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A network of process-based mass-balance models for phosphorus dynamics in catchments and 

lakes provides a new approach to simulate the effect of land-use and climate change on water 

quality.  
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Environmental impact statement  
Computer-based environmental modelling offers an essential aid to understand current catchment 

dynamics and to investigate the potential effectiveness of remedial actions aimed at improving water 

quality. Here, we present a novel network of processes-based, mass-balance models linking climate, 

hydrology, catchment-scale P dynamics and lake processes. This study exemplifies how an objectively 

calibrated model network allows disentangling the effects of climate change from those of land-use 

change on lake water quality and phytoplankton growth. The model network can thus support 
decision-making to reach good water quality and ecological status. 
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Agricultural Catchment-Lake System Under Changing Land-use 2 
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Abstract  12 

A model network comprising climate models, a hydrological model, a catchment-scale 13 

model for phosphorus biogeochemistry, and a lake thermodynamics and plankton dynamics 14 

model was used to simulate phosphorus loadings, total phosphorus and chlorophyll 15 

concentrations in Lake Vansjø, southern Norway. The model network was automatically 16 

calibrated against time series of hydrological, chemical and biological observations in the 17 

inflowing river and in the lake itself using a Markov Chain Monte-Carlo (MCMC) 18 

algorithm. Climate projections from three global climate models (GCM: HadRM3, 19 

ECHAM5r3 and BCM) were used. The GCM model HadRM3 predicted the highest increase 20 

in temperature and precipitation, and yielded the highest increase in total phosphorus and 21 

chlorophyll concentrations in the lake basin over the scenario period of 2031-2060. Despite 22 

the significant impact of climate change on these aspects of water quality, it is minimal 23 

when compared to the much larger effect of changes in land-use. The results suggest that 24 

implementing realistic abatement measures will remain a viable approach to improving 25 

water quality in the context of climate change.   26 
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Introduction 27 

The use of the nutrient phosphorus (P), an essential fertilizer element enhancing plant 28 

growth, has underpinned global agriculture and food production since the beginning of the 29 

20th century. Global P-based food production, which has doubled over the past 45 years1, 30 

has been hypothesized to be responsible for the estimated three-fold increase in the river 31 

borne flux of P to the oceans since pre-industrial times (e.g., Haygarth2). When P is 32 

delivered to water bodies, negative influences on water quality are likely, and the 33 

eutrophication of freshwater and coastal marine ecosystems resulting from increased 34 

anthropogenic P loadings is a global problem3. In lake basins specifically, excess nutrients 35 

from both point and nonpoint sources throughout the catchment can give rise to harmful 36 

algal blooms, degrade water quality, and create extensive oxygen depletion.  37 

The discharge of P to surface water is subject to comprehensive regulations worldwide, 38 

such as the Clean Water Act (CWA) in the USA, Water Pollution Prevention and Control 39 

(WPPC) Law in China and the Water Framework Directive (WFD) in the European Union. 40 

In Europe, the WFD 2000/60/EC has been designed to achieve good biological and chemical 41 

status for water bodies by 20154, promoting an approach to water and land management 42 

through river basin planning explicitly aimed at reducing the impacts of eutrophication 43 

caused by excess nutrient inputs.  44 

Climatic conditions −in addition to land use, agricultural practices, urban and sewage 45 

nutrient inputs− are key drivers of eutrophication in lakes5-8. For instance, in a given 46 

catchment, air temperature, precipitation, and the morphometry of a lake will determine the 47 

extent to which wind-mixing will influence the vertical transfer of P and influence the effect 48 

of light on P uptake by phytoplankton. In the context of climate change, it is becoming 49 

increasingly difficult to disentangle the complex climatic effects influencing water quality 50 

from the effects of specific measures implemented to improve it9. A better understanding of 51 

the response of specific catchments to both climate and land-use change is needed for a 52 

scientifically-guided management design to mitigate the impact of these changes on water 53 

quality. 54 

Computer-based environmental modelling offers an aid to understanding current 55 

catchment dynamics and investigating the potential effectiveness of remedial actions in the 56 

context of climate change. Building on previous catchment modelling efforts aiming at 57 

predicting P delivery to lakes in agricultural catchments,10-13 we constructed a novel network 58 

of chained model to integrate climate, hydrologic, catchment, and in-lake processes. At the 59 

top of the model chain is a global climate model (GCM) whose output for daily temperature, 60 

precipitation and other variables were downscaled to the region. These are used as inputs to 61 

a hydrologic rainfall-runoff model (PERSiST14) to produce daily discharge values for rivers, 62 

which, in turn, are used as inputs for INCA-P15 to simulate daily fluxes suspended sediments 63 

and P to the lake. At the end of the model chain is the lake model MyLake16. Here, we take 64 

advantage of these models’ matching state variables, spatial scales and temporal 65 

resolutions17, and couple them into a network consisting of river stretches and lake basins, 66 

and to perform automated calibration and uncertainty analysis across the network. The 67 
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seamless connection between model components allows for the propagation of changes in 68 

boundary conditions –such as climatic or land-use changes– within the model network (e.g., 69 

Voinov18). The model network is applied to the Vansjø-Hobøl catchment (Norway), whose 70 

water quality, nutrient loading19, as well as past and recent land-uses have been thoroughly 71 

documented due to the basin’s pivotal importance for water supply and its sensitivity to 72 

eutrophication in lake Vansjø20. 73 

The main anthropogenic pressure on the Vansjø-Hobøl catchment is a surplus of P, 74 

which has resulted in eutrophication and severe blooms of cyanobacteria, including the 75 

potentially toxic Microcystis
7, 19-23. Although it is generally recognized that the abundance of 76 

the essential nutrient nitrogen (N) and silicon (Si) are also key factors controlling algal 77 

growth and thus water quality 24,25, our work has focussed on P based on evidence that 78 

phytoplankton growth in this system is P-limited19. As agricultural practices continue to 79 

expand in the basin, and with the observed increase in temperature and precipitation in 80 

northern Europe26, the occurrence of algal blooms is expected to increase. We thus aimed to 81 

model the response of biological (i.e., chlorophyll) and chemical (i.e., phosphorus) 82 

indicators of water quality, as defined by the WFD, to climate and land-use changes in the 83 

