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ctions in electrosprays of water do
not always correspond to those at the pristine air–
water interface†
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Adriano Santana,abc Robert J. Nielsen,f William A. Goddard, III f
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The recent application of electrosprays to characterize the air–water interface, along with the reports on

dramatically accelerated chemical reactions in aqueous electrosprays, have sparked a broad interest.

Herein, we report on complementary laboratory and in silico experiments tracking the oligomerization of

isoprene, an important biogenic gas, in electrosprays and isoprene–water emulsions to differentiate the

contributions of interfacial effects from those of high voltages leading to charge-separation and

concentration of reactants in the electrosprays. To this end, we employed electrospray ionization mass

spectrometry, proton nuclear magnetic resonance, ab initio calculations and molecular dynamics

simulations. We found that the oligomerization of isoprene in aqueous electrosprays involved minimally

hydrated and highly reactive hydronium ions. Those conditions, however, are non-existent at pristine

air–water interfaces and oil–water emulsions under normal temperature and pressure. Thus,

electrosprays should be complemented with surface-specific platforms and theoretical methods to

reliably investigate chemistries at the pristine air–water interface.
The air–water interface plays a critical role in numerous natural
and applied contexts, such as atmospheric chemistries,1–3

precipitation,4 spray coatings,5 and materials synthesis.6,7

Indeed, it has been hypothesized that microdroplets generated
during the splashing of waves in oceans could have been the
chemical reactors leading to the origin of life.8–10 Despite its
ubiquity and importance, a variety of fundamental phenomena
at the air–water interface remain incompletely understood,
such as the specic adsorption of ions11–13 and chemistries
therein.10,14–20 The interfacial region, with a typical thickness do
z 0.5 nm, separates the gas-phase (vapor) from the condensed
phase (water), two drastically different regions in terms of
hydration – reactions spontaneous in one phase are forbidden
in the other.21 In fact, the chemical activities of species at the
air–water interface can depart signicantly from those in the
bulk, as has been demonstrated by surface-specic techniques,
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including vibrational second harmonic generation and sum
frequency generation,20,22,23 and polarization-modulated
infrared absorption reection spectroscopy,10,13 and indirect
approaches, including NMR24 and confocal uorescence
microscopy.25 Even though vibrational spectroscopy-based
techniques report directly on thermodynamic properties of
the air–water interface, they suffer from interpretational ambi-
guities and limitations due to low signal-to-noise ratios.26–32

Thus, new techniques with higher sensitivity and unambiguous
response are needed to help resolve the poorly understood
features of the air–water interface while providing benchmarks
to judge previous interpretations.33 In this work, we assess the
application of electrospray ionization mass spectrometry
(ESIMS) to unravel the thermodynamic properties of pristine
air–water interface (Henceforth, we will use the qualier ‘pris-
tine’ to refer to the air–water interface that is not under the
inuence of any external sources/agents, such as electrical
voltage or a drying gas).

In the recent years, ESIMS, which has been widely used to
characterize ionic/molecular species in polar/apolar solvents,34

has been adapted to investigate the pristine air–water interface.
In the standard conguration, ESIMS experiments entail the
formation of electrosprays by the application of electrical
potential and/or pneumatic pressure leading microscale drop-
lets with excess electrical charge; those microdroplets pass
through a glass/metallic capillary maintained at elevated
This journal is © The Royal Society of Chemistry 2019
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temperature (�473 K) to evaporate the solvent and facilitate the
mass spectrometric detection of analytes downstream.34–38 In
the experiments designed to investigate chemistries at the air–
water interface, electrosprays containing one or more reac-
tant(s) are intersected with gases or other electrosprays con-
taining other reactant(s) followed by mass spectrometric
detection. For instance, using this platform, thermodynamic
properties of the pristine air–water interface have been explored
under ambient conditions, including the relative concentra-
tions of interfacial hydronium and hydroxide ions and their
activities39–43 leading to interpretations that have elicited
scientic debate.11,12,17–19,44,45 Further, by intersecting electro-
sprays of pH-adjusted water with gaseous organic acids,40

isoprene,41 and terpenes,40,41,46,47 researchers observed instan-
taneous protonation (<1 ms), and in some cases oligomeriza-
tion of organics, which led them to conclude that as the bulk
acidity of water approaches pH # 3.6, the pristine air–water
interface behaves as a superacid. While a clear understanding of
the emergence of the putative superacidity at the air–water
interface is unavailable, we note that in the condensed phase
proton-catalyzed oligomerization of isoprene (or olens in
general) requires 60–80% concentrated H2SO4 solutions (pH <
�0.5).48 Similar rate enhancements in aqueous electrosprays
have also been observed for the syntheses of abiotic sugar
phosphates,15,49 the Pomeranz–Fritsch synthesis of isoquino-
line,50 the reaction between o-phthalaldehyde and alanine,51

and the ozonation of oleic acid,52 among others.16,53 Herein, we
assess the relationships between the chemistries observed in
aqueous electrosprays to those at pristine air–water interfaces;
we also seek to decouple the factors that contribute to the
mechanisms underlying reported dramatic rate enhancements
by addressing the following questions:

(i) Do aqueous electrospray-based platforms report on ther-
modynamic properties of the pristine air–water interface?

