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Expanding organofluorine chemical space: the
design of chiral fluorinated isosteres enabled by 1(1)/
() catalysist

Stephanie Meyer, Joel Hafliger and Ryan Gilmour ©*

Short aliphatic groups are prevalent in bioactive small molecules and play an essential role in regulating
physicochemistry and molecular recognition phenomena. Delineating their biological origins and
significance have resulted in landmark developments in synthetic organic chemistry: Arigoni's venerable
synthesis of the chiral methyl group is a personal favourite. Whilst radioisotopes allow the steric footprint
of the native group to be preserved, this strategy was never intended for therapeutic chemotype
development. In contrast, leveraging H — F bioisosterism provides scope to complement the chiral,
radioactive bioisostere portfolio and to reach unexplored areas of chiral chemical space for small
molecule drug discovery. Accelerated by advances in 1(1)/I(n) catalysis, the current arsenal of achiral 2D
and 3D drug discovery modules is rapidly expanding to include chiral units with unprecedented
topologies and van der Waals volumes. This Perspective surveys key developments in the design and

rsc.li/chemical-science

1. Introduction

Fluorinated architectures traverse the functional small molecule
landscape,' where they manifest themselves in blockbuster drugs
(1-3),> essential agrochemicals (4-6)* (Fig. 1) and high-
performance materials such as Teflon®.* Ubiquitous in modern
society, fluorinated motifs continue to feature in the vanguard of
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synthesis of short multivicinal fluoroalkanes under the auspices of main group catalysis paradigms.

focussed molecular design strategies® with short perfluoroalkyl
groups such as CF; and CF(CF;), now enjoying “privileged”
status.*” In a reductionist sense, the functional diversity of fluo-
rinated materials can be attributed to the physicochemical
consequences of C(sp*/sp’)-H>" — C(sp*/sp)-F°~ structural
editing® and the new regions of chemical space that result.” The
(stereo)electronic impact of this (bio)isosterism appears subtle
but, when appropriately leveraged, can induce counterintuitive
conformational behaviour,' elicit novel molecular recognition
modes' and augment stability.»>* Whilst this latter consequence
of fluorination has been widely lauded as a triumph in bioactive
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Fig. 1 Achiral organofluorine chemical space. Selected examples of
blockbuster drugs and agrochemicals containing achiral fluorinated
motifs (1-6).

small molecule discovery, it has obvious environmental conse-
quences.”” This is unsurprising given the conspicuous dearth of
fluorinated natural products® and, by extension, regulatory
enzymes to facilitate the construction and degradation of this
class of organohalogens.* Reconciling the benefits of short,
fluorinated motifs as essential modulators of health and devel-
opment, with environmental considerations, continues to
aggravate this complex relationship. This juxtaposition provides
a powerful impetus to explore new areas of organofluorine
chemical space to expand the current portfolio of drug and
agrochemical discovery modules. Augmenting the current
arsenal of achiral 2D and 3D motifs to include chiral 3D topol-
ogies will open up a wealth of opportunities,”® and simulta-
neously reduce dependence on perfluorocarbon moieties: this
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may allow existing degradative enzymes to be harnessed and thus
mitigate environmental accumulation.'® This personal Perspective
reflects on the possible motivating factors that have led to a surge
of interest in the generation of short, chiral fluorinated groups
and highlights the important role of I(1)/I(u) catalysis as an
enabling technology in this arena.

2. Short aliphatic groups in (bio)-
organic chemistry
2.1 Radioisotopes to stable isotopes

The frequency with which simple methyl groups are encountered
in the natural product repertoire mirrors the success of its elec-
tronic antipode (CF;) in contemporary drug discovery. However,
striking disparities in the stability of the respective isotopes of H
and F render the development of a chiral CF; group improbable.
In the case of the parent methyl group, it is possible to exploit the
three natural isotopes of hydrogen (*H, >H and *H) to generate
a stereogenic center and this has been instrumental in the course
of mechanistic enzymology (Fig. 2, left, the chiral methyl
group).’” In addition, deuterium is regularly leveraged in drug
discovery to delineate pharmacokinetic parameters'® and is now
a key feature of deutetrabenazine (Austedo®) to treat Hunting-
ton's disease.” Although fluorine has a plethora of known
isotopes, it is practically and synthetically implausible to trans-
late this into a “chiral” CF; group. This provides an opportunity
for creative endeavour in conceiving and evaluating new chem-
ical entities based on short aliphatic groups (C;-C;,). Inspiration
can be gleaned in abundance from the bioactive small molecule
repository (vide infra), where both linear and branched groups
(e.g. ‘Bu in ginkgolide B) are well represented. This will ultimately
result in an array of new chiral entities with distinct properties
that will complement the aliphatic series.