Vansjø-Hobøl catchment and to assess the influence of climate change on the feasibility of 84 

reaching existing water quality targets.  85 

  86 
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Material and methods 87 

2.1 Site description 88 

The Vansjø-Hobøl catchment (area = 690 km2), also referred to as the Morsa 89 

catchment, is located in south-eastern Norway (59°24′N 10°42′E). The Hobøl River, with a 90 

mean discharge of 4.5 m3 s−1, drains a sub-catchment of 301 km2 into Lake Vansjø, the 91 

catchment’s main lake. Lake Vansjø has a surface area of 36 km2 and consists of several 92 

sub-basins, the two largest being Storefjorden (eastern basin, L1 in Fig. 1) and 93 

Vanemfjorden (western basin, L2 in Fig. 1), whose characteristics are described in Table 1. 94 

The water-column of both basins remains oxygenated throughout the year. In addition, there 95 

are six smaller lakes which together represent less than 15% of the lake surface area. The 96 

Storefjorden basin drains to the Vanemfjorden basin through a shallow channel. The outlet 97 

of Vanemfjorden discharges into the Oslo Fjord (Fig. 1).  98 

2.2 The model network 99 

The model network consists of four separate models: a climate model, a hydrological 100 

model, a catchment model for P, and a lake model. The model network is first calibrated to 101 

present-day observed data, then run with four storylines to simulate conditions in the future. 102 

The model network is shown in Fig. 1 and described in detail below.  103 

Climate models. For a given greenhouse gas emission scenario (see section 2.4), 104 

projections of future climate change differ depending on the GCM used27. Consequently, we 105 

tested the following three GCMs independently as inputs: (1) HadCM328, (2) ECHAM529, 106 

and (3) Bergen Climate Model (BCM) 30, 31. The outputs from the GCMs were the basis for 107 

RCMs, yielding dynamically-downscaled daily weather projections. Details on the GCM-108 

RCM pairs are given in Table 2. This approach has been shown to be an effective way to 109 

couple climate with hydrology32.  110 

Catchment models. The outputs of the RCMs, together with basin characteristics, were 111 

used as inputs for the hydrological PERSiST model to produce daily estimates of runoff, 112 

hydrologically effective rainfall and soil moisture deficit. Previously, external time series of 113 

runoff, hydrologically effective rainfall and soil moisture deficits have been obtained from 114 

rainfall-runoff models such as HBV33. Here, we use instead the new model PERSiST v. 115 

1.0.1714, a daily-time step, semi-distributed rainfall-runoff model designed specifically for 116 

use with INCA models. Although PERSiST shares many conceptual characteristics with the 117 

HBV model, such as the temperature index representation of snow dynamics and 118 

evapotranspiration, it differs in its description of water storage14. PERSiST uses the same 119 

conceptual representation of water storage as the INCA models. Coupling PERSiST with 120 

INCA allows a consistent conceptual model of the runoff generation process for both 121 

hydrological estimations and water chemistry simulations. 122 

Water chemistry models. Daily hydrological outputs from PERSiST, and weather forcing 123 

from the RCMs, were used as inputs for INCA-P. The catchment P-dynamic model INCA-124 

P15, one of the iterations  of the INCA-suite of models, is a process-based, mass balance 125 
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model that simulates temporal variation in P export from different land-use types within a 126 

river system. It has been used extensively in Europe and North America to simulate P 127 

dynamics in soils and surface waters and to assess the potential effects of climate and land 128 

management on surface water quality7, 11-13, 15, 34, 35. We use a recent fully-branched version 129 

of INCA-P11 (Branched-INCA-P v. 0.1.31), in which reaches are defined as stretches of 130 

river between two arbitrarily defined points, such as a gauging station, a topographic feature 131 

or a lake basin. INCA-P is so-called semi-distributed, that is, soil properties are spatially 132 

averaged within user-defined sub-catchments branches. It produces daily estimates of 133 

discharge (Q, m3 d−1), concentration of suspended solids (SS, mg L−1), soluble reactive P 134 

(SRP; µg L−1) and total phosphorus (TP; µg L−1). The application here (Fig. 1) simulates the 135 

7 catchment reaches: five reaches of the Hobøl River catchment, each with defined land-use 136 

and hydrology (R1-R5); the local Storefjorden sub-catchment (R6); and the Vanemfjorden 137 

sub-catchment (R7). The multi-branch reach structure was established using GIS and land-138 

use maps for the area (Section 2.3) and the location of monitoring stations and discharge 139 

point into lake basins11. 140 

MyLake model. The lake model used, MyLake v. 1.2.1, is a one-dimensional process-based 141 

model designed for the simulation of seasonal ice-formation and snow-cover in lakes, as 142 

well as for simulating the daily distribution of heat, light, P species, and phytoplankton 143 

abundance in the water column16. MyLake has been successfully applied to several lakes in 144 

Norway, Finland and Canada16, 36, 37 to simulate lake stratification and ice formation16, 36, 37. 145 

It uses daily meteorological input data such as global radiation (MJ m-2), cloud cover, air 146 

temperature (⁰C), relative humidity (%), air pressure (kPa), wind speed (m s-1) and 147 

precipitation (mm), as well as inflow volumes and P fluxes to produce daily temperature (T, 148 

⁰C) profiles in the water column, concentration profiles and outflow concentrations of SS, 149 

dissolved inorganic P (PO4-P, µg L−1), particulate inorganic P (PIP, µg L−1), dissolved 150 

organic P (DOP, µg L−1), chlorophyll-α (Chl, µg L−1) and TP. The biogeochemical processes 151 

linking these state variables in the water-column are the mineralisation of DOP and of Chl to 152 

PO4, and the removal of PO4 through phytoplankton growth (yielding Chl) or through 153 

sorption onto SS (yielding PIP). In the sediments, mineralisation of organic-P and 154 

equilibrium partitioning of PIP to the pore water governs the fluxes of PO4 to the to the 155 

water-column, while resuspension allows Chl and PIP to return to the bottom water. Details 156 

on the equations governing these processes are given in Saloranta and Andersen16. In the 157 

MyLake model, phytoplankton has a constant C:P ratio of 106:1 and a organic-P:Chl ratio of 158 