(ii) Do accelerated reactions in aqueous electrosprays arise
only from the signicant enhancement of the hydrophobe–
water (air–water) interfacial area? If yes, the mechanisms
underlying the dramatic rate enhancements therein should be
insightful in explaining the accelerated organic reactions in oil–
water emulsions also referred to as ‘on-water’ catalysis.54–57

(iii) Are the rate accelerations in aqueous electrosprays
driven solely by the non-equilibrium conditions therein, espe-
cially the enhanced concentration of reactants in the micro-/
nano-droplets due to the evaporation of water?58–61

(iv) Are gas-phase reactions implicated in the acceleration of
chemical reactions in aqueous electrosprays?36,44,50,62–64

To address those questions, we investigated the oligomeri-
zation of isoprene by proton nuclear magnetic resonance (1H-
NMR), a non-invasive technique, as a complementary plat-
form to the ESIMS. Questions (i and ii) were addressed by
comparing the effects of enhancing the water–hydrophobe
interfacial area in both liquid–vapor and liquid–liquid systems;
questions (iii and iv) were addressed by varying the capillary
voltages, ionic strengths of the aqueous solutions electro-
sprayed and intersected with gas-phase isoprene, and 1H-NMR
analysis of condensed vapor from the electrosprays. To high-
light the role of hydration in electrosprays, we performed
This journal is © The Royal Society of Chemistry 2019
quantum mechanical calculations employing density func-
tional theory (M06 avor).

Materials and methods

In our experiments, we used isoprene (99% purity from Sigma-
Aldrich), Mili-Q deionized water (18 MU m resistivity), D2O
(99.9% purity from Sigma Aldrich), ethanol (absolute from
Merck Millipore), acetone (HPLC standard from VWR Chem-
icals), NaCl (>99% purity from Sigma Aldrich), HCl (36.9%
concentration from Fisher Scientic), DCl (35% concentration
99% deuterium purity from Sigma Aldrich), and NaOH (>97%
purity from Sigma Aldrich) to adjust the pH and ionic strengths.

ESIMS

All experiments were conducted in a commercial Thermo
Scientic – LCQ Fleet electrospray ionization mass spectrom-
eter in the positive ion mode, where a DC potential of 6–8 kV
was applied to the needle, the tube lens voltage was 75 V, the
sheath gas ow rate was 10 arb, the pressure was 1.2 torr at the
convection gauge and 0.8 � 10�5 torr at the ion-gauge, the ow
rates of analytes were controlled by a calibrated syringe pump
and ranged between 1–10 mL min�1, the distances from the ion
source and the inlet to the mass spectrometer were �2 cm, and
the distance between the electrospray and the tube ejecting
isoprene was 1 cm.

1H-NMR

All NMR spectra were acquired using a Bruker 700 AVANAC III
spectrometer equipped with a Bruker CP TCI multinuclear
CryoProbe (BrukerBioSpin, Rheinstetten, Germany); Bruker
Topspin 2.1 soware was used to collect and analyze the data.
We transferred 100 mL of the (A1) samples into 5 mm NMR
tubes, followed by 600 mL of deuterated chloroform (CDCl3). The
1H-NMR spectra were recorded at 298 K by collecting 32 scans
with a recycle delay of 5 s, using a standard 1D 90� pulse
sequence and standard (zg) program from the Bruker pulse
library. The chemical shis were adjusted using tetramethylsi-
lane (TMS) as an internal chemical shi reference. The (A)
samples and a sample of as-purchased isoprene (B) were
prepared by transferring 100 mL of each to 5 mm NMR tubes,
and then adding 550 mL of deuterated water D2O to the NMR
tubes. The 1H-NMR spectra were recorded by collecting 512
scans with a recycle delay time of 5 s, using an excitation
sculpting pulse sequence (zgesgp) program from the Bruker
pulse library. The chemical shis were adjusted using 3-trime-
thylsilylpropane sulfonic acid (DSS) as an internal chemical
shi reference. The free induction decay (FID) data were
collected at a spectral width of 16 ppm into 64 k data points. The
FID signals were amplied by an exponential line-broadening
factor of 1 Hz before Fourier transformation.

