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Gel polymer electrolytes: definitions,
classification, rheology, and interfacial properties

Fatemeh Naderi Samani and Reza Foudazi *

Lithium-based batteries have revolutionized the electrochemical energy storage field, where liquid

electrolytes are most used. Despite having high energy density and ionic conductivity, unwanted Li

dendrite formation, leakage, and safety issues are ongoing challenges. In addition, the continuous

lithiation/delithiation during charging/discharging processes affects both electrodes and electrolytes in

terms of crack formation in the electrode, solid electrolyte interphase (SEI), cyclic compression/

elongation of the electrolyte, and detachment of the interface especially in the solid electrolyte, which

all can be addressed by using appropriate gel polymer electrolytes (GPEs). Therefore, this perspective

starts with the definition of gels from a rheological perspective, categorizing GPEs, and finally discussing

rheological considerations in electrolyte design and interfacial phenomena at electrode–electrolyte

junctions.

Introduction

Since the discovery of fire, energy has been the driving force
behind development and evolution in societies. Also, finding a
way to store energy has been of interest. For example, the first
speculated electrochemical cell, called the Parthian galvanic
cell dating back to B200 BC, was likely used for electroplating
or as a primitive power source, highlighting early human

interest in utilizing electrical energy.1–4 In the 21st century,
energy is powering everything from homes to industries.
As demand grows, efficient energy storage devices become
essential for ensuring a stable and sustainable energy supply.
For instance, energy storage systems balance energy supply and
demand, enable renewable energy integration, and power por-
table devices and electric vehicles.5,6 Fig. 1 presents the chron-
ological advancements in electrochemical storage devices from
200 BC to the present day.

Batteries, as the main energy storage devices, are composed
of an anode, a cathode and an electrolyte, in which the
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electrolyte plays a critical role alongside the electrodes by
enabling charge carrier movements between the anode and
cathode.7,8 Liquid electrolytes have been the most common
electrolytes used in batteries for decades due to their high ionic
conductivities (10�3–10�2 S cm�1) and good contacts with
electrodes (i.e., good wetting).9,10 Although the liquid electro-
lytes exhibit good electrochemical properties, they have some
drawbacks, such as leakage, Li dendrite formation, poor
mechanical properties, flammability, and toxicity.10–16

To address the above-mentioned challenges in liquid elec-
trolytes, solid electrolytes were introduced into the electro-
chemical system. Solid electrolytes with a matrix of inorganic
ceramics or polymers can provide some advantages such as
high mechanical strength, simple packaging processes, and
preventing dendrite formation as well as leakage.17–19 The
conductivity of a solid electrolyte (silver sulfide) was first
observed by Faraday back in 1836, while b-alumina was the
first commercially available solid electrolyte introduced in 1960.20

Inorganic solid electrolytes, like oxides and sulfides, are known for
their thermal stability and high ionic conductivity at elevated
temperatures.21,22 Beyond the inorganic solid electrolytes, solid
polymer electrolytes (SPEs) gained attention due to their wide
electrochemical window, non-brittleness, and good thermal stabi-
lity. The first SPE was introduced in 1979.20,23–26

SPEs have been synthesized by using a polymeric host and a
salt as the source of ions and in some cases mobile species for
charge transport.27 Despite having good electrochemical and
mechanical properties, SPEs encounter issues such as low ionic
conductivity and weak electrolyte–electrode interfaces.28

Poly(ethylene oxide), PEO, is one of the most common polymers
studied for electrolyte applications. However, PEO has a low
ionic conductivity of 10�8 S cm�1 due to its semi-crystalline
nature, resulting in poor battery performance.10,29 High crystal-
linity in polymers hinders ion movements and reduces ion
conduction.10,26,29,30 The basic criteria for choosing a polymer
host are high thermal and electrochemical stability, sufficient

molecular weight to ensure good mechanical properties, low
glass transition to accelerate the local chain movement and ion
transport through the matrix, and functional groups that
interact with ions, enhance salt dissolution inside the polymer
and prevent dendrite formation.31 However, all these features
are not usually found at the same time in these polymers.