1:1, such that particulate organic-P is a proxy for Chl. Similar stoichiometries and constant 159 

P:Chl ratios can be found in other models for lake plankton dynamics, such as PROTECH25. 160 

Finally, total particulate P (PP = TP − PO4; µg L−1) was calculated offline and compared to 161 

field observations (see section 2.3) to calculate performance metrics. 162 

MyLake was set-up for 2 lake basins (Fig. 1), Storefjorden (L1) and Vanemfjorden 163 

(L2) . The outputs of the R1 to R6 simulations from INCA-P are combined and used as 164 

inputs for L1. L1 and R7 are then combined and used as inputs for L2. The MyLake setups 165 

L1 and L2 are at the end of the model chain, because the lake Vanemfjorden (L2) discharges 166 

in the Oslo fjord. 167 
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2.3 Model input  168 

Observed climate, precipitation, temperature and wind data at Lake Vansjø were 169 

obtained from daily weather data at the Norwegian Meteorological Institute stations (1715 170 

Rygge; 1750 Fløter; 378 Igsi) located between the Vanemfjorden and Storefjorden basins 171 

(59°38’N, 10°79’E). These data were used as the common atmospheric forcing throughout 172 

the study; either as is for present-day climate or scaled using the RCM predictions for 173 

climate change scenarios (see section 2.4). Catchment hydrology was constrained using 174 

daily flow measured at the gauging station at Høgfoss (Station #3.22.0.1000.1; Norwegian 175 

Water Resources and Energy Directorate, NVE). 176 

The land cover structure for the Vansjø-Hobøl catchment was constructed from GIS 177 

digital terrain elevation maps provided by the Norwegian Forest and Landscape Research 178 

Institute and complemented by a recent report on the fertilization regimes of agricultural 179 

fields20. Historical nutrient outputs from waste-water treatment plants (WWTPs) were 180 

obtained from the online database KOSTRA, maintained by Statistics Norway 181 

(http://www.ssb.no/offentlig-sektor/kostra). TP and SS data were analysed downstream of 182 

Høgfoss, at Kure38. P loadings from scattered dwellings are provided by the online GIS 183 

information system GISavløp maintained by the Norwegian Institute for Agricultural and 184 

Environmental Research (Bioforsk; http://www.bioforsk.no/webgis). Land cover of the 185 

Vansjø-Hobøl catchment is dominated by forestry (78%), agriculture (15%) and water 186 

bodies (7%). The agricultural land-use is dominated by cereal production (89%), with a 187 

smaller production of grass (9.8%), vegetables (0.6%) and potatoes (< 0.1%). Together, 188 

agricultural practices contribute an estimated 48% of the total P input to the river basin, 189 

followed by natural runoff (39%) and WWTPs (5%) and scattered dwellings (8%). It is 190 

estimated that these external sources of P contribute to the majority of the P loads to Lake 191 

Vansjø 20.  192 

For the Vanemfjorden and Storefjorden basins, water chemistry and temperature data 193 

were provided by the Vansjø-Hobøl monitoring program, conducted by Bioforsk and by the 194 

Norwegian Institute for Water Research (NIVA). Water-column sampling was conducted 195 

weekly from 1990 to 2004, and bi-weekly from 2004 on, at the deepest-site of both basins 196 

whose coordinates are given in Table 1, using a depth-integrating pipe water-column 197 

sampler positioned at 2-4 m depth. Values of TP, PP, Chl and PO4 water-column 198 

concentrations for both basins are accessible through NIVA’s online database 199 

(http://www.aquamonitor.no). 200 

2.4 Scenarios and storylines 201 

Scenarios are valuable to evaluate alternative directions for development and policy 202 

implementation. Here, we have defined scenarios representing possible futures in global and 203 

regional climate and in catchment management. We combine these climate predictions and 204 

management scenarios into storylines, which help convey the output of the simulations into 205 

quantitative expectations for future P loadings in the Vansjø catchment (Fig. 2). The 206 

assumptions made in defining these scenarios, and the choice made to combine them into 207 

storylines, are detailed below.  208 
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Climate. Three GCMs were used to obtain predictions according to the A1B greenhouse gas 209 

emission scenario (2030-2052) of the Intergovernmental Panel on Climate Change (IPCC)27. 210 

The A1 scenario family describes a future world of rapid economic and population growth, 211 

and the introduction of new and more efficient technologies. It is subdivided into groups that 212 

describe alternative directions of technological change in the energy system. The A1B sub-213 

scenario, which describes a balance between a growing reliance on fossil energies and an 214 

emergence of new technology, assuming that similar improvement rates apply to all energy 215 

supply and end-use technologies. This scenario projects that anthropogenic emission of 216 

greenhouse gases (CO2, CH4 and N2O) peaks and begins to decline past the year 2050. GCM 217 

runs, prepared from the results of the ENSEMBLES EU FP6 project39, 40 provided boundary 218 

conditions for the RCMs. The outputs of these model pairs, all based on the A1B scenario of 219 

climate change, are hereafter referred to as future climates C1-C3 (Table 2 and Fig. 3), 220 

whereas the climate condition during the reference period (1990-2012) is referred to as 221 

climate C0 .  222 

Because the RCMs were based on spatial domains much larger than the catchment, they may 223 

contain seasonal biases. Consequently, RCM outputs for the Vansjø-Hobøl catchment were 224 

bias corrected on a monthly basis. Daily resolution scenario data for surface air temperature 225 

and precipitation were derived from a sub-set of these regional climate model simulations41 226 

and implemented by scaling the observed weather (1990-2012). Observed temperatures were 227 

changed to reflect both the increase in median and variance predicted by the climate models. 228 

Precipitation was scaled using a ratio of change approach, multiplying observation by the 229 

ratio of observed (1990-2012) over predicted (2030-2052) precipitation. Averaged, monthly 230 

local changes in temperature and precipitation predicted by the three RCMs under the A1B 231 

scenario for the 2030-2052 period are shown in Fig. 3. Overall, HadRm3 predicts average 232 

yearly changes in both temperature and precipitation that are greater than those predicted by 233 

ECHAM5 or BCM (Table 2).  234 

Management. Three management scenarios were developed together with stakeholders 235 

involved in the catchment’s land-use and water management. As a result, the following 236 

scenarios represent realistic actions that the stakeholders have the capacity to implement. 237 