Computational methods

To gain molecular-level insights into the protonation and olig-
omerization of the isoprene in our experiments, we performed
(and benchmarked) DFT calculations at the following levels: (A)
Chem. Sci., 2019, 10, 2566–2577 | 2567
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Fig. 1 Summary of the experiments (A), (B), and (C) reported in this
work. (A) Liquid–liquid collisions: mixtures of isoprene, pH-adjusted
water, and air in the volumetric ratio 1 : 6 : 3 was agitated at 1200 rpm
(for 6, 60, 360 minutes) followed by ESIMS analysis of the organic
phase. (B) As-purchased liquid isoprene was injected directly in the
ESIMS. (C) Gas–liquid collisions: electrosprays of water (pH range 1–
13) were collided with a stream of air carrying isoprene gas, followed
by mass spectrometric detection (Methods).
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geometry and transition state optimization with M06/6-311G*
followed by single point calculations with a larger basis set (6-
311++G**);65 (B) geometry and transition state optimization
with M06/6-311++G**; (C) geometry and transition state opti-
mization with M06/6-311++G**, followed by single point
calculations with CCSD(T).66 We calculated the internal reaction
coordinate (IRC) along the potential energy surface connecting
adduct (A), transition state (TS), and product (P). Frequency
calculations of the optimized geometries yielded Hessians with
zero and one imaginary frequency, respectively, for the minima
and the transition state structures. The force constants from the
frequency calculations on the TS structures were subsequently
used to calculate the IRC path along the forward and backward
direction of the transition vector, connecting transition state to
the minima.67,68 The vibrational frequencies from the Hessians
were also used to provide the zero-point energies and vibra-
tional contributions to the enthalpies and entropies. The free
energies of isoprene at 1 atm were calculated using statistical
mechanics for ideal gases.

Molecular simulations

Born–Oppenheimer molecular dynamics (BOMD)66 simulations
were carried out with the M06 functional and 6-311G(d,p) basis
set in the NVT ensemble coupled with a Nose–Hoover thermo-
stat69 at 298 K. The total simulation times were 5 ps with 1 fs
timesteps.

We used the Gaussian 09 soware package70 to perform
these calculations and simulations.

Results

We investigated chemical reactions between pH-adjusted water
and isoprene (C5H8, 2-methyl-l,3-butadiene, MW¼ 68 amu, and
solubility in water, S ¼ 0.7 g L�1 at normal temperature and
pressure (NTP): 293 K and 1 atm). We chose to examine reac-
tions of isoprene because (i) we wanted to reproduce previous
experimental results to ensure a clear comparison, (ii) isoprene
is an important biogenic gas whose fate in the atmosphere is
not completely understood,1,41,71,72 and (iii) we could investigate
chemistries in electrosprays and emulsions by taking advantage
of the low boiling point of isoprene (Tb ¼ 307 K) and the high
vapor pressure at NTP (p ¼ 61 kPa).73

As delineated in Fig. 1 and summarized in Table 1, we report
on the following sets of ESIMS (detection limit ¼ �1 nM) and
1H-NMR (detection limit ¼ �10 mM) experiments:

(A) Liquid–liquid collisions

At NTP, we combined liquid isoprene with pH-adjusted H2O or
D2O, 1 # pH # 13, in a volumetric ratio 1 : 6 : 3 (iso-
prene : water : air), agitated the emulsions at 1200 rpm in
a vortexer for 6, 60, or 360 minutes, and analyzed the organic
phases aer phase-separation by ESIMS and 1H-NMR. Since the
air in the reaction vessels was saturated with isoprene, those
experiments also ensured the presence of the products of
reactions between the gas-phase isoprene and pH-adjusted
water in the organic phase.
2568 | Chem. Sci., 2019, 10, 2566–2577
(A1) Condensed vapors from electrosprays of organic phase
from (A). Aer the liquid–liquid collision reactions (A) were over
and the organic phases were electrosprayed in ESIMS for char-
acterization, we condensed the sprays and analyzed them by 1H-
NMR. The 1H-NMR-based investigation of the reaction products
from experiments (A) before and aer electrospraying was
carried out to pinpoint the effects, if any, of electrospraying on
the formation of the products.

(B) Pure components

We analyzed as-purchased isoprene, acetone, and ethanol by
ESIMS and 1H-NMR.

