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Abstract

Heterogeneous stationary phase chemistry causes chromatographic tailing that lowers separation 
efficiency and complicates optimizing mobile phase conditions. Model-free metrics are attractive 
for assessing optimal separation conditions due to the low quantity of information required, but 
often do not reveal underlying mechanisms that cause tailing, for example, heterogeneous retention 
modes. We report a new metric, which we call the Distribution Function Ratio (DFR), based on a 
graphical comparison between the chromatogram and Gaussian cumulative distribution functions, 
achieving correspondence to ground truth surface dynamics with a single chromatogram. Using a 
Monte Carlo framework, we show that the DFR can predict the prevalence of heterogeneous 
retention modes with high precision when the relative desorption rate between modes is known, 
as in during surface dynamics experiments. Ground truth comparisons reveal that the DFR 
outperforms both the asymmetry factor and skewness by yielding a one-to-one correspondence 
with heterogeneous retention mode prevalence over a broad range of experimentally realistic 
values. Perhaps of more value, we illustrate that the DFR, when combined with the asymmetry 
factor and skewness, can estimate microscopic surface dynamics, providing valuable insights into 
surface chemistry using existing chromatographic instrumentation. Connecting ensemble results 
to microscopic quantities through the lens of simulation establishes a new chemistry-driven route 
to measuring and advancing separations.

1. Introduction

Understanding the microscopic surface mechanisms underlying chromatographic separations 

is crucial for moving drug production from quality by testing1 to quality by design.2 Doing so 
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would help reduce the purification and separation cost of new protein pharmaceuticals as well as 

alleviate the energy burden induced by industrial separations.3-5 Recent efforts to move towards 

separations-by-design include novel column designs, continuous flow systems, new single-analyte 

measurements, advanced statistical analysis, and mechanistic simulations and theory.1, 6-19 It is thus 

possible to correlate microscopic phenomena to ensemble observables such as chromatographic 

elution curves. Most discussions of tailing address column overloading,20-22 but tailing can also 

occur due to rare, heterogeneous interactions with the stationary phase surface. Surface 

heterogeneity can be introduced by surface defects7, 9 or result from specific versus non-specific 

binding,12 an effect often seen in chiral separations.23  Ideally, we also need new methods to extract 

mechanistic details from macroscopic separations observables. 

Detailed chemical information is captured in the lineshape of a chromatogram. Lineshape 

analysis can infer the number of adsorption events in the column,24 varied adsorption kinetics,25 

non-linear column contributions,26 and flow effects.27-28 Other methods rely on analytical models 

that approximate the curve using variables without physical meaning,28-29 fitting peaks based on 

analytical series,30 or need ancillary equipment during data collection.31-32 Conversely, model-less 

metrics using only the chromatogram have been utilized to interpret microscale phenomena and 

are common metrics for separation optimization33-34 but rarely can relate changes in chromatogram 

shape to changes in stationary phase surface chemistry. Here, a disconnect forms between relating 

the results of an ensemble separation performed in a column measured in millimeters to 

microscopic details measured over micrometers of stationary phase surface, such as those captured 

in single-molecule studies.35-37 Recently, we demonstrated that the most popular graphical metric, 

the asymmetry factor ( ), is not suitable for microscale studies of surfaces due to non-linear 𝐴𝑠

relationships with respect to rare retention mode statistics and underestimation of the amount of 
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analyte lost in the tail.38 Development of a graphical metric that infers surface chemical effects 

from ensemble chromatograms would translate decades of opaque experimental optimization into 

powerful observations of chemical phenomena occurring on the stationary phase surface.

The Distribution Function Method (DFM)39-41 detects peak variations by comparing two 

distributions in a parametric plot, providing qualitative proof of minute deviation, but lacking 

correlation to an underlying mechanism. Repurposing the DFM to create trackable phenomena can 

correlate chromatogram lineshape to ground truth physical chemistry at the surface like mixed-

mode adsorption42 and stationary phase hopping43 from ensemble data alone. Pivoting to include 

mobile phase simulations could extend correlations to mobile phase artifacts from flow44-45 and 

column structure,46-50 extra column components and injection methods,51-53 and diffusion within 

pores.54-57 Using the paradigms of the DFM to produce trackable metric phenomena from a library 

of simulated chromatograms creates a new quantitative metric sensitive to microscale 

physicochemistry occurring in the column while only needing ensemble input. Correlation of 

simulated effects with chromatogram lineshape provides a necessary bridge between macroscale 

and microscale measurements.58-59

In this work, we expand the DFM as a ratio of the chromatographic cumulative distribution 

function (CDF) and a Gaussian CDF, a method we call the Distribution Function Ratio (DFR), to 

calculate microscopic surface dynamics from a single chromatogram. Comparisons to a Gaussian 

lineshape improve upon Rix’s original method by eliminating the need for ancillary peaks to 

characterize the chromatogram.40 Further, chromatogram lineshape is shown to correlate pseudo-

linearly to mixed-mode adsorption dynamics, capturing important surface statistics using only the 

ensemble chromatogram. Mixed-mode adsorption dynamics, a model for kinetic tailing in low 

dilution and topic of interest for pharmaceutical separations,60-61 are used to simulate 
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chromatograms from ground truth statistics and demonstrate the utility and precision of the DFR. 

