A 2D homochiral inorganic–organic framework {[Mn(NPTA)(4,4′-bpy)(H2O)]·(H2O)2}n was prepared by assembling achiral polar 4-nitrophthalic acid, manganese ions, and ancillary 4,4′-bipyridine ligands (NPTA = 4-nitrophthalate) (4,4′-bpy = 4,4′-bipyridine). The isomorphous Zn(II) compound was also prepared as a diamagnetic analogue. Adjacent manganese spin centres are linked by the syn–anti carboxylate to form a helical chain, and chains of the same chirality are connected by 4,4′-bpy ligands to generate a homochiral layered framework. Edge-to-face aromatic interactions between neighboring layers lead to a 3D homochiral supramolecular structure. Magnetization and heat capacity measurements indicate that the framework is a weak antiferromagnet at low applied field. The magnetic interactions between adjacent manganese ions in the helical chain can be fitted using the 1D Fisher model, with 2J/k = −0.68 K and g = 2.00. Moreover, the compound displays a unique field-dependent spin–flop transition in high magnetic fields, with a critical field of 23.6 kOe at 1.9 K.
    
         
            
                 
             
                     
                    
                        
                            
                                You have access to this article
                            
                            
                                
                                    
                                        
                                             Please wait while we load your content...
                                        
                                        
                                            Something went wrong. Try again?
                                            Please wait while we load your content...
                                        
                                        
                                            Something went wrong. Try again?