GPEs are developed to address low ionic conductivity and
weak electrolyte–electrode interface issues in SPEs. Typically, to
synthesize GPEs, a polymeric matrix is mixed with a liquid
component (which will be discussed in the ‘‘Gel polymer
electrolytes’’ section). While the polymer maintains strong
mechanical integrity, the liquid component enhances diffusion
of ions, providing high ionic conduction.32,33 GPEs have low
modulus and can be formulated to remain elastic under high
deformations, which make them ideal candidates to be used
instead of liquid electrolytes for addressing the leakage and
dendrite formation issues.34 While the lithiation/delithiation
process has been extensively studied in the context of electrode
behavior,35–37 much less is known about its influence on
electrolytes. In fact, this process is the primary source of
deformation in electrolytes, which occurs repeatedly during
battery charging and discharging throughout its lifetime.
Therefore, this perspective highlights how lithiation/delithia-
tion affects the electrolyte and electrolyte–electrode interface in
the context of the overall stability and efficiency of batteries. We
provide a deeper insight into how GPEs integrate mechanical
resilience with electrochemical functionality by connecting the
network structure and rheological response with interfacial
stability.

The outline of this perspective is as follows. First, it is
essential to restate a precise and consistent definition of
gels from a physical viewpoint, because the term ‘‘gel polymer
electrolytes’’ is often applied to systems that are not inherently
gels. Many studies, for instance, have broadly classified liquid-
supported membranes as GPEs.38–40 However, such general-
ization does not always align with the physical definition of a

Fig. 1 History of electrochemical storage devices.
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gel. In other words, we consider GPEs as only those electrolytes
that exhibit the fundamental features of gels, rather than all
liquid-containing membranes. This distinction is important
because it ensures consistency in terminology and avoids
conflating materials with fundamentally different structural
and functional behaviors. After revisiting the gel definition,
we review the literature on GPEs that truly meet the gel criteria,
providing a revised classification for comparing electrolyte
design strategies across different studies.

Revisiting gel definitions

In the Merriam-Webster dictionary, a gel is defined as ‘‘a
colloid in a more solid form than a sol’’. In a more scientific
way, Jones defines gels as materials composed of connected
subunits that form networks of macroscopic dimensions, in
which bonding of subunits induces a liquid’s (sol) transition to
a gel with solid-like mechanical properties.41 Based on the
continuous structure of gels, Flory classified them into four
categories: (i) gel mesophases (well-ordered systems); (ii) dis-
ordered covalent polymeric networks; (iii) disordered physically
aggregated polymer networks with a local ordered structure;
and (iv) particulate, disordered structures.42 The main focus of
this perspective is GPEs, thus, category (ii) and (iii) are mainly
of interest.

Gels are prepared as two- or multi-component coherent
systems, constituted by a solid (a gelator) and solvent(s), where
the solid component creates a 3D network expanding throughout
the liquid phase.43,44 It is proposed that the solid network in gels
traps and immobilizes the liquid phase of at least B1 time and up
to 1000 times of network mass, while having the ability to
reversibly swell or deswell.45 We believe the definition of a gel is
independent of the amount of immobilized liquid and should be
treated from a physical property viewpoint.

The gelation process is a thermodynamic phase separation
(e.g., temperature or solvent changes) that forms heterogeneous
structures when full separation is prevented. The sol–gel transi-
tion point is crucial for characterizing the gelation process.
The sol–gel transition can be induced by different stimuli,
e.g., temperature,46 stress,47 concentration or volume
fraction,48 time,49 pH,50 and light.51 The most common ones
are the temperature- and shear-induced gelation.