The reference scenario (M0) represents historical riverine nutrient concentrations and 238 

current loadings from land-use, fertilization and WWTPs. The sustainable management 239 

scenario (M1), referred to as “water-quality focus”, represents the implementation of 240 

measures to further mitigate the risk of eutrophication in the catchment. These measures 241 

impose: (1) a 10% reduction in agricultural land, which is then converted to forest, (2) a 242 

25% decrease in vegetable production, which is then converted to grass production, (3) a 243 

25% decrease in P-based fertilizer application, and 4) a 90% improvement in the P-244 

removing performance of WWTPs. Finally, a less sustainable management scenario (M2), 245 

referred to as “economic focus”, reflects a projected increase in anthropogenic pressure 246 

throughout the catchment due to population growth and an intensification of food 247 

production. Further growth of agricultural and urban activities in the catchment in scenario 248 

M2 are imposed as follows: (1) a 10% reduction of forest cover, which is then converted to 249 

agricultural lands, (2) a shift of 25% of the grass production to vegetable production, (3) an 250 
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increase of fertilizer application by 25%, and (4) a 25% increase in the P load of effluents 251 

from scattered dwellings and WWTPs throughout the catchment. 252 

Storylines. The management scenarios M1 and M2 were either considered with the 253 

reference climate (C0) or with future climate change, thus defining 4 storylines which 254 

represent the possible combined effects of climate change and management practices in the 255 

Vansjø-Hobøl catchment (Fig. 2). Storylines 1 and 2 encompass the water-quality focus 256 

scenario with and without climate change, respectively, while Storylines 3 and 4 encompass 257 

the economic focus scenario with and without climate change, respectively. The Reference 258 

storyline represents the present climate conditions combined with the historical management 259 

of the catchment. 260 

2.4 Calibration and uncertainty analysis 261 

PERSiST was manually calibrated against measured stream flow in the Hobøl river 262 

at the end of reach R4 for the observation period of 1 January 1996 to 3 December 2000. 263 

The INCA-P and MyLake models were calibrated using a Markov Chain Monte Carlo 264 

(MCMC) approach. Given the large number of parameters involved in the simulation of 7 265 

river reaches and 2 lake basins using INCA-P and MyLake, probably many alternative sets 266 

of parameters could achieve the same degree of fit with observed data. Manual calibration 267 

identifies only one possible set, and perhaps not the best fit, while locally scoped and 268 

uniquely defined auto-calibration software, such as PEST, would fail to adequately address 269 

multimodality and equifinality42. To capture the envelope of acceptable parameter sets 270 

systematically throughout the parameter combination space, a probabilistic calibration was 271 

performed using a Bayesian inference scheme, where each parameter was given a prior 272 

distribution and a posterior distribution using a recent MCMC approach, within the 273 

framework of a self-adaptive differential evolution learning scheme (DREAM)42 274 

implemented in MATLAB (Starrfeld et al., this issue).68 The calibration was performed by 275 

choosing site-specific parameters, which are not known with certainty beforehand, and 276 

allowing those values to vary within the parameter space.  277 

INCA-P (28 parameters varied) was calibrated by calling the MCMC-DREAM 278 

algorithm described in Starrfelt et al. (this issue)68 against log10-transformed time series 279 

acquired at R4 (Fig. 1) for the observation period of 1 December 1992 to 31 January 1995. 280 

After calibration, parameter sets from the last iterations were sampled and the model was 281 

run for the scenario period and over the whole catchment. Median simulated values from 282 

~600 runs per scenarios were then passed to MyLake. MyLake (10 parameters varied) was 283 

calibrated against a time series of measurements in the surface waters of the Vanemfjorden 284 

and the Storefjorden basins for the observation period of 1 April 2005 to 1 September 2012. 285 

Technical details on the sensitivity and uncertainty analysis of such a model network are 286 

given elsewhere43.  287 

The goodness of fit between observations in the catchment and the model predictions 288 

from PERSiST and INCA-P, as well as between observations in the lake water columns and 289 

the model predictions from MyLake, were evaluated using the coefficient of determination 290 
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(R2), the root-mean-square error (RMSE) and the Nash-Sutcliffe coefficient (NS) statistic. 291 

The latter was calculated both on normal and on log-transformed values. These metrics were 292 

chosen because they represent the following three major categories of model performance 293 

metrics44: (1) standard regression statistics to determine the strength of the linear 294 

relationship between simulated and measured data (i.e., R2), (2) error indices to quantify the 295 

deviation in the units of the data of interest (i.e., RMSE) and (3) dimensionless techniques to 296 

provide a relative model evaluation assessment (i.e., NS). R2 values range from 0 to 1, with 297 

higher values indicating less error variance, and typically values greater than 0.5 are 298 

considered acceptable. RMSE values retain the same units as the constituent being 299 

evaluated, and can be directly compared with the data (as in Figs. 4 and 5). A RMSE value 300 

of 0 indicates a perfect fit. NS ranges between −∞ and 1, with a value of 1 being optimal and 301 

values between 0.5 and 1 being generally viewed as good. Negative NS values indicate that 302 

the mean observed value is a better predictor than the simulated value, pointing to poor 303 

model performance. We refer the reader to Moriasi44 for extensive discussion on the 304 

procedures used to qualify the calculated values of these statistics.  305 

In addition to the performance metrics described above, “target diagrams”45, 46 were 306 

used to compare the model’s performance with respect to Q, TP, Chl and PO4. Target 307 

diagrams conveniently represent aggregated performance metrics by plotting the normalized 308 

bias (B*, where * denotes normalization) against the normalized unbiased root mean square 309 

difference (RMSD’*)43, 44. B* is defined as:  310 

�∗ �
�
�∑ 	
��
������

��
      Eq. 1 311 

where N is the total number of observations and model output pairs, Dn is the observation at 312 

each site, Mn is the corresponding model output, and σD is the annual standard deviation of 313 

the observed data. RMSD’* is calculated as follow:  314 

����� ∗	� 	 ���	������
��

�	��� � ��� �� 
!.#

   Eq. 2 315 

where sgn represents the sign of the standard deviation difference and σM the annual 316 

standard deviation of the modelled data. If the model standard deviation is greater than the 317 

observation standard deviation, RMSD’* is positive.  318 

3. Results and Discussion 319 

3.1. Model performance 320 

The hydrology of the catchment was well simulated with PERSiST and yielded 321 

satisfactory fits to the observed discharge (Fig. 4), as reflected by the high NS coefficient (> 322 