Here, we show that the DFR outperforms  and statistical skewness over a wide range of relative 𝐴𝑠

prevalence and relative desorption rate of rare, high energy, slow desorbing retention modes on 

the stationary phase surface. Use of the DFR with microscale surface information provides high 

precision estimates of surface retention modes. However, in absence of microscale surface insight, 

 and skewness can be used in combination with the DFR to estimate surface dynamics from the 𝐴𝑠

ensemble peak alone. The DFR is used to analyze a separation of a model protein, lysozyme, 

capturing valuable statistics about surface retention modes. Combining the DFR with ground truth 

simulations generates calibration curves that connect peak shape to surface physicochemistry, 

creating an optimizable metric that interrogates stationary phase surface dynamics while reporting 

on the quality of separation. Using the DFR quantifies rare surface defects and specific adsorption 

using only ensemble chromatography.

2. Experimental Section

2.1 Theory

Tracing the source of mixed-mode kinetic tailing requires knowledge of the prevalence and 

desorption statistics of retention modes on the stationary phase surface. We examine tailing in 

mixed-mode chromatography where a protein alternates between flowing in the mobile phase and 

surface adsorption through two different retention modes, the first mode fast desorbing and 

prevalent, the other slower desorbing and increasingly rare. Each retention mode has a distinct rate 

of desorption ( ) and expected desorption time ( ) that describes an exponential distribution of 𝑘𝑗 〈𝜏𝑗〉

singular desorption times ( ), where higher energy retention modes have longer expected 𝜏𝑗

desorption times.62 Stationary phases with two retention modes ( ) induce tailing and 𝑚 = 2
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broadening in chromatography,61, 63-64 though a proliferation of retention modes ( ) can exist 𝑚 > 2

depending on surface microstructure and functionalization.65-68 The number of retention modes on 

the surface and their desorption rates can be gathered experimentally using microscale, surface 

measurements.11, 13 However, direct observations of surface dynamics are limited spatially, on the 

order of micrometers, while column lengths are on the millimeter scale. Capturing the desorption 

time differences between common and rare modes and correlating their prevalence to column-

wide experimental parameters is critical for reducing chromatographic tailing and can only be 

achieved through simulation and theory.

Modeling the tailing effects of mixed-mode adsorption requires knowledge of molecular 

elution histories. Kinetic chromatographic tailing occurs when a small population of molecules 

forms a broad distribution of elution times due to interactions with a rare, high energy retention 

mode, even in dilute conditions where column overload does not occur.25, 64 The stochastic theory 

of chromatography captures rare interactions by describing molecular elution as a molecule 

undergoing a random walk between moments of mobility and stationarity. The elution history of 

each molecule is then a series of connected adsorption events sampled from available retention 

modes.69 A master equation for the retention time of a single molecule ( ) that incorporates 𝑇

interactions for every adsorption event across all retention modes is then Equation 1:

𝑇 = 𝑡m + 𝑡s = 𝑡m +  
𝑚

∑
𝑗 = 1

𝑛

∑
𝑖 = 1

𝜏𝑖,𝑗 
(1)

where  represent the sums of time spent in the mobile, stationary phase and  is the length 𝑡m, 𝑡s 𝜏𝑖,𝑗

of time spent during the  adsorption event through the  retention mode.70 Here, assumption of 𝑖th 𝑗th

a constant mobile phase time ( ) isolates the tailing contribution of heterogeneous adsorption 𝑡m

rather than convolve it with mobile phase effects, of which there are many.71-72 A chromatogram 

Page 5 of 28 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

can be simulated by aggregating thousands of results from Equation 1 using Monte Carlo methods  

educated by ground truth chemical quantities found in surface studies, correlating retention mode 

energy/prevalence to different tailing metrics.73

The molecular histories produced by the Monte Carlo simulations are random samples of the 

“frequency functions” described by Dondi.74-75 Analytically, each frequency function is the sum 

of all  fold convolutions of the distribution of the retention mode desorption times over  𝑛th 𝑛

adsorption/desorption steps for . For the homogeneous case, the stationary phase time, 0 ≤ 𝑛 ≤ ∞