The first rheological criterion for identifying the gelation
point was proposed by Winter and Chambon in the 1980s. They
stated that, at the gel point, the storage modulus (G0) and loss
modulus (G00) should have the same scaling behavior with
frequency, following the relationship G0(o) B G00(o) B on, in
which n is a constant.52,53 Therefore, tan(d) becomes indepen-
dent of frequency at the gelation point and d = np/2 with 0 o
n o 1. If n reaches 1, the gel is viscous, while for n close to 0, the
gel is elastic.54 This behavior is schematically shown in Fig. 2A
before, after and during the gelation. Before and after the
gelation, G0(o) and G00(o) do not simultaneously correlate
with on.55

The sol–gel transition point may be shifted by the introduc-
tion of salts into the system. Depending on the ionic state of the
polymer, the presence of salts can increase or decrease the
gelation temperature. For charged polymers, the higher the salt
concentration, the greater the gelation temperature.57 Compar-
ing the effect of ions on the gelation of polymers shows that the
cation–polymer interactions play a critical role in triggering and
modulating gelation. The gelation of k-carrageenan offers a
well-understood case of cation influence on the physical prop-
erties of polymer gels.58 For example, divalent cations have a
stronger effect on both gelation temperature and G0 of the k-
carrageenan gel due to their ability to bind the carrageenan
helices together.59,60 For neutral polymer gels, increasing salt

Fig. 2 (A) Schematic of viscoelastic properties before, after, and during gelation. During gelation, G0(o) and G00(o) scale with on at all frequencies.
Adapted with permission from H. H. Winter and M. Mours, Neutron Spin Echo Spectroscopy Viscoelasticity Rheology, 1997, 165–234. Copyright 1997
Elsevier. (B) A rheological model of gelation, representing the evolution in viscosity and stress during sol–gel transition.56 Adapted with permission from
A. Ya. Malkin and S. R. Derkach, Curr. Opin. Colloid Interface Sci., 2024, 73, 101844. Copyright 2024 Elsevier.
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concentration deceases the gelation temperature, while leading
to higher G0.61–63

Fig. 2B shows that the viscosity increases during gelation
due to molecular interactions/reactions, leading to the formation
of an elastoviscoplastic material characterized by a yield stress
(sY), which is the minimum stress needed to initiate flow. More
comprehensively, sY is defined as the material property that
marks the shift from solid-like (recoverable deformation) to
liquid-like (unrecoverable deformation) behavior.64 Although the-
oretical criteria suggest that the gel is formed when a continuous
network spans the entire system, in practice, the gel point is often
determined by the loss of flow and/or appearance of yield
stress.65–67 More accurately, the material transitions from a fluid
to an elastoviscoplastic state, existing in either gel-like (below sY)
or liquid-like (above sY) behavior depending on the applied
stress.68,69 In this context, gel-to-sol transition can happen by
increasing stress above yield stress, in which the 3D network can
be reversibly or partially irreversibly disrupted by applying suffi-
cient stress. The mechanically induced gel-to-sol transition is
more probable in physical gels and chemical gels with very low
crosslink density, while chemical gels with high crosslink density
mechanically fracture before yielding. The linear viscoelastic
properties of gels are well understood with their ideal behavior
typically featuring a broad rubber-like plateau of G0(o) accompa-
nied by relatively low values of G00(o), which confirms the semi-
solid state of the gels.70–72

Gel polymer electrolytes

GPEs serve as both electrolytes and separators with flexibility,
shape adjustability, and resilience for electrode volume changes.73,74

GPEs support effective ion transport by providing interconnected
ion pathways and enhance the performance, safety, and flexibility of
advanced energy storage devices, which are visualized in Fig. 3.75

Some studies have referred to supported liquid membranes
as GPEs.38–40 However, these membranes do not always align
with the fundamental definition of a gel. Maintaining a dis-
tinction is essential for consistent terminology and for prevent-
ing the misclassification of electrolytes with differing structural
and functional properties. In the subsequent section, we briefly
review the body of literature on polymer electrolytes that fulfill the
gel criteria and organize them into categories based on their
components, thereby providing an improved framework for com-
paring electrolyte design strategies across different studies.