2.2 Expanding organofluorine chemistry beyond achiral 2D
and 3D chemical space

In our quest to design short, chiral fluorine-containing groups,
and having disregarded isotope discrimination blueprints from
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Fig. 2 Radio- and fluorinated-bioisosteres: expanding achiral 2D and
3D motifs into chiral 3D chemical space.
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the outset, the formal oxidation of a C, fragment was an
appealing starting point. Vicinal oxidation is pervasive across
the bioactive small molecule spectrum and is intimately
involved in orchestrating structure-function interplay.>® Exam-
ples abound and include the immunosuppressant Rapamycin
(Sirolimus) (7), the anti-tumour agents Taxol (Paclitaxel) (8) and
Vinblastine (Velban) (9), and the serine palmitoyltransferase
inhibitor Myriocin (Thermozymocidin) (10) (Fig. 3). It is perti-
nent to note that this natural product provided the inspiration
for Fingolimod (Gilenya®) (11) to treat relapsing remitting
multiple sclerosis.>* A conspicuous feature of these bioactive
molecules is the presence of both short alkyl fragments and
vicinal oxidation patterns. Indeed, this latter feature commonly
occurs in the low molecular weight APIs such as the broncho-
dilator Salbutamol (Ventolin®) (12).>> It was envisaged that
integrating these two common structural features in the devel-
opment of a short, chiral fluorinated group would also provide
a much-needed solution to generating a bioisostere of the
vicinal diol motif. Whilst OH — F bioisosterism is well estab-
lished,® vicinal difluorination strategies are comparatively
underdeveloped. This is noteworthy given the interest in halo-
genated natural products containing contiguous halogen
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Fig. 3 Vicinal oxidation patterns and short aliphatic groups in bioac-
tive molecules.
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centres,” including the prominent synthesis of a fluorinated
analogue of the sulfolid danicalipin A by Carreira and co-
workers.**

The conspicuous absence of selective vicinal difluorination
protocols is in stark contrast with the prominence of fluorina-
tion patterns in the drug discovery process. This may reflect
a limitation in synthetic organic chemistry as opposed to a lack
of suitability as drug discovery modules. This echoes the
sentiments expressed by former NIH Director Zerhouni that
“One interesting result of the NIH Roadmap development process
came when we surveyed scientists to find out what the stumbling
blocks for biological sciences were. The number one stumbling block
turned out to be synthetic organic chemistry.“*> As Seebach com-
mented in his celebrated essay “Organic Chemistry: Where
Next?”*® “molecular function and activity now occupy centre
stage”: realising this objective will require practitioners of
organic chemistry to address deficiencies in the synthesis
arsenal, such as the fundamental task of adding molecular
fluorine across an alkene in a mild and selective manner.
Achieving parity with vicinal chlorination and bromination, and
expanding the protocol to enable the synthesis of telescoped
multivicinal fluoroalkanes requires innovative solutions. This
latter aspect is particularly urgent given the potential of these
materials in the life sciences and materials fields (vide infra).

2.3 Multivicinal fluoroalkanes (C,-Cg)

Multivicinal fluoroalkanes are an evolving class of hydrocarbon/
polyfluorocarbon hybrids that are composed of repeating CHF
units. The simplest member of this organohalogen class may be
accessed by the programmed addition of fluorine across an
alkene unit (Fig. 4).”