(C) Gas–liquid collisions

We created electrosprays of aqueous solutions with varying
ionic strengths and pH, and intersected them with a stream of
gas-phase isoprene (0.48 g min�1 carried by N2 gas owing at
600 mL min�1, i.e. isoprene gas concentration was 800 mg L�1)
followed by mass spectrometric detection (Methods).

Hereaer, throughout the paper, we will refer to our exper-
iments on the liquid–liquid collisions as (A), condensed vapors
from the electrosprays (A1), pure isoprene as (B), and gas–liquid
collisions in the ESIMS as (C) (Fig. 1, Table 1).

Intriguingly, the ESIMS spectra from the above-mentioned
experiments (A) at pH ¼ 1, (B), and (C) at pH ¼ 1 were nearly
identical aer normalizing with the maximum intensity
(Fig. 2A–C and Section Sa†). The positions of the main peaks in
the mass spectra tted the general formula, [(Isop)n$H]+, which
corresponded to covalently bonded oligomers of isoprene with
one excess proton. In Section Sb and Fig. S1† we present the
evidence proving that the peaks did not correspond to phys-
isorbed clusters. In experiments (A), the mass spectra remained
This journal is © The Royal Society of Chemistry 2019
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Table 1 Experimental summary

(A) Liquid–liquid collisions (B) Pure components (C) Gas–liquid collisions

Water(L)–isoprene(L) Isoprene(L), acetone(L), ethanol(L) Isoprene(G)–water(L)
ESIMS Organics injected Components injected Water injected
pH 1–13 — 1–13
pNaCl — — 1–9
Shaking time 6, 60, 360 min — —
Voltage 6 kV 6 kV 6–8 kV
Capillary temperature 150 �C 30–330 �C 150 �C
1H-NMR Organics from (A) and condensed vapors (A1) Isoprene(L) —
pH 1.5 — —
Shaking time 6, 60, 360 min — —
Aqueous phase D2O, H2O — —
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the same as the duration of mixing varied from 6 min to 6 h
(Fig. S2†). We also observed numerous secondary peaks
between the primary [(Isop)n$H]+ peaks. While a detailed char-
acterization of those peaks falls beyond the scope of this work,
we speculate that they are composed of C1–C4 fragments
covalently bonded with the [(Isop)n$H]+ oligomers, for example
m/z ¼ 233 (Fig. 2C and S3†).

Next, we investigated the role of water pH on the oligomer-
ization of isoprene in experiments (A) and (C). When the
products were characterized by ESIMS, we noticed that the
oligomers [(Isop)n$H]+ appeared when the aqueous phase had
pH # 3.6 (Fig. 3). Those observations have been reported
Fig. 2 ESIMS spectra for sets of experiments A, B, and C: the dominant p
the secondary peaks correspond to fragments of the isoprene molecul
phase from the emulsion of liquid isoprene in water at pH ¼ 1 and air (1
spectra of as-purchased liquid isoprene. (C) ESIMS spectra of products o
(Methods).

This journal is © The Royal Society of Chemistry 2019
previously18,40,41,46,47 and ascribed to the superacidity of the air–
water interface at pH # 3.6. However, we also found that the
ESIMS spectra from both experiments, (A) and (C), yielded
oligomers [(Isop)n$H]+ for the acidic, basic, and pH-neutral salty
solutions (Fig. 3; compare Fig. 2A and C with Fig. S3† panels C1,
C2, and C3). We note that for electrosprays produced from pH >
7 water and salty water, counterions, such as Na+, could inu-
ence the fate of reactions, but we have not investigated those
factors.

In experiments (A), aer the emulsions comprising liquid
isoprene, liquid water at pH¼ 1.5, and air (containing saturated
gaseous isoprene) were vigorously mixed (for 6min, 60min, and
eaks correspond to protonated oligomers of isoprene, [(Isop)n$H]+, and
es bonded to the primary oligomers. (A) ESIMS spectra of the organic
: 6 : 3 v/v/v) that was agitated at 1200 rpm for 360 minutes. (B) ESIMS
f gas–liquid collisions between water (pH ¼ 1) and gas-phase isoprene

Chem. Sci., 2019, 10, 2566–2577 | 2569
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Fig. 3 Influence of the ionic strength and ESI voltage on the ESIMS
spectra of experimental sets (A) and (C). On the y-axis, we plot the
averagemass spectral intensity of all the oligomeric peaks [(Isop)n$H]+,

given by
X

n

In=n, normalized by the highest datum in each plot. (A)