Classification of GPEs

In GPEs, a polymeric scaffold is commonly employed as the
primary matrix, providing substantial structural integrity and
mechanical strength. To choose an effective polymer matrix,
specific characteristics are required: (i) a high molecular weight
(104–106 g mol�1) for mechanical stability, (ii) a low glass
transition temperature (Tg o �30 1C) enabling rapid segmental
motion of polymer chains, (iii) functional groups or atoms that
facilitate salt dissolution for improved ionic conductivity, (iv) a
high thermal degradation threshold (4200 1C), and (v) a wide
electrochemical stability range.29 Therefore, the most commonly
used polymers in GPEs are PEO,31,76 poly(vinylidene fluoride)
PVDF and poly(vinylidene fluoride-co-hexafluoropropylene)
(PVDF-co-HFP),77–79 poly(acrylonitrile) (PAN),80 and poly(methyl
methacrylate) (PMMA).81,82 As illustrated in Fig. 4, GPEs are
classified based on their fundamental components: the solvent
or plasticizer system, the polymer host matrix, and the nature of
the charge carriers.

Classification of GPEs based on solvent. Alongside the
polymer host, the solvent plays a crucial role in GPEs. Selecting
an appropriate solvent for dissolving the polymer and salt is
essential as it remains trapped in the final gel. The solvent
influences ionic conductivity and the stability as well as the

Fig. 3 Common properties of GPEs, which make them strong candidates for replacing conventional electrolytes.
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mechanical and chemical properties of the GPEs.83–85 Another
important aspect is the ion–solvent interactions in GPEs that can
hinder ion desolvation and slow down ion transport kinetics. This
phenomenon also promotes solvent co-intercalation into electrode
materials, which can degrade battery performance and stability.86

Solvents are typically chosen among the cyclic carbonates,6,87

glymes (i.e., glycol ethers),88,89 or ionic liquids (ILs).

Cyclic carbonates. An ideal solvent should have a high
dielectric constant (e 4 15), a high donor number (420) to
promote ion dissociation,90 and both chemical and electroche-
mical stability. The higher donor number enhances ion dis-
sociation. Common organic solvents include EC, PC, DEC,
DMC, EMC, dimethyl formamide (DMF), dimethyl sulfoxide
(DMSO), and tetrahydrofuran (THF), for which the viscosity and
dielectric constant are listed in Table 1. The donor number for
cyclic carbonates is around 15 to 16, which is considered a low
donor number, compared to the value of B30 for DMSO.90,91

Comparing dimethyl carbonate (DMC) with linear carbo-
nates like ethyl methyl carbonate (EMC) and diethyl carbonate
(DEC) in liquid lithium-ion electrolytes shows that despite
similar viscosity and static permittivity, DMC exhibits 2–3 times
higher ionic conductivity due to greater salt dissociation,
enabled by polar cis–trans conformers. While viscosity impacts
diffusivity, the higher ionic conductivity in DMC arises from
more charge carriers due to improved salt dissociation even at

low salt concentrations. This highlights that optimizing solvent
conformational isomerism, alongside understanding viscosity
and salt diffusion, is crucial for designing efficient battery
electrolytes.104 It should be noted that there are fluorinated
solvents such as fluorinated ethylene carbonate (FEC)105,106 and
fluorinated dimethyl carbonate (FDMC) that offer high flame
retardancy to reduce the flammability risks of carbonated
solvents.107 While these fluorinated compounds have gained
interest as electrolytes, the growing concerns over the environ-
mental impact of per- and polyfluoroalkyl substances (PFAS)108

may eventually reduce their applicability at an industrial scale.

Ionic liquids. ILs offer significant advantages for GPEs due to
their outstanding thermal and electrochemical stability, high
ionic conductivity, non-volatility, non-flammability, and com-
patibility with various polymer matrices. IL-based GPEs are
highly suitable for advanced energy storage and conversion
applications.109–111 Polymeric networks can immobilize ILs and
form ionogels that are promising candidates for energy storage.112

IL-based GPEs combine the beneficial properties of both aqueous
and organic gelled electrolytes, including high ionic conductivity
and a wide operating potential range of up to 3.5 V.113–116