Although fluorine has a small van der Waals radius, it is
highly electronegative and therefore the inclusion of multiple C
(sp®)-F bonds along a carbon chain regulates conformation and
physicochemistry. The relative configuration of the system gives
rise to distinct topologies that manifest stabilising, second-
order hyperconjugative interactions (ccy — o¢r*; the vener-
able stereoelectronic gauche effect in 1,2-difluoroethane 13)**°
and mitigate 1,3-repulsion.”®*® The latter acyclic conformational
control aspect becomes particularly dominant in systems where
n =3 due to formation of the venerable Leonard Link.*®*® Since
each carbon homologation enables the generation of 2"
stereoisomers (for n homologated carbons), these materials
have the potential to significantly expand organofluorine
chemical space (13): this necessarily requires the development
of effective, stereocontrolled methods to facilitate synthesis.
Pioneering studies, most notably by O'Hagan and co-workers,?””
have culminated in the synthesis and physicochemical evalua-
tion of several multivicinal fluoroalkane scaffolds. These elegant
routes leverage (asymmetric) oxidation/stereospecific fluo-
rodeoxygenation protocols to efficiently access the target scaf-
folds of interest. Applications range from the design of peptide
mimics to regulate conformation (Fig. 5), through to the intro-
duction of novel liquid crystals. Pertinent examples include the
strategic use of fluorination to explore conformational effects in
the neurotransmitter GABA (14, 15/16 and 17/18),*"** to

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Multivicinal fluoroalkanes: merging hydrocarbons with per-
fluorocarbons to generate conformational diversity (* denotes a ster-
eogenic centre).

compare the erythro- and threo-diastereoisomers of 1,2-difluor-
odiphenylethanes and 2,3-difluorosuccinic acid derivatives,*
and to regulate the conformation of simple peptides.***”
Augmentation to the vicinal a,B,y-trifluoro array has been ach-
ieved and applied to the synthesis of peptides,***° liquid crys-
tals** and unnatural monosaccharides (e.g. 19 and 20).*> More
recently, the (terminal) tetrafluoro structural unit has been
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of cyclic multivicinal fluoroalkanes by

explored in analogues of the multiple sclerosis drug Gilenya®
(11 - Fig. 3, 21 and 22).* Remarkably, the O'Hagan laboratory
have also reported synthesis routes to (internal) vicinal tetra-
fluoro-,**¢ pentafluoro- (23)*” and hexafluoro-** motifs (24).

These advances in the stereocontrolled synthesis of linear
multivicinal fluoroalkanes have been complemented by equally
impressive synthesis campaigns to generate cyclic motifs
(Fig. 6). Many of these materials, in which the fluorine atoms
are in an all-syn relationship, display significantly lower log P
values than the parent hydrocarbon. Examples of these facially
polarised “Janus” motifs include the all-cis 1,2,3-tri-
fluorocyclopropane 25 (¢f. 26)* and the tetrafluorocyclohexane
27 (cf. 28).°° It is interesting to note that the all-cis hexa-
fluorocyclohexane 29 has the highest calculated dipole of any
organic molecule (6.2 D).** These materials, together with
selectively fluorinated tetralins (30),”* hold great potential as
drug discovery modules owing to their well-defined conforma-
tions and physicochemical profiles.”

3. Catalysis-based strategies to
access short (=Cg), chiral fragments

The structural and physicochemical diversity intrinsic to mul-
tivicinal fluoroalkanes is expansive and renders this class of
materials valuable in expanding (chiral) organofluorine chem-
ical space. This is evident from a comparative analysis of the van
der Waals radii [A*] of common short alkyl groups with their
selectively fluorinated counterparts (Fig. 7).**** Not only are the
two partially fluorinated groups (I and II) chiral, they have
volumes and 3D topologies that are complementary to struc-
turally related aliphatic groups. Furthermore, the inclusion of
short, chiral fluorinated moieties in the drug discovery portfolio
redresses the current bias that favours isotropic groups over
anisotropic fragments. The simplest member of the multivicinal
fluoroalkane family is structure I, which is based on 1,2-
difluoroethane (13). These structures are intriguing on account
of the stabilising hyperconjugative interactions that give rise to
the iconic gauche conformation."*”'*»< This phenomenon can
be rationalised by invoking stabilising 6y — o*c g interac-
tions and gives rise to a temperature-dependent dipole moment
(du/dT <0) (Fig. 6, left). The gauche effect is a unique feature of
fluorinated materials and is not observed in the corresponding

Chem. Sci,, 2021, 12, 10686-10695 | 10689
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Fig. 7 Calculated van der Waals radii [A%] of short aliphatic and fluo-
rinated aliphatic groups. Inset: the stereoelectronic gauche effect and
the temperature-dependent dipole moment intrinsic to 1,2-
difluoroethane.

chloro- or bromo-systems due to overriding repulsion.*®
Collectively, these structural features are compelling arguments
for the development of efficient strategies to allow small chiral
groups to be assessed in the context of contemporary drug
discovery.