0.85; Table 3). The hydrological model HBV33, previously used in conjunction with INCA-323 

P, yielded similarly satisfactory simulations of flows17. Although the use of log-transformed 324 

values yielded satisfactory fits with respect to NSlog for both Q and TP, the INCA-P 325 

calibration against TP measurements is characterized by relatively poor performance metrics 326 
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(Table 3, Fig. 4). Here, we aimed for a compromise between performance in some 327 

components of the individual models and a realistic propagation of the changes in boundary 328 

conditions through the integrated system across the model components, as discussed in 329 

Voinov18.  330 

The water quality simulated by MyLake during the calibration period for the surface 331 

waters of Storefjorden (L1) and Vanemfjorden (L2) are shown in Fig. 5, and the 332 

corresponding model performance statistics are summarized in Table 3. The observed P 333 

dynamics in both basins display strong seasonal features, with TP, Chl, and PP all reaching 334 

maximum values during the summer, when the lake productivities are at their highest. 335 

Conversely, PO4 is at a minimum during the summer, consistent with its uptake by 336 

phytoplankton. Observed TP values show a high degree of variability from week-to-week, 337 

likely due to the integrating nature of the TP parameter. Visual inspection of Fig. 5 shows 338 

that MyLake simulations for both basins well captured the seasonal minima in PO4 and 339 

maxima in both PP and Chl. The seasonal trends in Chl, a measure of the abundance of 340 

phytoplankton, are also well captured by the model, with the exception of an algal bloom in 341 

the summer of 2006, whose magnitude was not fully captured (Fig. 5). The algal bloom in 342 

the summer of 2008 is reproduced by the model, although also underestimated, despite the 343 

high magnitude rain events that occurred throughout the catchment during that year. In 344 

particular, a single bank erosion event in the winter of 2008 resulted in high SS in the 345 

river22. The NS metric is high for simulated Q with PERSiST, but low for simulations of TP 346 

with both INCA-P and MyLake (Table 3). This metric is unforgiving, in that it is strongly 347 

affected by simulations that to not match observed peak concentrations.  348 

The target diagrams (Fig. 6) allow for the comparison of model performance among 349 

parameters and stations in a normalized manner, independent of the magnitudes of the 350 

simulated values. The RMSD’* calculation involves the multiplication of a term in Eq. 2 by 351 

the sign of difference between the standard deviation (σ) of simulations and observations. As 352 

a result, the RMSD’* provides information about whether the σ of simulated values is larger 353 

or smaller than σ of the observations. An increase in RMSD’* reflects an increase in the 354 

discrepancy between simulations and observations46, pointing to incommensurability 355 

between what is modelled and the available observations, while lower values indicate less 356 

residual variance between them. B* represents systematic over- or under-estimation of the 357 

simulated vs observed values. Fig. 6 reveals that the simulations are generally unbiased, and 358 

that the residual variances increase as we move from INCA-P to MyLake, that is, further 359 

along the model network. When compared to the observations, INCA-P simulations are less 360 

biased and, on an absolute scale, have a smaller RMSD’* than the simulations generated by 361 

MyLake. This information was not revealed solely by calculating the metrics reported in 362 

Table 2. 363 

Despite the low NS metrics reported for INCA-P, three lines of evidence suggest that 364 

the model delivers representative TP loads to the lake model: (1) a linear regression of 365 

cumulative TP loads estimated from observed Q and TP vs those predicted by INCA-P 366 

yields a R2 of 0.90 (n=124, p<0.05), (2) the B* and RMSD’* values obtained when 367 
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comparing estimated and predicted TP loads are low (Fig. 6), and (3) the performance of the 368 

lake models is acceptable. Previous –although simpler– INCA-P setups calibrated on data 369 

from other Norwegian catchments35, 47 were also deemed satisfactory when evaluated 370 

against fortnightly or monthly TP loads rather than daily TP values. Thus, during the 371 

scenario period, the response of INCA-P to the climate and land-use changes is expected to 372 

be reasonable both in magnitude and in direction.  373 

MCMC-DREAM analysis provides information on the sensitivity of the simulations 374 

to INCA-P and MyLake parameters. For INCA-P, of the 28 parameters tested, TP 375 

concentrations were most sensitive to parameters controlling hydrology and erosion across 376 

the different land-uses, in particular the soil reactive zone time constant (d-1) -which in 377 

INCA refers to the amount of water present in the soil and its residence time-, the soil 378 

erodibility (kg m-2 d-1), the direct runoff time constant, and the base flow index. 379 

Downstream, P speciation predicted by MyLake was most sensitive to 5 out of the 10 380 

parameters tested: the re-suspension rate of sediments (m d-1), the sinking rate of suspended 381 

inorganic particles (m d-1), the algae growth rate (d-1), the heat vertical diffusion coefficient, 382 

and the wind sheltering coefficient. P speciation was moderately sensitive to the sinking rate 383 

(m d-1), the sorption coefficient of P onto inorganic particles (mg P m-3), and to the algae 384 

mortality rate (d-1), while insensitive to PAR saturation (mol quanta m-2 s-1) and snow 385 

albedo. The co-variance structure in the parameter space gathered by applying MCMC-386 

DREAM analysis is described elsewhere for INCA-P (Starrfelt et al. this issue)68 and 387 