Fig. 5 depicts the chemical structure of cationic and anionic
parts of common ILs. ILs are widely studied in the literature due
to their excellent electrochemical and thermal stability.117–119 The
thermal stability of ILs is influenced by both cation and anion
types, typically decreasing in the order of imidazolium 4 pyridi-
nium 4 pyrrolidinium 4 ammonium for cations and [Tf2N]�4
[CF3SO3]� 4 [BF4]� 4 [PF6]� 4 [Br]� for anions.120 Also, anion
size significantly affects ion dissociation, meaning larger anions
show weaker cation–anion coordination, which facilitates disso-
ciation. Recent studies show that IL electrolytes containing
bis(fluorosulfonyl imide) (FSI�) anions have higher ionic conduc-
tivity and lower viscosity than those with TFSI anions, attributed
to the smaller size of FSI�.118,121

Classification of GPEs based on polymer networks
Physical networks. Typical physical networks are formed by

non-covalent interactions, such as hydrogen bonding, ionic

Fig. 4 GPE classification based on solvent, polymer network, and ion type.

Table 1 Dielectric constant and viscosity of common liquid electrolytes
and solvents in GPEs

Solvent
Dielectric
constant

Viscosity (mPa s)
(25 1C)

Ethylene carbonate (EC) 89.892 1.9 (40 1C)
Propylene carbonate (PC) 66.193 2.594

Diethyl carbonate (DEC) 2.895 0.74996

Dimethyl carbonate (DMC) 3.197 0.5998

Fluorinated ethylene carbonate (FEC) 78.46 4.499

Ethyl methyl carbonate (FMC) 3.297 0.6598

Dimethyl sulfoxide (DMSO) 47100 1.99101

Tetrahydrofuran (THF) 7.58102 0.46103
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interactions, and coordination bonding. GPEs with a hydrogen
bonded physical network enhance ionic conductivity, mechan-
ical strength, and safety while enabling unique functions such
as flexibility and self-healing. Systems like agarose/poly(vinyl
alcohol),122 2-ureido-4[1H]-pyrimidinone (UPy)-based PEO
networks,123 and polyacrylamide/k-carrageenan double net-
works demonstrate how reversible hydrogen bonds disrupt
crystallinity, provide Li+ transport channels, and create recover-
able structures. These designs make GPEs attractive for high-
performance, safe, and durable batteries and supercapacitors.

In coordination polymer gels, the metal ions coordinate with
the polymer and create a 3D physical network. These gels are
mainly studied in drug delivery, gas storage, and optoelectronic
systems.124–127 One of the major challenges of coordination
polymer gels for electrolyte applications is the competition
between electrolyte ions and coordination ions (i.e., nodes/
crosslinkers) for interaction with the ligand/linker of the net-
work. This interaction can release the coordination ions, which
may interfere with Li+ (or target ion) transport, disrupt the gel
network, and/or deteriorate the electrode surface.

GPEs with a physical network can also be formed by self-
assembly, e.g., from block copolymers in selective solvent(s).128

In fact, block copolymers are of significant interest for creating
ionogels due to their ability to self-assemble,129–131 potentially
leading to easily processable and mechanically robust materi-
als. Lodge and coworkers have investigated the preparation,
structure, rheology, and applications of ionogels formed from
block copolymers and ILs.132–134 Imaizumi et al. synthesized
ABA-triblock copolymers, polystyrene-block-poly(methyl metha-
crylate)-block-polystyrene (SMS), and prepared ionogels by
blending SMS with [C2mim][TFSI] ionic liquid. The gels had
phase-separated polystyrene domains as physical crosslinks
and a PMMA-rich phase for ion conduction, achieving relatively
high ionic conductivity (410�3 S cm�1 at room temperature).
These gels, used as electrolytes in ionic polymer actuators,

enabled soft bending under low voltage (o3.0 V), with tunable
properties controlled by the polystyrene fraction and IL
content.132 He et al. demonstrated the self-assembly of
poly(styrene-block-ethylene oxide-block-styrene) (SOS) triblock
copolymers in the ionic liquid [BMIM][PF6], forming transpar-
ent ionogels with as little as 5 wt% SOS. These gels maintain
high ionic conductivity, exhibit thermal stability up to 100 1C,
and possess notable mechanical strength, showcasing their
potential for versatile processing and applications.134