:𝑐𝑠(𝑡)

𝑐𝑠(𝑡) =  ∑
𝑛

𝑃(𝑛)𝑓𝑠,1(𝜏)𝑛 ∗ (2)

where ) is the probability of a molecule undergoing adsorption/desorption steps, ) is 𝑃(𝑛 𝑛 𝑓𝑠,1(𝜏

the distribution of desorption times for the common mode, and is the  fold convolution. For 𝑛 ∗  𝑛th

the heterogeneous two-retention mode case, the equation can be expanded to Equation 3 for 

, per Cavazzini:61 0 ≤ 𝑛 ≤ ∞

𝑐𝑠(𝑡) = ∑
𝑛

𝑃(𝑛)𝑓𝑠,1(𝜏)𝑛 ∗
+ ∑

𝑛
𝑃(𝑛)

𝑛 ― 1

∑
𝑗 = 0

(𝑛
𝑗)𝑝𝑗(1 ― 𝑝)𝑗𝑓𝑗 ∗

𝑠,1(𝜏) ∗ 𝑓(𝑛 ― 𝑗) ∗

𝑠,2 (𝜏)
(3)

where  is the Bernoulli coefficient for  interactions with the common retention (𝑛
𝑗)𝑝𝑗(1 ― 𝑝)𝑗 𝑗

mode with relative prevalence  out of  total adsorption/desorption steps and  is the 𝑝 𝑛 𝑓𝑠,2(𝜏)

distribution of desorption times for the rare retention mode. Monte Carlo simulations avoid 

convolutions by directly calculating the sum of random variables over  adsorption/desorption 𝑛

steps, constructing the distributions in  through random sampling. As such, we define ) 𝑐𝑠(𝑡) 𝑐s(𝑡

non-analytically as a mixture model76 of our Monte Carlo calculated molecular history 
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distributions where each distribution is differentiated by the number of interactions with a rare 

retention mode (Equation 4): 

𝑐𝑠(𝑡) = 𝛼1𝑓1(𝑡) + 𝛼2𝑓2(𝑡) +
𝑚

∑
𝑖 = 3

𝛼𝑖𝑓𝑖(𝑡) (4)

Where  are the distributions of molecular retention times that have interacted with the  𝑓𝑖(𝑡) 𝑖th

rare retention mode and  represent the fraction of molecular histories sampled from the  𝛼𝑖 𝑖th

subpopulation and must sum to 1. Here,  describes the homogenous distribution of molecular 𝑓1(𝑡)

histories, equivalent to Equation 2, and  is equivalent to the second term in Equation 3. The 𝑓2(𝑡)

third term of Equation 4 includes any additional modes past the first rare mode. In transitioning 

from Equation 3 to Equation 4, we have released the requirement that  be strictly known in 𝑛

favor of functions that can be analyzed by profile shape. The visual result of Equation 4 is 

presented in Figure S1. To utilize Equation 4 in our analysis, we have assumed that the mobile 

phase contribution has been removed by deconvolution with the distribution of an unretained tracer 

analyte.24, 80 Contributions to  include flow heterogeneity due to stationary phase structural 𝑡m

imperfections and extra-column factors, both leading to asymmetry or broadening.77-79  The long 

column approximation guarantees that the homogeneous population forms a Gaussian (𝑓1(𝑡) ≈  𝑔

) when a sufficient number of adsorption events have occurred and is often considered the ideal (𝑡)

peak shape.15, 34 However, achieving the Gaussian limit when heterogeneous adsorption is present 

requires columns not usually seen in practice.81 Several studies have shown that comparisons to a 

Gaussian can quantify asymmetry of the lineshape82-83 or estimate sub-resolution curves when 

proper assumptions are made.84 Combining Equation 4 and the long column approximation 

establishes that any deviations from the Gaussian lineshape carry information about the tailing 

distributions . Quantifying deviations from the Gaussian distribution is then an avenue to ∑𝑚
𝑖 𝑓𝑖(𝑡)
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measure statistics of the tailing distributions in the chromatogram lineshape without specifying an 

analytical model for each distribution .𝑓𝑖(𝑡)

2.2 Metric Definition

Methods developed from the DFM39-40 can detect small deviations in the lineshape of two 

distributions while remaining tolerant to excessive experimental noise.39 Briefly, the DFM 

qualitatively differentiates two distributions (Figure 1A) by comparing the shape of each 

chromatogram’s CDF (Figure 1A, inset) normalized to the time interval (0,1] through the function 

 (see SI), and abbreviated as  when used as a variable. Our modification of the DFM always 𝜃(𝑡) 𝜃

compares to a Gaussian CDF, adopting the Gaussian as the ‘ideal’ chromatogram through the 

posing of Equation 4. Further, taking the ratio of both CDFs generates trackable peak phenomena, 

providing quantitative tracking of underlying physical chemistry rather than qualitative 

acknowledgment of the difference of two chromatograms, as in Rix’s original work. 