MyLake43. 388 

3.2. Impact of climate and land-use change on water quality 389 

Several P-mitigation measures have been implemented in the Vansjø-Hobøl 390 

catchment over recent decades. These measures consist of reduced tillage to control erosion, 391 

reduced fertilizer application rate, implementation of vegetated buffer strips along most of 392 

the streams in cultivated areas, construction of artificial wetlands, and incremental 393 

improvement of WWTP performance20, 21. As a result, TP loads and Chl concentrations 394 

steadily decreased throughout the reference period (Fig. 7). Imposing the storylines 395 

described in section 2.4 on these historical reference conditions reveals: i) what the water 396 

quality status in the Vansjø-Hobøl catchment would have been should additional 397 

management decisions have been made, and ii) the effect of different climate change 398 

scenarios on water quality. 399 

PERSiST and INCA-P predict that the hydrological response to climate change 400 

causes a significant increase in runoff and in the fluxes of TP to the lake basins. This result 401 

is consistent with observations in Danish lakes5 where higher TP loads were ascribed to 402 

climate-induced increases in rainfall. MyLake output indicated no significant differences 403 

between the thermocline depths predicted under climate change and those predicted under 404 

present-day climate conditions (t-test, n = 523, p > 0.05). This suggests that changes in air 405 

temperature and precipitation in Storyline 2 and 4 do not induce significant variations in the 406 

water-column structures at the scale modelled by MyLake (i.e., vertical resolution of 1m). 407 

On the other hand, ice cover duration was predicted by MyLake to decrease significantly (p 408 
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< 0.05) under climate change; indeed, MyLake projected shorter duration of ice cover for 409 

lakes in the entire Nordic region37. For a given management scenario, TP and Chl values 410 

predicted under climate change were significantly higher (t-test, n = 523, p < 0.05) than 411 

those predicted using present-day climate conditions (96% of the times for Chl and 76% of 412 

the times for TP). Amongst the three climate models tested, HadRm3 (C1) projected the 413 

largest climate change39,, and yielded the highest TP and Chl values. Most likely this was 414 

doe to the higher amount of precipitation projected by HadRm3, which resulted in higher P 415 

loads and runoff from the catchment in INCA-P.  416 

The increase in Chl production predicted by MyLake was higher in the summer 417 

months (Fig. 8). The model’s handling of phytoplankton growth, which is temperature-418 

driven when neither light nor PO4 is limiting16, explains this result. Recent studies have 419 

further highlighted that temperature-mediated P release from lake sediment can increase 420 

under a warmer climate5, 6, 48, thus furthering algal growth. However, the influence of higher 421 

temperatures on internal P loadings in Lake Vansjø cannot be ascertained here, because the 422 

relevant sediment-water processes are only partly implemented in the MyLake model (See 423 

section 3.4). In addition, the climate scenario used here, A1B, predicted that greenhouse gas 424 

emissions will be curbed by the mid-21st century. Other scenarios, such as those in the A2 425 

and B2 families of scenarios, assume larger increases of greenhouse gases emissions as well 426 

as higher increases in temperature and precipitation in Nordic catchments. The outcome of 427 

our simulations indicates that these climatic conditions would further increase the risk of 428 

eutrophication in Nordic lakes, as previously suggested6, 12, 49, 50. Thus, projected increases of 429 

Chl concentrations are likely conservative. 430 

In general, any given management scenario resulted in higher TP and Chl 431 

concentrations when climate change was included. This is seen for the Storefjorden basin in 432 

the years following 2040, for which the detrimental effect of climate change overrides the 433 

beneficial effects of the water-quality focus storylines. Both TP and Chl reach values above 434 

those of the reference storylines, for which no additional P-load reduction was imposed. 435 

Nonetheless, and although the effects of climate change are significant, variations in water 436 

quality brought about by different management scenarios are always greater than those 437 

brought about by climate change (Fig 7). Land-use and management regimes had a profound 438 

impact on water quality, more so than the projected climate change under the A1B scenario. 439 

Relative to the reference storyline, imposing a water-quality focus (Storyline 1) improved 440 

the water quality overall by decreasing TP and Chl by 24% and 33%, respectively, in 441 

Storefjorden, and by 18% and 23%, respectively, in Vanemfjorden. Conversely, an 442 

economic focus (Storyline 3) adversely affected water quality by increasing TP and Chl by 443 

58% and 59%, respectively, in Storefjorden, and by 44% and 42%, respectively, in 444 

Vanemfjorden. It thus follows that Storyline 1 represents the best case, while Storyline 4 445 

represents the worst case (Fig 2).  446 

3.3 Implications of climate and land-use change for water management  447 

The seasonal distributions of the daily predicted TP and Chl concentrations (Fig. 8) 448 

show that the water quality is much worse during the summer months under all storylines. 449 
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Using the lake-specific water quality thresholds of the WFD51, we calculated the proportion 450 

of simulated days for which the regulatory thresholds for good/moderate and moderate/bad 451 

water quality were exceeded. These thresholds are specific to each lake type, so that the TP 452 

and Chl concentrations below which the water quality meets the guideline are different for 453 

Storefjorden and Vanemfjorden (Table 4).  454 

The water-quality focus scenario without climate change (Storyline 1) increases the 455 

number of days for which the concentrations of TP and Chl are deemed “good”, and has a 456 

greater influence on Chl than for TP (Table 4). Nevertheless, the “good/moderate” water 457 

quality threshold will still be exceeded 98-99% of the time for TP and 88-90% of the time 458 

for Chl. Under an economic focus scenario with climate change (Storyline 4), the water 459 

quality degrades such that the concentrations of both TP and Chl exceed the moderate/bad 460 

threshold values 99% of the time in the summer. Together, these results suggest that it will 461 

be difficult to reach the environmental targets set for TP and Chl in Lake Vansjø under the 462 

European WFD, even under the best-case scenario represented by Storyline 1. More 463 

stringent water-quality focused measures are, therefore, likely needed. Arguably, a full 464 

assessment of the compliance of water quality indicators to the WFD directive requires 465 

greater details regarding algal species assemblages, in particular observations and 466 

predictions regarding the abundance of potentially harmful algae such as cyanobacteria, 467 

which in addition to higher TP levels are expected to be stimulated by increased 468 

temperature52. 469 

3.4 Sources of uncertainty  470 

Assessing the level of uncertainty in the outcome of an environmental model 471 

provides a forthright basis for decision-making and regulatory formulation. The sources of 472 

uncertainty in water quality modelling at the river-basin scale range from uncertainty linked 473 

to the choice of processes represented, the uncertainty in the model parameters and the data 474 

themselves. Here, uncertainty was assessed by performing auto-calibration (see section 2.4) 475 

and accepting as usable those parameter sets yielding simulations of equal likelihood. This 476 

uncertainty is represented by the interquartile space shown on Fig. 5. Overall, the 477 

uncertainty in Chl predictions are greatest around the time where its level peaks during 478 

spring and summer months (Fig. 5). Conversely, the model generally agreed with the 479 

observation on the timing of the clear water period occurring between the spring and 480 

summer blooms, as the uncertainty band visibly narrows around the simulated median (Fig. 481 