Liquid–liquid collisions: the ESIMS spectra demonstrated protonation
and oligomerization of isoprene after emulsions of isoprene in water
with pH# 3.6 and pH > 12 and air in a 1 : 6 : 3 ratio (v/v/v) were agitated
at 1200 rpm for 360 minutes. (C) Gas–liquid collisions: the ESIMS
spectra demonstrated protonation and oligomerization of isoprene
gas after collision with electrosprays of water with pH # 3.6 and pH >
12, and pH-neutral salty solutions. Curves are added to the plots to aid
visualization.
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360 min) we compared the organic layers aer phase separation
by 1H-NMR. We also recorded the 1H-NMR spectra of pure, as-
purchased isoprene (B). To our surprise, the 1H-NMR spectra
from all of the set (A) samples were identical to those of set (B),
indicating that the effect of the duration of shaking (6–360
min), the pH (1–13), the isotope (H2O versus D2O) and the
presence of gaseous isoprene colliding with pH-adjusted water
did not lead to any oligomers within the detection limit of 10
mM (Fig. 4A and B). To investigate further, we condensed the
vapors from the ESIMS exhaust (A1) aer injecting the set (A)
samples (1# pH# 13), and obtained their 1H-NMR spectra. All
of (A1) samples showed spectra similar to each other (Fig. 4A1).
The 1H-NMR spectra of (A) and (B) showed no sign of oligomers
in the products: they contained a singlet at 1.87 ppm due to the
resonance of the 3 protons in CH3; three dublets at 5.02 ppm
due to the resonance of the two protons H5b and H5b (coupling
constant, J ¼ 13.2 Hz), 5.09 ppm due to the resonance of H1a
with a cis-coupling constant, J ¼ 10.8 Hz; a dublet at 5.20 ppm
due to the resonance of H1b with a trans-coupling constant of J
¼ 17.5 Hz; and two dublets at 6.47 ppm due to the resonance of
the protons H2a and H2b with the corresponding trans- and cis-
coupling constants, J¼ 17.5 Hz and J¼ 10.8 Hz. In contrast, the
1H-NMR spectra of the condensed vapors from the electrosprays
(A1) of the organic phase aer the liquid–liquid collisions (A)
demonstrated a dramatic increase in the complexity of the
spectrum,74 indicating that the protonation and oligomeriza-
tion of isoprene took place exclusively in the electrosprays.
2570 | Chem. Sci., 2019, 10, 2566–2577
Discussion

Our investigation of experiments (A) with 1H-NMR revealed that
a signicant enhancement in the hydrophobe–water surface
area was not sufficient for observable rate accelerations in
emulsions of isoprene (gas and liquid) with pH-adjusted water
at NTP conditions. On the other hand, analysis of experiments
(A), (B), and (C) by ESIMS and experiments (A1) with 1H-NMR
unambiguously demonstrated that the chemical reactions
took place exclusively in aqueous electrosprays – the acidity,
basicity, and saltiness of water all promoted the reactions.
Further, as the capillary voltage was increased from 6 kV to 8 kV,
the inection points in experiments (A) and (C) shied such
that the oligomers [(Isop)n$H]+ were detected at lower ionic
strengths (Fig. 3C). Collectively, these ndings contradict
previous claims of ‘superacidity’ of pristine air–water interfaces
at pH # 3.6.

