ketones.

Finally, we wanted to investigate the reaction of y-alkylidene-
v-lactams with 2,3-dimethylbuta-1,3-diene. 1,3-Dienes have
previously been utilized in photocycloadditions, producing
either vinylcyclobutans or cyclohexenes depending on which
mechanism is in operation (EnT or ET)."® When the optimized
conditions were applied to conjugated lactams of type 8 in the
presence of 2,3-dimethylbuta-1,3-diene (4 equiv., Scheme 6),
spirocyclic compounds of type 13 were formed as the sole
products (13a-13c, 70-74% yield, Scheme 6). Monitoring the
reaction by '"H NMR, we observed the formation of the vinylcy-
clobutane 9h (Scheme 6) during the early stages of the process.
This intermediate subsequently disappeared and spirocyclic
product 13 was formed. This observation implies two sequential
steps; an initial [2 + 2]-cycloaddition yielding 9h with subsequent
rearrangement to 13 to give overall a [4 + 2]-transformation.

Stern-Volmer quenching and voltammetry studies were
undertaken (see, ESIt) and the results were consistent with an
energy transfer from the excited state of the photocatalyst to the
v-alkylidene—y-lactam being the mechanistic mode operating in

PC5 (0.5%)%, MeCN (0.1 M)
blue LEDs, 20 h

Me
Me

4 equiv via

13

13a: R =-Bn, 74%
13b: R = -Me, 72%
13c: R = -cyclopropyl, 70%

Scheme 6 Photocatalytic cyclization of unsaturated y-alkylidene—y-
lactams with 2,3-dimethylbuta-1,3-diene. “The reactions occurred similarly
using 0.5% of PC4.
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these [2 + 2] cycloadditions. More precisely, compound 8a
quenches the excited state of PC5 at a significantly higher rate
than methylvinyl ketone or 2,3-dimethylbuta-1,3-diene and the
redox potentials of PC4 and PC5 are not appropriate for initia-
tion of an electron transfer pathway with 4a (see ESL¥).

Overall, a series of mild and highly efficient methodologies
to access a diverse range of unusual rigid sp®-rich spirocycles,
complex alkaloid frameworks or chain homologated products
have been developed. Synthesis of the latter two groups was
achieved by incorporating ring strain relieving cyclobutane
opening into highly effective one pot cascade reaction
sequences. The methodologies all rely initially on a novel
photocatalyzed (visible light + PC) [2 + 2]-cycloaddition between
v-alkylidene—y-lactams and an unsaturated partner which
occurs via an energy transfer mechanism.
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