5). For the scenario simulations, the uncertainty was largest for scenarios where climate 482 

change and increased external nutrient loads were combined, relative to the scenarios with 483 

climate change alone. MyLake’s predictions of phytoplankton abundance thus bear greater 484 

uncertainty at higher biomass levels. 485 

In addition to estimating uncertainty statistically, we identified shortcomings in the 486 

models that likely introduce further uncertainty in the predictions. As mentioned above, 487 

INCA-P predictions are sensitive to soil erosion parameters. INCA-P is somewhat limited in 488 

its handling of erosion processes and of particle transport, resulting in an increased 489 
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uncertainty surrounding its predictions. Erosion events generating pulses of particles, such 490 

as landslides, have been observed in the Vansjø-Hobøl catchment, for instance in 200820, 491 

when river bank erosion occurred following a flood and temporarily increased the particle 492 

load into the Storefjorden basin. The effect of bank collapse on runoff and particle transport 493 

is not spatially represented in INCA and particle retention measures, such as sedimentation 494 

ponds and buffer strips, cannot be explicitly represented in the model. Although such 495 

structures are better modelled using fully-distributed codes53, their effect on P migration in 496 

the catchment and on erosion control remain problematic to model because landscapes are 497 

not at steady-state, and are subject to tipping points under increasing climatic pressures54 498 

and extreme hydrologic events. Finally, INCA-P is a rather heavily parameterized model, 499 

and the lack of data on some of the processes represented in the model introduces 500 

uncertainty. Using INCA-P within the framework of an automated parameter estimation 501 

procedure, as was done here, is likely a reasonable approach to estimate this uncertainty34.  502 

MyLake’s underlying conceptual model is purposely simple, in order to allow fast use of 503 

the model in automated auto-calibration schemes, as was done here, or in global sensitivity 504 

analysis. The drawback is that MyLake lacks the representation of some key processes, the 505 

most relevant of which are identified below. First, MyLake does not represent the 506 

phytoplankton community dynamic, thus not capturing possible community shifts due to 507 

climate change55. Second, MyLake does not capture the thermodynamic decrease of oxygen 508 

availability at higher temperatures which, combined with the higher metabolism of respiring 509 

heterotrophic organisms, enhances the risk of oxygen depletion, and ultimately of anoxia, in 510 

the hypolimnion5. Given that hypolimnetic oxygen concentration may control P 511 

sequestration and release by sediments, neglecting it introduces a source of uncertainty in 512 

the model’s predictions, especially for lakes with high internal P loads. As suggested by 513 

Mooij et al.56 and others5, 48, 57-60, describing the exchange of phosphorus between the 514 

sediments and the overlying water column beyond the daily timescale, as it is currently done 515 

in MyLake, is an important step in predicting eutrophication. Although recent lake models 516 

do represent internal P loading processes61, 62 we elected to use the simpler MyLake model 517 

based on available information on internal P loading in lake Vansjø (See section 2.3). Third, 518 

MyLake, as with most lake system models used to study eutrophication, does not consider 519 

the coupled biogeochemical cycles of key macronutrients such as sulphur (S), calcium (Ca) 520 

and iron (Fe). It has long been recognized that these elements play a key role in controlling 521 

P cycling in the water column and in the sediments63, 64. In oligotrophic lakes a decrease in 522 

Ca concentrations, correlated with acid deposition, has been reported in Nordic lakes over 523 

the past decade and may have induced changes in plankton assemblages63. Finally, recent 524 

increase in dissolved organic carbon (DOC) loadings to Nordic lakes65 may have an effect 525 

on the lake photon budget and thus on phytoplankton growth. Although photon absorption 526 

by DOC is included in MyLake, it was not systematically investigated here due to the lack 527 

of DOC data in the river. These phenomenon, acting in conjunction with climate and land-528 

use change, may be changing lakes productivity in directions that, to our knowledge, current 529 

models do not predict. 530 

 531 
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4. Conclusion  532 

This study demonstrates the usefulness and potential limitations of a novel network 533 

of process-based, mass-balance models linking climate, hydrology, catchment-scale P 534 

dynamics, and lake processes to support the decision-making needed to improve surface 535 

water quality. The management scenarios tested here are projected to have a profound effect 536 

on water quality. The model results suggest that achievement of the water quality target of 537 

good ecological status in eutrophic Nordic lakes such as Lake Vansjø represents a challenge 538 

given the current land use and the expected changes in climatic conditions. In order to reach 539 

good water quality status, managerial choices consistent with a water-quality focus scenario 540 

are needed. Such measures are deemed “climate-proof” because they will not only improve 541 

water quality but also counteract the detrimental impact of projected climate change. 542 

Nevertheless, consistent with previous catchment-scale studies conducted in northern35, 543 

central66, and southern Europe67, climate changes will probably worsen water quality. 544 

Should the future Nordic climate (2030-2060) be wetter and warmer than that projected by 545 

the A1B scenario, additional stringent management measures must be implemented in order 546 

to achieve water quality. The conclusions presented here on the changes of water quality as 547 

a result of management and climate change are likely to hold even if different calibration 548 

periods, parameter sets, or even different catchment and lake models were used.  549 
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 710 

Tables 711 

Table 1. Location and characteristics of the lake basins. 712 

Basin name Storefjorden Vanemfjorden 

Location (Lat, Lon) 59°23’24’’ N, 10°49’52’’E 59°24’53’’ N, 10°42’46’’ E 

Mean depth (m) 8.7 3.8 

Maximum depth (m) 41.0 19.0 

Area (km2) 23.8  12 

Volume (m3) 206.1×106 46.1×106 

Residence time (yr) 0.85 0.21 

  713 
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Table 2. Change in yearly mean temperature (∆T) and precipitation (∆p) predicted by 714 

climate models for the Vansjø-Hobøl catchment during the scenario period 2030-2052 715 

relative to the reference period 1990-2012. 716 

Scenario GCM RCM ∆T (⁰⁰⁰⁰C) ∆p (mm) Configuration 

C1 HadRm3a HADRM3 +1.6 +78.8 Q0 with normal sensitivity 

C2 ECHAM5b RACMO +0.7 +43.4 -r3 set of initial conditions 

C3 BCMc RCA +0.9 ‒10.5  

a) Hadley Centre, UK; b) Max Planck Institute for Meteorology, Germany; c) Nansen 717 