Mathematically, the DFR for any chromatogram/Gaussian pair ( ) is then the ratio of their 𝑐(𝜃),𝑔(𝜃)

CDFs (see SI) over the normalized time interval  (Equation 5):𝜃

DFR(0 < 𝜃 ≤ 1;𝑐(𝜃), 𝑔(𝜃)) =  
∫𝜃

0𝑐(𝑡)𝑑𝑡

∫𝜃
0𝑔(𝑡)𝑑𝑡

=
𝐶(𝜃)
𝐺(𝜃)

(5)
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The result of Equation 5 is a unique, characteristic 

curve for every chromatogram (Figure 1B) with a 

critical value in the form of peak position ( ). 𝜃 ∗

Generating quantitative, optimizable peak 

phenomena differentiates the DFR from the original 

DFM result (Figure 1B, inset), which only 

qualitatively assesses if two distributions are different 

through deviations along the diagonal. As such, two 

separate chromatograms are needed to quantify 

chemical effects in a single experiment. The DFR 

retains the benefits of Rix’s original method in only 

utilizing the chromatogram lineshape without fitting 

to a model but extracts chemical information through 

comparison to the Gaussian curve normalized in time 

and concentration, avoiding the need for a second 

chromatogram. Normalization also minimizes the 

contribution of broadening by the mobile phase 

(Figure S2), further isolating the stationary phase contributions. Because deviations from a 

Gaussian represent contributions due to heterogeneous surface interactions, per Equation 4, 

information about the tailing distributions is captured in the DFR lineshape. Ground truth 

simulations correlate the energy and prevalence of rare retention modes to the chromatogram 

lineshape and validate that the DFR can capture statistics of tailing distributions. The DFR 

provides an estimate of the relative column prevalence of a retention mode identified through 

Figure 1. Utilizing CDFs to detect differences 
between chromatograms and the Gaussian 
lineshape. (A) A simulated chromatogram 
overlaid with a Gaussian curve. (Inset) CDFs of 
each curve graphed in normalized time. (B) The 
DFR comparing both curves with the quantity of 
interest, DFR peak position ( ), annotated. 𝜃 ∗

(Inset) Rix’s parametric DFM comparison for 
both curves.39
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microscale surface measurements, bridging the spatial difference between surface dynamics 

measurements ( m scale) and the full-length column (mm scale). Further, estimating microscopic 𝜇

surface dynamics from the ensemble chromatogram alone provides a no-cost evaluation of the 

need for more complex, micrometer resolution experiments.

2.3 Computational Details

Chromatographic simulations were performed using a Monte Carlo framework programmed 

in Python 3 programming language85 (Python Software Foundation, https://www.python.org/) 

using Numpy86 and Scipy.87 The simulation framework is based on the work of Dondi15 and 

Cavazinni,14 and detailed in our previous publications.11, 38 The benefits of the Monte Carlo 

framework is that it is agnostic towards retention mechanisms when the mathematics are properly 

posed and is the only route for modeling non-linear chromatography.88-89 Surface crowding is not 

included in the simulations, meaning that all chromatographic artifacts are the product of kinetic 

tailing rather than thermodynamic column overloading. Therefore, changes measured with the 

DFR only relate to surface kinetic effects, a connection unachievable experimentally and only 

partially realized in microscale surface experiments without simulation. The simulations treat time 

and distance as abstract, unitless quantities that are adaptable to any column length or surface 

chemistry. Time is measured in the unitless value , which adapts to the units of the kinetic rate 𝛿𝑡

for the retention mode.90 Our Monte Carlo simulation framework treats each molecular elution as 

a random walk down a connected series of column ‘slices’, where the slice width is the expected 

travel distance between transitions in the mobile-stationary phase interface. Elution speed is set 

such that each molecule takes  to traverse a column slice. For the simulations in this work, the 1 𝛿𝑡

simulated column has 1000 column slices with a constant mobile phase time . The 𝑡m = 1000 𝛿𝑡
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number of slices correlates to the difference in linear distance between a wide-field microscope 