3.1 Catalysis-based vicinal difluorination of alkenes

Despite the popularity of fluorine bioisosterism in medicinal
chemistry, and the notable advances in fluorination technolo-
gies that this has inspired,* the catalytic, stereoselective vicinal
fluorination of alkenes is comparatively under-developed.*®
Direct fluorination using gaseous F, in a carrier gas been re-
ported by Rozen and Brand,””®® but this approach presents
safety and operational challenges for non-specialists that must
be addressed (Fig. 8). As is evident from the conversion of

The Direct Addition of Elemental Fluorine to Alkenes
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Fig. 8 The direct vicinal difluorination of alkenes via 1()/1(n) catalysis.
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coumarin 31 to product 32, the vicinal difluorination proceeds
in a syn-selective fashion as was determined by coupling
constant analysis (*/ur = 30 and 6 Hz). As a consequence, HF
elimination occurs to generate the fluorinated coumarin 33.
Tius has demonstrated that XeF, enables the 1,2-difluorination
of alkenes, thereby mitigating the safety concerns associated
with handling strongly oxidising fluorine gas. Despite the
operational simplicity of this approach, XeF, is prohibitively
expensive and translation to an enantioselective, catalysis-
based platform would be challenging.®* In 1998, Hara, Yoneda
and co-workers reported the direct difluorination of alkenes
using stoichiometric p-TolIF, (35) and Et;N-HF complex.® This
I(m)-reagent-based approach proceeds via a type II invertive
mechanism (Type II;,), resulting in a net syn-addition (34 —
36).%

Inspired by this seminal study, groups led by Jacobsen® and
Gilmour* independently developed catalytic versions of this
venerable transformation. Both strategies are predicated on the
oxidation of simple aryl iodide organocatalysts, in the presence
of an amine-HF complex, to generate the incipient ArIF, species
in situ.*>*® Whilst the Gilmour protocol employed Selectfluor®
and various amine : HF ratios to generate 35 in situ, the Jacob-
sen method employed m-CPBA as the terminal oxidant in
conjunction with Olah's reagent to form the resorcinol deriva-
tive 37. Both groups disclosed preliminary validation of enan-
tioselectivity, and this has since been expanded further to
enable the generation of chiral motifs with broad functional
group tolerance (vide infra). A scalable, electrochemical variant
of the vicinal difluorination of alkenes mediated by p-TolIF, has
also been reported by Lennox and co-workers.®”

In 2018, Gilmour and co-workers reported an enantiose-
lective, catalytic vicinal difluorination of electron deficient
styrenes (e.g. 38) using a chiral resorcinol-derived aryl iodide
(39, Fig. 9).°® This study revealed the importance of Brgnsted
acidity in biasing regioselectivity (vicinal versus geminal, 40 and

Enantioselective Vicinal Fluorination: Regulating Regioselectivity via Brgnsted Acidity
Gilmour and co-workers [Ref. 68]
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Fig. 9 The enantioselective, catalytic vicinal difluorination of electron
deficient styrenes. * 98 : 2 e.r. after recrystallisation from CH,Cl,/n-
pentane.
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Enantioselective Vicinal Difluorination of Cinnamamides
Jacobsen and co-workers [Ref. 71]
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Fig. 10 The enantio- and diastereoselective vicinal difluorination of
cinnamamides.

41, respectively) as a function of the amine : HF ratio. Varying
amine : HF ratios are achieved by mixing commercially avail-
able amine-HF complexes, such as NEt;-3HF and Olah's
reagent (Pyr-9HF). It is pertinent to note that the importance of
Bronsted acid activators was reported by Cotter et al.*® in the
activation of iodobenzene dichloride**” by trifluoroacetic acid.

Jacobsen and co-workers have reported an enantio- and
diastereo-selective vicinal difluorination of cinnamamides (42
— 44) using a chiral resorcinol-based aryl iodide (43).”* Regio-
selectivity is regulated through the anchimeric assistance of a N-
tert-butyl amide substituent thereby suppressing phenonium
ion rearrangement to deliver the geminal product (vide infra).
This elegant solution enables the target difluorides to be
generated in up to 98% ee (Fig. 10).