Next, we sought to identify the mechanisms underlying the
protonation and oligomerization of isoprene in electrosprays of
mildly acidic water (experiments C). As discussed above,
a variety of parameters could inuence reactions therein,
including electrical voltage, salts, pH, electrochemical reac-
tions, concentration of reactants in rapidly evaporating drops,
and gas-phase reactions.34–36,44,50,63,64,75–79 Interestingly, by
monitoring the changes in the surface tension of pendant water
drops exposed to isoprene gas, we found that gas-phase
isoprene molecules could adsorb at the air–water interface
under NTP conditions (Fig. S4†). While the adsorption of non-
polar molecules at the air–water interface might appear unex-
pected, similar phenomenon at the macroscale, entailing the
adsorption of hydrophobic particles onto water drops of size
10�3 m in air forming ‘liquid marbles’ is well known.80 Thus,
gas-phase isoprene molecules (partial pressure in our chamber:
0.28 atm) may adsorb onto the positively charged aqueous
electrosprays comprising excess protons.62 From this stance,
three potential mechanisms for the oligomerization of isoprene
emerge, which we discuss and evaluate based on our experi-
mental results and quantum mechanical predictions: mecha-
nism M1 – the adsorption of isoprene molecules onto the
electrosprays increases their concentration at the interface,
leading to reactions under the inuence of high electric elds,
similarly to the oligomerization of pure liquid isoprene on
injection into ESIMS (Fig. 2B); mechanism M2 – continuous
evaporation of positively charged electrosprays renders them
increasingly acidic, akin to 50%H2SO4 solutions,48 which drives
the liquid-phase oligomerization of the adsorbed isoprene
molecules (Section Sc and Fig. S5†); mechanism M3 – high
capillary voltages electrolyze mildly acidic water and the posi-
tive charge ensures that the electrosprayed drops contain excess
protons that, during Coulomb explosions, eject highly reactive
water clusters that protonate and oligomerize isoprene mole-
cules in the gas phase. In the gas phase, strictly, protonation
takes place if the proton affinity of the donor, e.g., H2O
(165 kcal mol�1 at NTP), is lower than that of the acceptor, e.g.,
Isop (197 kcal mol�1 at NTP).81 This observation has been
extensively discussed by Enke and co-workers in the context of
This journal is © The Royal Society of Chemistry 2019
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Fig. 4 (A) 1H-NMR spectra of the organic phase after shaking liquid isoprene with pH 1.5 water and air in a volumetric ratio of 1 : 6 : 3 for 60
minutes. (B) 1H-NMR spectra of as-purchased isoprene. (A1) 1H-NMR spectra of the condensed exhaust from the electrosprays of the organic
phase after the liquid–liquid collision (A) experiments. The nearly identical spectra for experimental sets (A) and (B) demonstrate that there was no
detectable oligomerization of isoprene during the vigorous shaking of emulsions comprised of liquid isoprene with pH 1.5 water and air in
a volumetric ratio of 1 : 6 : 3 (NMR resolution �10 mM).
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water-alcohol mixtures,82 among others;64,77 these proton–
transfer reactions also underlie the basis of the Proton Transfer
Reaction Mass Spectrometry (PTRMS) that has been used to
detect trace gases in the atmosphere.77,83

In all those mechanisms, the initial ionic strength of water
(acidic, basic, or salty) and electrical voltage were crucial for the
formation of a stable stream of charged microdroplets – the
higher the ionic strength of solutions, the lower the require-
ment for the electrical voltage.35,36,84–86 In fact, due to the elec-
trochemical reactions at the electrospray needle under the
inuence of high electric elds, the electrosprayed droplets
from a positively charged capillary should contain more positive
ions than in the bulk58,63,85,87,88 (Section Sc, Fig. S5†). Interest-
ingly, for pH-adjusted water electrosprayed at 6 kV, we detected
oligomers (Fig. 3C) when pH # 3.6 or pH > 12, whereas for the
NaCl solutions, we observed oligomers at concentrations as low
as 10�9 M (pNa ¼ 9). Yet, the higher intensities of the [(Isop)n-
$H]+ at pH # 3.6 in comparison to the salty solutions (Fig. 3C)
indicate that the proposed mechanism M1 is unlikely to play
a crucial role in the case of gaseous isoprene interacting with
electrosprays of water.

Following our logical exclusion of mechanism M1, we are
le with mechanisms M2 and M3, i.e. did the reactions take
place on the surface of electrosprayed water droplets or in the
gas-phase? Whether or not the electrospray spectra represent
This journal is © The Royal Society of Chemistry 2019
the solvent- or gas-phase chemistries/characteristics is
a much-debated matter and case-specic.36,38,76,89,90 Obviously,
the answer would have a bearing on the questions (ii–iv)
outlined above, because the kinetics and thermodynamics of
reactions in bulk and gas-phase differ dramatically.21

Recently, Silveira and co-workers employed cryogenic ion
mobility mass spectrometry to demonstrate the effects of
rapid dehydration on the structures of undecapeptite
substance during the nal stages of electrospray ionization.90

To further clarify the role of hydration on the protonation and
oligomerization of isoprene in our experiments with mildly
acidic water (electrosprays and emulsions), we carried out
quantum mechanics calculations.
Computational calculations

To gain qualitative molecular-scale insights into our experi-
ments with mildly acidic water, we carried out density func-
tional theory (DFT) calculations (Computational methods).
M06, a hybrid meta-generalized gradient approximation (meta-
GGA) functional, is known to provide an accurate description of
the ground-state thermochemistry, thermochemical kinetics,
and transition state structures and energies for a wide series of
organic reactions.91–96 We have previously conrmed that the
binding energies of water clusters, (H2O)n (range n ¼ 2–8, 20),
Chem. Sci., 2019, 10, 2566–2577 | 2571
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along with the hydration and neutralization energies of
hydroxide and hydronium ions using DFT functionals (M06,
M06-2X, M06-L, B3LYP, X3LYP) are in excellent agreement with
the high-level theory (CCSD(T)/aug-cc-p VDZ level), both with
and without the basis set superposition error correction.91 For
instance, our ab initio predictions of the proton transfer ther-
modynamics between H3O