field of view (~32 ) and a real column (~30 mm).  𝜇m

Adsorption events are simulated 

using statistical sampling parameterized 

by the probability of interaction with the 

stationary phase surface, the probability 

of encountering a specific retention 

mode ( ), and the expected desorption 𝑝𝑗

time of that retention mode ( ).  A 〈𝜏𝑗〉

schematic for the random walk a 

molecule undergoes in each slice is 

shown in Figure 2. Here, we assume 

each molecule has a probability (𝑝𝑎

) of undergoing adsorption exactly = 0.5

once within each slice. The probability of interaction with the surface is arbitrarily chosen but 

operates as a tunable parameter adjusted to fit available surface dynamics data.  The original 

stochastic theory assumes that an average probability is satisfactory if a molecule fluctuates 

through the range of adsorption probabilities many times between adsorptions.69 Further, Hlushkou 

et al. have described the probability of adsorption upon interaction with the surface as a constant 

based upon geometrical and energetic consideration for the adsorption process.90-91 However, we 

note that our probability is conditioned on the phase ratio of the column and could be expanded to 

include local heterogeneity of the stationary phase surface. Including local fluctuations in 

Figure 2. A graphical depiction of a simulated column ‘slice’ 
showing the probabilistic decision branches to simulate 
interactions with the stationary phase. A protein  encounters the 
surface, undergoes adsorption with some probability ( ), and 𝑝𝑎
adsorbs to the surface through one of  retention modes with a 𝑗
likelihood of selection .  Figure modified with permission 𝑝𝑗
from ref. 32. Copyright Elsevier 2020.
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probability in the model framework is a natural extension as more experimental information 

becomes available.  

Each slice can be considered a column feature, such as a bead, similar to the description 

provided by Horvath et al.92  The ‘surface’ of each slice has  retention modes, each with some 𝑚

probability of selection ( ). In the case of our simulations, the probability of interacting with the 𝑝𝑗

low energy, faster desorbing retention mode is higher than interaction with high energy, slower 

desorbing retention mode ( ). After retention mode selection, a desorption time ( ) is 𝑝1 ≫ 𝑝2 Δ𝜏

sampled from an exponential distribution parameterized on the desorption rate constant of the 

retention mode ( ) with expected desorption time of 24, 62 Simulating many molecules 𝑒 ― 𝜏𝑘𝑗 〈𝜏𝑗〉 =
1
𝑘𝑗

 .

down the column and aggregating the elution histories together generates a chromatogram. 

2.4 Experimental methods

The chromatographic experiments were carried out using a home-built Fast Protein Liquid 

Chromatography (FPLC) system. Protein solutions of 8.3 μM Lysozyme from chicken egg white 

(>98%; Sigma) in the presence of 1M sodium chloride (NaCl) were prepared in 10 mM HEPES 

buffer (Sigma, pH 7.2).  All the solutions were injected into the FPLC using a 1 mL syringe 

(Becton Dickinson) with an injection volume of 300μL. A constant flow of 2 ml/min was 

controlled using a peristaltic pump (Watson-Marlow, 120 Series). Absorbance from the analyte 

was monitored at 280 nm using a UV detector (Spectrum Chromatography). The signal then was 

converted from current to voltage by a digital recorder (Hantek, 365E) controlled by Hantek 365 

software that registered the output signal. The syringe hydrophilic filters with polyvinylidene 

fluoride (PVDF) membranes (hydrophilic 0.45 μm pore size, 25 mm diameter) and hydrophobic 

filters with PVDF membranes (hydrophobic 0.45 μm pore size, 25 mm diameter) used as 
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13

chromatographic media were purchased from Cole-Parmer and Sigma Aldrich, respectively. A 

series of three connected PVDF syringe filters were assembled and integrated with the setup. All 

components of the FPLC system were connected using silicone tubing (MED-X.D., 0.063” internal 

diameter).

2.5 Computational Details

 A two-mode system was simulated using four different ratios of desorption rates over a range 

of strong retention mode prevalence. The common, low energy retention mode has an expected 

desorption time of , equivalent to four times as long as necessary to traverse the column 〈𝜏1〉 = 4 𝛿𝑡

slice. Expected desorption times of the rare, high energy retention mode are then a factor longer 

than the expected desorption times of the common, low energy retention mode (
〈𝜏2〉
〈𝜏1〉 = 5,  25,  50

) over a range of relative prevalence ( ) covering several orders of , 125 10 ―5 ≤ 𝑝2 ≤ 10 ―2

magnitude. Relative prevalence is defined with respect to the number of slices in the column. Here, 

the relative prevalence relates to the absolute number of times a molecule interacts with a rare site 