To date, this methodology®* has been leveraged to validate
the 1,2-difluoromethylene motif as a chiral hybrid bioisostere of
trifluoromethyl and ethyl (BITE group)® in several small mole-
cule drug candidates (Fig. 11). Examples from this laboratory
include the synthesis of a series of Vorinostat (Zolinza®)
derivatives (45) containing a pendant chain capped with
avicinal difluoro motif.”> The HDAC inhibitory behaviour of this
compound set was evaluated relative to the non-fluorinated
systems.” In all cases, the FDA approved Vorinostat
(zolinza®) was used as a control.” Several of the compounds
containing the 1,2-difluoroethylene unit showed greater in vitro

The BITE Group: A Chiral hybrid bioisostere of CF3 and Et
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Fig. 11 Small molecule drugs modified with the BITE group.
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potency than the clinically approved drug itself against HDAC1.
This trend was found to be general with the BITE-modified
HDAC inhibitors performing significantly better than the ethyl
derivatives.

BITE-modified analogues of the multiple sclerosis drug
Fingolimod (Gilenya®) (46) have also been reported.” Through
detailed physicochemical analyses, it was possible to demon-
strate that introduction of the BITE group is accompanied by
a significant reduction in lipophilicity compared to the ethyl
and trifluoromethyl systems. Most recently, the BITE group has
been validated as a hybrid bioisostere of the trifluoromethyl and
ethyl groups using matrix metalloproteases as structural
probes.” To that end, a series of modified barbiturate inhibitors
(47) were evaluated as inhibitors of MMPs 2, 8, 9 and 13.”” The
IC5o values of the BITE-modified inhibitors were found to
intersect those of the corresponding Et and CF; derivatives.*

The vicinal difluorination of alkenes has recently been
extended to a-trifluoromethyl styrenes to generate fluorinated
analogues of the isopropyl group (Fig. 12). Although the hep-
tafluoroisopropyl group has become a privileged motif in
agrochemical research®” and currently features in drug candi-
dates™ and organocatalysts,” routes to generate a chiral
analogue remained conspicuously absent. Exposing simple o-
trifluoromethyl styrenes (48) to fluorination conditions (various
amine-HF complexes, Selectfluor®) in the presence of a chiral
resorcinol catalyst ((R,R)-49),* it was possible to generate chiral
products efficiently (50) and with good levels of enantiose-
lectivity.®* An interesting conformational feature of this motif is
that the C(sp®)-CF; bond is orthogonal to the plane of the aryl
ring, thereby enabling stabilising hyperconjugative interac-
tions,* whilst mitigating 1,3-allylic strain.** Moreover, the
stereoelectronic gauche effect manifests itself as was deter-
mined by single crystal X-ray analysis of several derivatives. In
an extension of this methodology, the vicinal difluorination of
a-trifluoromethyl-p-difluoro-styrenes (51 — 52) was achieved
through in situ generation of p-TollF, (35) by treatment of p-Toll
with Selectfluor® in the presence of pyr-9HF complex.* In line
with the previous analysis, the structure displayed a degree of

Vicinal Difluorination to Generate a Chiral, Pentafluorinated Isopropyl Group
[Ref. 81]
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Fig. 12 Generating fluorinated surrogates of the isopropyl group via
10)/1(m) catalysis.
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pre-organisation with one of the C(sp®)-CF; bonds aligned with
the m-system of the adjacent aryl ring. Curiously, a phthalimide
derivative was found to display orthogonal C-F...C=O inter-
actions with a neighbouring molecule in the solid state. This
may prove to be useful given the increasing prominence of these
interactions in medicinal chemistry.*"**

3.2 Catalysis-based geminal difluorination of alkenes

Hypervalent iodine platforms have a venerable history in halo-
genation chemistry,®® and have also been successfully har-
nessed to generate geminal difluorination patterns (Fig. 13).
Seminal examples include Hara and Yoneda's use of stoichio-
metric quantities of p-TolIF, (35) to enable a difluorinative ring
contraction of alkenes.”” The antipodal ring expansion has
recently been reported by this laboratory to generate con-
formationally biased fluorinated tetralins.> A silver-mediated
geminal difluorination of styrenes has been developed by
Szabo and co-workers using a fluoroiodoxazole reagent.®®