+(g) and Isop(g) was DG0 ¼
�30.7 kcal mol�1, in accordance with the difference in the
experimental gas-phase basicity (GB) of H2O (GBH2O ¼
�157.7 kcal mol�1) and Isop (GBISO ¼ �190.6 kcal mol�1), DGB
¼ �32.9 kcal mol�1 (Fig. S6†).97 Furthermore, the trans- or cis-
Isop(g) spontaneously added onto (Isop$H+ + H2O), leading to
cyclic (DG0 ¼ �40 kcal mol�1) or acyclic monoterpenes (DG0 ¼
�9 kcal mol�1), (Fig. S7 and S8†), as also noted by other
researchers.48,98 Next, we calculated the kinetic barriers for
protonation and oligomerization of Isop on a small water
cluster containing an extra proton, (H2O)3$H

+, as representative
of our electrospray experiments and a larger cluster,
(H2O)36$H

+, representing the pristine air–water interface. The
sizes of the clusters were guided, in principle, by previous
experimental and theoretical work on the hydration of
protons,99–101 showing the asymptotic stabilization of a proton
with increasing cluster size, and limited by computational
expense. The initial geometry of the smaller cluster was ob-
tained from the Cambridge Cluster Database,102 while the larger
cluster geometry was obtained from an SPC/E bulk water box
equilibrated at 298 K and at 1 atm pressure yielding the bulk
density of 1 g cm�3. We took a cluster of 36 water molecules
from the equilibrated water box as a surrogate for the air–water
interface. We added a proton to this cluster and applied Born–
Oppenheimer Molecular Dynamics (BOMD) simulations
Fig. 5 Quantum mechanics-based free energy and enthalpy landscapes
a cluster comprising three water molecules and one excess proton, (H2O
exhibited extreme acidity. The free energy barrier for the proton transfer f
to subsequent oligomerization with another free isoprene(g) was DG‡

conditions within the timescale of our experiments (�1 ms). These mod

2572 | Chem. Sci., 2019, 10, 2566–2577
(Computational methods) to obtain various low-energy
conformers (Table S2, Section Sd†). We chose a cluster with
the proton on the surface that facilitated the subsequent study
of the activation barriers through DFT calculations (Computa-
tional methods).

In the case of (H2O)3$H
+, representative of electrosprays, the

proton was extremely reactive/acidic due to insufficient hydra-
tion – the incipient isoprene molecule (Isop) fell into a shallow
potential well forming an adduct (Fig. 5). The free energy barrier
for proton transfer from (H2O)3$H

+ to Isop(g) was DG‡ ¼
6.9 kcal mol�1, and the barrier to the oligomerization with
another free Isop(g) was DG‡ ¼ 2.1 kcal mol�1 (Fig. 5). On the
other hand, the predictions for those barriers for protonation
and oligomerization of isoprene with the larger water cluster,
(H2O)36$H

+, representative of the air–water interface, were DG‡

¼ 25.5 kcal mol�1 and DG‡ ¼ 40.2 kcal mol�1, respectively,
which are insurmountable under ambient conditions within a 1
ms time-frame (Fig. 6). The stark differences in the free energy
landscapes for the interactions of Isop(g) with minimally
hydrated hydronium ions, available in electrosprays, and larger
water clusters can simply be understood in terms of the
enthalpies of hydration of gas-phase protons that decrease
monotonically with the addition of water molecules;99–101 the
proton activity also decreases commensurately and, in fact, is
expected to be even lower for the air–water interface than in the
(H2O)36$H

+ cluster.
To test the effects of larger basis-sets on these predictions,

we compared the results of our M06/6-311+G*/6-311++G**
calculations with M06/6-311++G** for the smaller cluster, and
found very similar results (Section Sd, Table S1†). Towards
further benchmarking, we carried out single point energy
for protonation and oligomerization of isoprene while interacting with
)3$H

+. Due to its incomplete hydration (compared to bulk), the proton
rom (H2O)3$H

+ to isoprene(g) was DG‡ ¼ 6.9 kcal mol�1 and the barrier
¼ 2.1 kcal mol�1, which are easily surmountable under ambient NTP
el predictions support mechanism M3.