( ). Each simulation consisted of 300,000 simulated molecules, which was 0.01 ≤ 〈𝑗𝑚 = 2〉 ≤ 10

shown to be sufficient for stabilization of the curve shape (Figure S3). The distribution of 

adsorption events per molecule ( ) forms a Gaussian about  given a 50% chance of 𝑛 〈𝑛〉 = 500

adsorbing to the surface in a 1000 slice column. The average number of adsorption-desorption 

events as well as the chance of adsorbing to the stationary phase can be validated through peak 

analysis of ensemble data.14, 24 Adjusting the probability of adsorption ( ) and the number of 𝑝𝑎

slices will change the value of  and therefore the shape of the chromatogram. However, previous 𝑛

studies with similar theories and models have extracted useful information from a small number 

of interactions and discussed methods for scaling the profile in terms of the average number of 
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adsorption events.14-15, 74, 93 Simulated molecule histograms are smoothed with a Savitzky-Golay 

filter before cubic splining, producing the final chromatographic curve used for analysis (Figure 

S4).94-95

Functions that are used in the DFR must be normalized in time and concentration. The time 

domain is normalized using the function  beginning/ending when the signal passes 𝜃(𝑡)

above/below a defined percent of the peak height. The recovered mass within those bounds is 

normalized to one ( . The bounds chosen for each sample are 1% of the max ∫𝑐𝑠(𝜃(𝑡))𝑑𝑡 = 1)

height of . The shape of  is compared to a Gaussian distribution in  with the mean at  𝑐𝑠(𝑡) 𝑐𝑠(𝑡) 𝜃 𝜃

= 0.5. Normalization of time and mass generates the same Gaussian curve for any chromatographic 

peak making any form of peak fitting unnecessary. Bounds for the Gaussian CDF (𝐺(𝜃) =  

) is set to 1.5% the max height of the representative Gaussian. How bound selection ∫𝑔(𝜃)𝑑𝜃

changes the shape of  (Figure S5A) and the percent of the curve that falls outside the bounds 𝐺(𝜃)

(Figure S5B) are shown in the SI. DFR peak position ( ) is found using the first derivative test.𝜃 ∗

4. Results and Discussion
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4.1 Extracting relative desorption rate and high energy retention mode prevalence using the 

DFR. 

Curvature changes in the chromatographic lineshape encode information about the relative 

prevalence of stronger retention modes at the stationary phase surface and are extractable by 

tracking the DFR peak position ( ). Figure 3 compares the sensitivity of  and  to changes 𝜃 ∗ 𝜃 ∗ As

Figure 3. Simulated chromatograms and their calculated  and  values. Average desorption time of the θ ∗ As

stronger retention mode increases across the values  (A, B), (C, D),  (E, F).
〈𝜏2〉
〈𝜏 1〉 = 25 50 125
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in the prevalence of the high energy retention mode ( ) at several relative desorption rates (𝑝2
〈𝜏2〉
〈𝜏1〉

). At minor differences in desorption rates, low enough that chromatographic peaks = 25, 50, 125

are visually similar (Figure 3A),  still detects surface heterogeneity at low levels of prevalence 𝜃 ∗

and can differentiate between prevalence with high precision (Figure 3B).  does not share the 𝐴𝑠

traits of sensitivity or differentiability, reporting homogeneity at low prevalence and losing 

predictive power through lack of one-to-one correspondence at higher prevalence. Higher 

desorption rate ratios ( ) of  (Figure 3C/D) and (Figure 3E/F) do not diminish the 
〈𝜏2〉
〈𝜏1〉 50 125 

precision or differentiability of the DFR or improve the results of . Using cannot provide an 𝐴𝑠 𝐴𝑠 

accurate assessment of surface homogeneity, even when chromatograms visually tail. Tracking  𝜃 ∗

provides a pseudo-linear, one-to-one correspondence over a wide range of prevalence with high 

precision at a variety of different retention mode energies with a single chromatogram when the 

ratio of desorption rates is known. 

The DFR can still differentiate surface effects when the difference between retention mode 

desorption rates nears homogeneity. Figure S6 examines a kinetic scenario where the ratio of 

expected desorption times between the low and high energy retention modes is a factor of 5. Small 

differences in kinetics produce chromatograms that appear symmetric and are indifferentiable by 

eye (Figure S6A).  tracks the prevalence of the slow retention mode while  is incapable of 𝜃 ∗ 𝐴𝑠

differentiating between the peaks (Figure S6B). Development of custom-designed columns and 

stationary phases96-97 could be advanced by a metric that can interrogate surface heterogeneity at 

a wide range of experimental conditions, especially near-homogeneous conditions that 

approximate, but do not reach, the ideal Gaussian lineshape. Implementing the DFR in tandem 
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with surface dynamics measurements to direct 

the selection of macroscopic experimental 

parameters achieves chemistry-driven design of 

stationary phases.

4.2 Tracking  identifies surface dynamics 𝜽 ∗

when other graphical metrics fail. 