A. Catalytic Geminal Difluorination via in situ Generation of p-TollF,
[Ref. 91]

p-Toll (10 mol%)
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CHCl3

53:R=H
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B. Enantioselective, Catalytic geminal Difluorination of alkenes
[Ref. 93]
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C. Catalytic Enantioselective Synthesis of Difluorinated Alkyl Bromides
[Ref. 95]
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Fig. 13 Geminal difluorination of alkenes to generate difluor-
omethylated stereocenters.
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Moreover, Murphy and co-workers have disclosed the geminal
difluorination of phenylallenes using stoichiometric p-TolIF,
via Lewis acid activation.®

Catalysis-based platforms have been developed to comple-
ment these reagent-based approaches and include Kitamura
and co-workers protocol to generate 2,2-difluoroethylarenes
from simple styrenes using p-Toll as the catalyst with m-CPBA as
the oxidant.®® This laboratory has also reported the geminal
difluorination of styrenes and extended it to include a-
substituted styrenes bearing fluorine-containing groups
(Fig. 13A; 53 — 55 and 54 — 56).”* The difluorination of alkenyl
N-methyliminodiacetyl boronates has been reported by Fan and
co-workers to generate synthetically useful building blocks for
subsequent diversification.”” Particularly relevant to this
Perspective dedicated to short, chiral fluorine-containing groups
is the development of an enantioselective, catalytic 1,1-
difluorination of alkenes (57) to construct difluoromethylated
stereocenters (58) by Jacobsen and co-workers (Fig. 13B).”* Key
to the success of this transformation is a stereospecific pheno-
nium ion rearrangement® to deliver highly versatile building
blocks with excellent levels of enantioselectivity. The same
laboratory has also leveraged a conceptually related reaction
design, proceeding via bromonium ion formation, to process
simple vinyl bromides to optically active difluorinated alkyl
bromides (Fig. 13C, 59 — 61).°> Bromonium ion formation is
a feature in the geminal difluorination of a-(bromomethyl)-
styrenes reported by this laboratory to generate electrophilic
linchpins (Fig. 13D, 62 — 64).°° Although the transformations
discussed in Section 3.2 do not generate a stereogenic centre at
the fluorine bearing carbon atom, their inclusion in this
Perspective is instructive. Collectively, I(m) species have been
central to the development of catalysis-based methods to enable
the 1,1- and 1,2-difluorination alkenes, whilst also facilitating
access to 1,3-difluoro motifs.?”~%°

4. Conclusions

Short, alkyl groups are prominent in the natural product
repertoire and are a logical consequence of the iterative
biosynthesis algorithms that underpin their genesis. The
importance of these seemingly inconspicuous motifs in biology
is reflected in the development of many synthetic bioactive
small molecules in which the “magic methyl” effect manifests
itself. Chiral antipodes of these structural units have a vener-
able history in mechanistic enzymology and would augment the
existing drug module portfolio. However, with the exception of
branched hydrocarbons, this requires the impractical intro-
duction of deuterium and tritium. Hydrogen to fluorine (bio)
isosterism, to generate multivicinal fluoroalkanes, proves an
alternative to address this challenge and develop materials with
unique properties. In what may be considered a conceptual
merger of two units that are prevalent in nature; namely short
alkyl groups and (vicinal) oxidation patterns, a plethora of
selective processes have been reported that leverage I(r)/I(u)
catalysis to expand organofluorine chemical space into chiral
regions. Integrating these fluorine-containing fragments in
focussed drug and agrochemical discovery libraries will fully

© 2021 The Author(s). Published by the Royal Society of Chemistry
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reveal the physicochemical potential of these materials which
will, in turn, provide an impetus for further innovation in the
field. In recent years, the seemingly innocent replacement of H/
OH by F in stereochemically complex biomolecules has led to
striking changes in orientation when bound by the target
enzyme: this has broad implications for molecular recognition
and chemical biology in a more general sense.'***** Expanding
organofluorine chemical space has an important role to play in
the design of molecular function and main group catalysis is
currently centre stage.
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