As another approach for producing non-covalent networks,
the dipole–dipole and ion–polymer interactions can be used in
systems composed of ionic polymers, e.g., zwitterionic (ZI)
polymers. These interactions provide both mechanical strength
and conductivity. As an example in this case, the cation group
on the ZI polymer backbone can interact with the anion of the
electrolyte, thus, reducing Li+–anion pairing and enhancing ion
mobility with the resulting conductivity near 1 mS cm�1.135,136

Chemically crosslinked network. In many studies, chemically
cross-linked GPEs are ex situ prepared as films, which are then
placed between the electrodes.137–140 Ex situ GPEs cannot
penetrate deep layers of the electrode and partially fill the
internal pores of the cathode, making them less effective for
reducing battery resistance. In other words, a fraction of the
electrode surface interacts with the GPE, leaving a significant
portion of the active material unused.141,142

In situ preparation of GPEs, which has attracted attention, is
done by injecting a liquid precursor into the electrode before
polymerization. In this method, the liquid precursor readily
penetrates the internal pores of the electrode, enhancing the
contact of active materials. This process can address the
challenges of ex situ GPEs. Polymerization or crosslinking is
typically initiated thermally using molecules like azo
compounds143–146 or peroxides145,147,148 or can be initiated via
photo-curing.140,149 It should be noted that in situ preparation

Fig. 5 Chemical structure of cations and anions in common ILs for application in electrolytes.
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methods offer significant advantages, including the creation of
efficient pathways for metal cation transport within electrodes
and a substantial reduction in interfacial resistance due to
excellent interfacial contact.150,151

To increase the ionic conductivity in GPEs, different methods
have been used, e.g., introducing zwitterionic compounds.152,153

Copolymerizing the polymer with zwitterionic monomers in
ionogels helps optimize Li+ coordination and improves Li+ trans-
port kinetics. For example, zwitterionic groups introduced by
(co)polymerization of 2-methacryloyloxyethyl-phosphorylcholine
(MPC) can interact with TFSI� and form a TFSI�/MPC shell,
which coordinates with Li+. This competitive interaction of TFSI�

and zwitterions with Li+ decreases the desolvation energy of Li+,
leading to an ionic conductivity of 4.4 � 10�4 S cm�1. Addition-
ally, the coulombic interaction between TFSI� and zwitterions
significantly decreases the reduction stability of TFSI�, promoting
in situ formation of an LiF-enriched solid electrolyte interphase
(SEI) layer on the lithium metal surface.1

Classification of GPEs based on ion type. In 1913, Lewis and
Keyes revealed that Li is the most electromotive metal.154

The oxidation of a unit weight of Li releases a large num-
ber of coulombs, which means a high gravimetric capacity
(3860 mAh g�1).155 Thus, lithium was commercialized in the
battery application by Sony Co. in 1991 for the first time.156

Since then, Li has been the most important metal in electro-
lytes production. However, due to the rising demand, limited
availability, and uneven distribution of lithium, interest in
batteries beyond lithium-ion batteries (LIBs), such as sodium-
ion (NIBs) and potassium-ion batteries (KIBs) has grown
significantly.155 Given the abundance of sodium in the Earth’s
crust and oceans, NIBs are being extensively researched as cost-
effective alternatives to LIBs.157 Some companies have already
begun commercializing NIBs, particularly for stationary energy
storage applications, such as capturing energy from intermit-
tent renewable sources like solar and wind.158,159

KIBs are attracting growing interest due to their low cost
compared to lithium, and a reduction potential close to that of
lithium,�2.94 V vs. standard hydrogen electrode (SHE) for K+/K
compared to �3.04 V vs. SHE for Li+/Li. The magnitude of
reduction potential for Na+/Na is lower, being �2.71 V vs. SHE.
Like sodium, potassium does not form an alloy with aluminum,
allowing the use of an Al current collector for both the anode
and cathode. Additionally, K-ion organic electrolytes offer high
ionic conductivity and efficient K-ion diffusion, supported by
potassium’s weaker Lewis acidity and low desolvation energy
due to a smaller Stokes radius (3.6 Å) than Li+ (4.8 Å) and Na+