Values of  are unique for each prevalence 𝜃 ∗

within a desorption rate trendline but are not 

unique between relative desorption rates. Figure 

4 graphs all four simulated chromatogram sets for 

three metrics:  (Figure 4A), skewness (Figure 𝐴𝑠

4B), and  (Figure 4C). Identifying surface 𝜃 ∗

dynamics from the ensemble measurement 

requires a one-to-one correspondence trend 

across a wide range of possible prevalence values 

for the relative desorption rate. Here, both  and 𝐴𝑠

skewness either lose sensitivity over a range of 

values or provide two possible prevalence even 

when the relative desorption rate between modes 

is known. Knowledge of the surface dynamics 

does not provide the means to correctly assess the prevalence of a retention mode in the full 

column. Conversely,  provides a near one-to-one correspondence over several orders of 𝜃 ∗

magnitude, providing an optimizable metric when the relative desorption rate

Figure 4. Comparison of the graphical metrics of  𝐴𝑠
(A), skewness (B), and  (C) for all simulated 𝜃 ∗

chromatograms used in Figures 3 and S4. 
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has been measured. Therefore, spatially 

limited microscale measurements of 

surface dynamics can extrapolate the rare 

retention mode prevalence across the 

length of the macroscale column. 

Complications arise when the relative 

desorption rates ( , ) are unavailable 〈𝜏1〉 〈𝜏2〉

to direct selection of a  trend line, such 𝜃 ∗

as when surface dynamics measurements 

have not been performed. Here, the one-to-

one correspondence of  no longer holds 𝜃 ∗

when other relative desorption rates are 

considered (Figure 4C). Microscopy 

measurements are necessary to achieve a 

high precision estimate of surface 

dynamics, either in identifying relative 

desorption rate or relative prevalence of 

retention modes. However, aggregating 

several ensemble accessible metrics can 

educate the selection of relative desorption 

rate and mode prevalence. 
Figure 5. Estimating surface heterogeneity from ensemble 
information. (A) Simulated chromatograms with kinetic 

rates and  with . (B) A parametric 
〈𝜏2〉
〈𝜏1〉 =  35 95 𝑝2 = 0.001

plot of  and skewness from Figure 4C trendlines. 𝐴𝑠
Chromatograms in panel A are denoted with crosses (C) All 

 trends with possible (dotted) and estimated (solid) 𝜃 ∗

solutions for simulated chromatograms from A.
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4.3 Estimating mixed-mode prevalence and desorption rate without surface dynamics 

measurements. 

Combining  with ancillary graphical metrics can estimate  or  when information about 𝜃 ∗ 𝑝2 〈𝜏2〉

surface dynamics is unavailable. Figure 5 presents a workflow for estimating surface 

heterogeneity from ensemble information alone. As an example, we consider two chromatograms 

with kinetics that do not lie along trendlines presented previously (Figure 5A). To direct selection 

of a  trendline, other graphical information can be incorporated. Figure 5B is a parametric plot 𝜃 ∗

of  versus skewness that can be used in the same manner as a phase diagram. Calculating both 𝐴𝑠

 and skewness can help estimate the value of  from simulated data by identifying a range of 𝐴𝑠 〈𝜏2〉

valid relative desorption ratios. The values for the chromatograms in Figure 5A are marked with 

crosses and correctly estimate the relative desorption rate between retention modes for both 

simulations. Figure 5C illustrates possible solutions for  and  for the simulated 〈𝜏2〉 𝑝2

chromatograms given the values of . Using information provided by the parametric plot in 𝜃 ∗  

Figure 5B, the set of possible solutions (dotted line, Figure 5C) is reduced to a smaller estimate 

set with stricter bounds (solid line, Figure 5C). Here, we have successfully estimated the 

microscale surface values of  and  from the ensemble chromatogram alone, bridging the 〈𝜏2〉 𝑝2

knowledge gap through simulations.

4.4 Using  to guide assessment of experimental chromatograms𝜽 ∗

Evaluating  in ensemble separations connect experimental results to simulated chromatograms, 𝜃 ∗

enabling analysis of plausible surface chemistry. The effectiveness of profile shape analysis has 

been illustrated experimentally using a library of standard control curves.98 Here, we replicate that 

process using simulated two-retention mode curves to estimate surface dynamics in two 
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ensemble separations. Figure 6 shows two real 

separations of lysozyme over hydrophobic and 

hydrophilic PVDF membranes and DFR analysis used 

to detect possible heterogeneity on the stationary 

phase surface. Figure 6A overlays the chromatograms 

for lysozyme flowed over hydrophobic and 

hydrophilic membranes. We begin our analysis with 

the assumption that the chromatogram can be best 

explained using a two-retention mode system, a 

kinetic scenario well studied in theory and commonly 

seen experimentally on otherwise homogeneous 

surfaces.9, 62, 66, 93, 99-100 Subsequent, rarer, stronger 

retention modes are possible but negligibly contribute 

to profile shape (Figures S1). 