Centre, Norway 718 

  719 
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Table 3. Summary of models performance statistics. Coefficient of determination (R2), 720 

Root-mean-square error (RMSE), and Nash-Sutcliffe coefficient on normal (NS) and log-721 

transformed data (NSlog) for reach R4 (Hobøl at Kure), station L1 (Storefjorden) and L2 722 

(Vanemfjorden) of the model network.  723 

   

 

 

Parameter Model (Station) R
2
 RMSE NS NSlog  

Q PERSiST (R4) 0.85 52.58 m3 s-1   0.85 0.99  

Q INCA-P (R4) 0.59   3.34 m3 s-1   0.48 0.99  

TP INCA-P (R4) 0.04   0.09 µg L-1   -0.51 0.16  

TP MyLake (L1) 0.93   6.37 µg L-1   0.19 0.99  

TP MyLake (L2) 0.94   7.76 µg L-1 -0.23 0.99  

PO4 MyLake (L1) 0.92   6.70 µg L-1   0.39 0.84  

PO4 MyLake (L2) 0.72   2.54 µg L-1 -0.96 0.90  

Chl MyLake (L1) 0.74   4.48 µg L-1 -0.68 0.89  

Chl MyLake (L2) 0.82   8.11 µg L-1   0.21 0.96  

PP MyLake (L1) 0.47 11.36 µg L-1 -0.52 0.92  

PP MyLake (L2) 0.85   8.16 µg L-1 -0.50 0.98  

  724 
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Table 4. Proportion (%) of days above the good/moderate or the moderate/bad thresholds 725 

set by the WFD for TP and Chl for basins of classes L-N3 (Storefjorden) and L-N8 726 

(Vanemfjorden) in the months of June, July and August. Lower numbers indicate better 727 

water quality. 728 

Threshold name Good/Moderate Moderate/Bad 
Basin Storefj. Vanemfj. Storefj. Vanemfj. 
Parameter TP Chl TP Chl TP Chl TP Chl 
Threshold values (ug L-1) 16 7.5 19 10.5 30 35 15 20 
Reference ( %) 99 99 99 95 21 32 58 58 
Storyline 1 (%) 92 99 88 90 0 0 30 29 
Storyline 4 (%) 98 99 99 99 94 95 99 93 

 729 

 730 

 731 
  732 
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Figures 733 

 734 

735 
Figure 1. Land-use distribution of the Vansjø-Hobøl catchment (right panel) and 736 

corresponding schematic representation of the catchment-lake model network (left panel) 737 

indicating river reaches (R) modelled with INCA-P and lake basins (L) modelled with 738 

MyLake. The hydrological model PERSiST provides input for the catchment model, and the 739 

climate models provide forcing for all models.   740 
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741 
 742 

Figure 2. Management and climate scenarios defining the storylines. Storyline 0 represents 743 

the reference management focus and reference climate that were compared to observations 744 

in calibrating the river-lake model network and deriving model performance metrics. 745 
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747 
 748 
Figure 3. Monthly means of the changes in temperature and precipitation imposed by the 749 

climate models HadCM3/HadRM3 (solid line, C1), ECHAM5/RACMO (long dashed line, 750 

C2) and BCM/RCA (short dashed line, C3) for the period of 2030-2052 relative to the 751 

present-day conditions (C0) over the period of 1990-2012, along with monthly means of 752 

observed temperature and precipitation over the same period (grey vertical bars). 753 
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 755 

 756 

Figure 4. Observed (symbols) and simulated (solid line) stream flow at the end of R4 using 757 

the model PERSiST (panel A), as well as observed and simulated stream flow and TP at the 758 

end of R4 using INCA-P (panel B). 759 
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 761 
Figure 5. Calibration performance of MyLake at Storefjorden (L1, left panels) and 762 

Vanemfjorden (L2, right panels) for total phosphorus (TP), chlorophyll (Chl), particulate 763 

phosphorus (PP) and phosphate (PO4) over the calibration period of 2005-2012. The results 764 

are reported as the median (solid line), daily quartile statistics sampled from the parameter 765 

sets of equal likelihood (continuous area) together with the observations (circles).  766 

 767 

  768 
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 769 

Figure 6. Target diagram presenting the normalized bias (B*) against normalized unbiased 770 

root mean square difference (RMSD’*) of simulated Q, TP and TP loads for INCA-P at R4 771 

and of simulated TP , PO4, and Chl for MyLake at Vanemfjorden and Storefjorden over the 772 

calibration periods. The median simulated values were used for TP, PO4 and Chl. The inner 773 

and outer circles indicate ±0.75 and ±1 standard deviation (σ) on the X-axis and 75% and 774 

100% B* on the Y-axis, respectively.  775 
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776 
Figure 7. Predicted yearly median total P (panel A) and Chlorophyll (panel B) at 777 

Storefjorden (L1) and Vanemfjorden (L2) by the MyLake model without (C0; Storylines 1 778 

and 3) or with climate change predictions made by the HadRm3 (C1), the ECHAM5 (C2) or 779 

the BCM models (C3) as climate forcing (Storylines 2 and 4) for the river-lake model 780 

network. The thick solid lines represent the reference conditions and the thin horizontal solid 781 

lines indicate the WFD thresholds specific to each basin (see Table 4). 782 
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 783 

Figure 8. Seasonal range of MyLake-predicted daily TP (panel A) and Chlorophyll (panel 784 

B) concentrations in the top 4m of the Storefjorden (L1) and Vanemfjorden (L2) water 785 

columns. The green, yellow and red shaded zones indicate the basin-specific WFD water 786 

quality targets for good, moderate and bad water quality status, respectively (see Table 4), 787 

while the asterisks indicate the 5th and 95th percentile outliers.  788 
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