(4.6 Å) in propylene carbonate.160,161

Multivalent ions such as Mg2+, Ca2+, and Al3+ have emerged
as promising charge carriers in battery systems, thanks to their
small ionic radii, abundance in the Earth’s crust, and stable
valence states. These ions are seen as key components in the
next generation of batteries.162 Magnesium-ion batteries (MIBs)
have recently gained attention for their potential performance,
which is expected to be comparable to that of LIBs.163,164

Magnesium is an ideal material for practical battery anodes
due to its low electrochemical equivalence (B12.15 g eq�1),

relatively negative electrode potential (�2.3 V vs. SHE), low cost,
and enhanced safety compared to lithium. The low mobility of
Mg2+ cations can be mitigated by GPEs since they facilitate ion
transport through polymer segmental motion and solvating
domains.165

Calcium-ion batteries (CIBs) are a cost-effective, high-power,
and environmentally friendly alternative to LIBs. Calcium has a
2+ oxidation state, providing a higher energy density and a
higher cell potential. Also, its standard reduction potential is
170 mV above that of lithium. However, CIBs face challenges
with low transference numbers for Ca2+, meaning conductivity
is mainly due to anion transport. This challenge can be
improved by modifying electrolytes, for example by adding
Lewis acids to enhance cation mobility, which can be achieved
by composition modification.166–169 Therefore, GPEs can play a
critical role in further development of CIBs.

Aluminum, as the third most common element on Earth, is
an increasingly promising material for next-generation energy
storage devices due to its unique properties. It features a high
gravimetric capacity of 2980 mAh g�1, approximately 77% that
of lithium, and a high volumetric capacity of 8046 mAh cm�3,
nearly four times that of lithium. Aluminum can be repeatedly
stripped and deposited without dendrite formation, making it
ideal as a metal anode. Moreover, aluminum’s intrinsic safety
characteristics and favorable electrolyte properties further
enhance its appeal. Therefore, aluminum-ion batteries (AIBs)
are emerging as a safe, low-cost, and environmentally friendly
energy storage option for post-lithium battery technologies.170–172

Recent advances in room-temperature IL electrolytes have enabled
efficient aluminum cycling, supporting the rapid progress of
durable AIB technologies.173 However, AIBs still suffer from issues
like moisture sensitivity and corrosivity. Alternatives like deep
eutectic solvents and GPEs may address these limitations, aiming
to enhance stability for practical applications.174

Comparing the conductivity of several GPEs with SPEs in
Fig. 6A reveals higher average conductivity in the GPEs (B3.9 �
10�3 S cm�1) compared to SPEs (B1.1� 10�3 S cm�1) for a wide
range of transference numbers of 0.2 to 1. The conductivity
against tensile strength behavior in Fig. 6B demonstrates a
decreasing trend in the conductivity of polymer electrolytes
with increasing tensile strength. The straight line suggests the
limiting trade-off for GPEs. The data points for a common
liquid electrolyte (mixture of EC and DMC) are also provided in
this figure, where its tensile strength is considered zero.

Rheological considerations

In LIBs, the continuous cycling of lithiation/delithiation of the
electrodes induces cyclic volume change in the electrode, which
poses a cyclic strain on the electrolyte sandwiched between
the electrodes. Fig. 7 schematically shows the volume change in
the electrodes during the charging/discharging process. In the
charging process, the Li+ ions accumulate in the anode and
cause volume expansion, while in the discharging process the
cathode is expanded. In addition, the lithiation/delithiation
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process involves heating and cooling of the battery, and thus,
electrolyte. This phenomenon is also present in other mono-
valent- and multivalent-ion batteries. The ability of the electro-
lyte to keep up with the volume and temperature changes
determines the lifetime of the battery.