Figure 6B/C present DFR analysis for the 

hydrophobic and hydrophilic separation, respectively, 

overlaying the experimental data with a simulated 

chromatogram that matches in . In both cases, a 𝜃 ∗

simulated peak was found that showed good 

agreement with the raw data. Peak position/height 

were matched to reduce differences in  and 𝑡m

normalize for concentration, respectively. The time-

domain was normalized to account for differences 

Figure 6. (A) Chromatograms of lysozyme 
flowed over hydrophobic and hydrophilic 
PVDF filters. (B)  The hydrophobic 
experimental data overlaid with a simulated 

chromatogram ( ) with  
〈𝜏2〉
〈𝜏1〉 = 65, 𝑝2 = 0.007 𝜃 ∗

values annotated.(C) The hydrophilic 
experimental data with an overlaid simulated 

chromatogram ( ) with  
〈𝜏2〉
〈𝜏1〉 = 50, 𝑝2 = 0.01 𝜃 ∗

values annotated.

Page 20 of 28Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



21

between the time resolution of the FPLC detector (0.6 ms) versus the simulated unit of time ( ).89 𝛿𝑡

Possible solutions for the surface kinetics are extrapolated from simulated chromatograms that 

closely match the experimental curve shape and the experimental value of  (Table S1 and S2).  𝜃 ∗

The subset of the simulations used to extrapolate the surface kinetics are co-plotted with the 

experimental data in Figures S7 and S8. 

The matching simulated chromatograms indicate that the surfaces could be described using a 

two-retention mode system where the rare, long binding mode has a relative desorption time of  
〈𝜏2〉
〈𝜏1〉

 and relative prevalence  on the hydrophobic membrane and  and = 65 𝑝2 = 0.007
〈𝜏2〉
〈𝜏1〉 = 50 𝑝2

on the hydrophilic membrane. Previous work in the group suggests that the transition from = 0.01 

hydrophobic to hydrophilic character decreases the hopping behavior of lysozyme on the 

stationary phase surface.101 Increased hopping motion, also called continuous-time random walks, 

can lead to changes in peak shape.11 The increase in the prevalence of long interactions on the 

hydrophilic membrane could be caused by the increased unfolding of lysozyme on the hydrophilic 

surface, where the change in surface character introduces a new mode of interaction.102 Both 

possibilities represent starting points for imaging of the stationary phase surface to understand the 

possible chemical moieties that lead to rare surface interactions.

Peak analysis of the hydrophilic surface homogeneous population was performed by removing 

the contribution of interactions with the rare retention mode, a benefit of using simulations. Using 

methods described by Felinger24, we estimate that  ms if  (Figure S9). Both 〈𝜏1〉 = 40 〈𝑛〉 = 645

values could be scaled to adjust for varied values of . We can conclude that  would be 〈𝑛〉 𝜃 ∗

suitable as a guide for automatically matching experimental chromatograms to simulated data as 

the analysis only relies on the profile shape, not the chemical identity of the separatory mode or 

Page 21 of 28 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



22

analyte. Simulation/measurement of mobile phase effects would improve the match between peaks 

as well as refine estimates of  and , but lies outside the current scope of this work. 〈𝜏1〉 〈𝑛〉

5 Conclusions

Surface defects and rare chemistries can be detected and estimated using only the ensemble 

chromatogram. Using the DFR to translate a macroscale chromatogram in terms of microscale 

surface dynamics offers a route to quality by design rather than quality by testing. Mechanistic 

insights into the surface allow  to estimate rare retention mode prevalence with higher precision 𝜃 ∗

than other commonly used metrics. In absence of microscale surface measurements,  can be 𝜃 ∗

supplemented by  and skewness to refine the range of possible prevalence/relative desorption 𝐴𝑠

time estimates, achieving accurate measurements of surface dynamics using only macroscale data. 

Using the DFR, experimentally measured ensemble chromatograms can be analyzed to verify if 

direct observations of retention modes adequately capture qualities of the stationary phase across 

the whole column. The modular nature of the framework can extend our simulation to include 

other column effects. Future extensions could include modeling the effects of column construction 

such as slurry concentration, extra-column broadening effects, and patterned stationary phases. 

Connecting macroscale chromatograms and microscale surface dynamics directs parameter tuning 

using surface chemistry rather than phenomenological observations, achieving chemistry-driven 

design.
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