This journal is © The Royal Society of Chemistry 2019
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Fig. 6 Quantummechanics-based free energy and enthalpy landscapes for protonation and oligomerization of isoprene on a cluster consisting
of 36 water molecules and an excess proton, (H2O)36$H

+, representative of very small water droplets. The kinetic barriers preventing proton
transfer to isoprene and its subsequent oligomerization were DG‡ ¼ 25.5 kcal mol�1 and DG‡ ¼ 40.2 kcal mol�1 respectively, which were
insurmountable under ambient NTP conditions within the timescale of our experiments (�1 ms). The predictions of this model suggest that the
reactions of isoprene in electrosprays cannot involve liquid-phase drops. These predictions also support the proposed mechanisms M3 by ruling
out the possible reactions through M2.
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calculations on the structures optimized at the M06/6-
311++G**-level with the CCSD(T)-level theory,66 and found that
the qualitative trends in the reaction kinetics remained
unchanged (Table S1†). We note that we could only perform the
benchmarking for the smaller system due to the computational
expense. Thus, we expect that the relative differences in the
barrier heights for the reactions are unlikely to change signi-
cantly between DFT/M06 and CC for our systems. Besides, our
1H-NMR experiments present unambiguous evidence for these
predictions. To summarize, our calculations demonstrate that
the kinetic barriers for the protonation and oligomerization of
isoprene are easily surmountable in the smaller acidic cluster
(available in electrosprays only) and prohibited in larger acidic
clusters at 298 K and 1 atm (a surrogate for the pristine air–
water interface).
Conclusion and outlook

Based on our experimental investigation of oil–water and air–
water interfaces of isoprene with pH-adjusted water, analyzed
by ESIMS and 1H-NMR along with quantum mechanical
predictions, we address the questions outlined in the intro-
duction as follows:
This journal is © The Royal Society of Chemistry 2019
(i) Aqueous electrosprays do not always report on the ther-
modynamic properties of pristine air–water interfaces.

(ii) The observed chemical reactions of isoprene in aqueous
electrosprays were not driven by the enhancement in the
hydrophobe–water interfacial area, as evidenced by the lack
thereof in vigorously mixed emulsions of isoprene and pH-
adjusted water. Thus, the mechanisms underlying the ‘on-
water’ catalysis54–57 must be different from those leading to rate
accelerations in the aqueous electrosprays.103 Electrosprays of
water must facilitate additional chemical pathways, such as
reactions with partially hydrated (gas-phase) hydroniums,
which are not accessible in vigorously mixed oil–water emul-
sions or pristine aqueous interfaces.

(iii) Reactions of isoprene in aqueous electrosprays were
driven by non-equilibrium conditions therein – most impor-
tantly, due to the rapid evaporation of water leading to highly
concentrated droplets and partially hydrated hydronium ions
(mechanism M3). It is, thus, crucial to distinguish their
contribution from purely ‘interfacial effects’ towards dramatic
rate enhancements in aqueous electrosprays.50,53,64,78,104,105

(iv) Gas-phase reactions could play a signicant role in the
electrosprays – in our experiments, reactions between partially
hydrated protons and isoprene led to its protonation and
Chem. Sci., 2019, 10, 2566–2577 | 2573
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oligomerization, as recently suggested by Yan & co-workers53

and demonstrated by Jacobs & co-workers.106

Our experimental and theoretical results demonstrate that
chemistries in aqueous electrosprays do not necessarily corre-
spond to those at the pristine air–water interface and oil–water
emulsions at NTP. These ndings also contradict the previous
claims of the superacidity of the pristine air–water interface as
the bulk acidity approaches pH # 3.6;40 the proposal for the
mildly acidic environmental surfaces to act as the primary sink
for the atmospheric isoprene/terpenes should also be reeval-
uated.41,46,47 While the potential of aqueous electrosprays to
produce high-value products appears promising, those reac-
tions are unlikely to be realized at pristine aqueous interfaces
because of the seminal role of the non-equilibrium effects, such
as the formation of water clusters with minimally hydrated
hydronium ions.49,78,106 We do note that air–water interfaces
could, perhaps, be investigated semi-quantitatively through
electrosprays, if the reactants do not participate in gas-phase,
acid catalyzed, or redox reactions therein51,107–109 and/or the
gas-phase reactants do not dissolve in the droplets to re-emerge
as interfacial species; a careful case-by-case assessment is
needed. The mechanisms underlying the protonation and
oligomerization of isoprene gas on electrosprays of pH > 7 water
also warrant further investigation. We conclude by stressing on
the importance of combining complementary experimental
techniques, ab initio calculations and molecular dynamics
simulations in the quest to unravel phenomena occurring at the
pristine air–water interface.
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