Table 2 provides some typical values for volume change of
electrodes. The volume change in the anode can vary between
0.2% and 270%. For electrodes with a thickness of around
50–100 mm,198,199 the dilatation of the anode is approximately
in the range of 0.1 to 270 mm. Considering the electrolyte with

B100 mm thickness,200 electrodes can typically impose strain
between 0.1% and 270%. The liquid electrolytes accommodate
the applied strain by viscous flow, whereas solid-like electro-
lytes are required to exhibit elastic behavior to respond to
electrode volume fluctuations during charge/discharge cycles.
Therefore, one of the most important properties of solid
electrolytes is a yield strain significantly higher than the
imposed electrodes’ strain to guarantee elastic behavior and
minimum debonding from the plastic deformation of electro-
lytes. For GPEs and SPEs, the yield strain is around 9–25%201

and 1.9–14%,199 respectively. The inorganic electrolytes are
brittle with a much lower failure strain, on the order of
0.75%.202 Therefore, inorganic and SPEs are more prone to
mechanical failure and have a shorter cycle life than GPEs.

To minimize cyclic deformation of the electrolyte due to
electrode volume change, anodes with zero-strain intercalation
are a potential solution. For example, only a slight (0.2%)
change in volume caused by lithiation/delithiation is observed
in lithium titanium oxide (Li4Ti5O12, LTO).206 However, the
reported volume changes appear to be in ideal studies rather
than practical cases. In addition, LTO suffers from destructive

Fig. 6 (A) Conductivity against cation transference number, and (B) conductivity against mechanical strength from recent studies comparing SPEs (red
circles) and GPEs (black squares) and an EC/DMC mixture (blue triangle). The straight line suggests a trade-off limit between strength and conductivity in
GPEs.76,78,175–197

Fig. 7 Schematic illustration of cyclic expansion and contraction of the electrolyte in response to volume changes of the electrodes during charge–
discharge cycling. During charging, ion insertion into the anode causes its expansion, while the cathode expands during discharging. Consequently, a net
change in electrolyte volume is present during cycling.

Table 2 Some common cathodes and anodes with corresponding
volume expansion percentages during charging/discharging cycles

Material Volume change (%)

Cathode LiCoO2 2203

LiMn2O4 3.1204

LiNiO2 9205

Anode Graphite 10206

Si 270206

LTO (Li4Ti5O12) 0.2206
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gas generation due to surface reactions.207 In practical situa-
tions, the cyclic strain on an electrolyte is currently inevitable
during a battery’s lifetime.

For strains below the yield strain of GPEs and SPEs, the
cyclic compression/expansion posed on the electrolyte during
the charging/discharging process can be simulated by small
amplitude oscillatory shear or elongation (SAOS and SAOE,
respectively) experiments. SAOE induces change in flow direc-
tion and involves aspects of both uniaxial and biaxial elonga-
tion. Considering experimental challenges associated with
performing elongation flows, SOAE tests are neither straight-
forward nor common. Since SAOS and SAOE material functions
in the linear viscoelastic regime are proportional, SAOS results
can be used to simulate the performance of GPEs and SPEs.

In a linear viscoelastic regime, the applied strain is below
the yield strain of electrolyte. However, the compression/exten-
sion process may still create fatigue failure or aging, which can
be categorized as low-cycle fatigue (LCF) or high-cycle fatigue
(HCF). LCF occurs under high stress levels, close or beyond
yield strain, leading to failure after a relatively small number of
cycles. Because the stress exceeds the material’s elastic limit,
plastic deformation happens during each cycle. In contrast,
HCF involves stress levels much lower than yield strain and can
endure many more cycles. In this case, the material undergoes
mainly elastic deformation, staying below the yield point
throughout the cycling.208 The evolution of dynamic moduli
under time sweep tests at constant frequency and strain can be
used to study the fatigue and aging of GPEs.

If the volume change in the electrodes imposes strains larger
than the yield strain of GPEs and SPEs, the deformation in the
electrolyte becomes unrecoverable. Consequently, upon elec-
trode contraction, the electrolyte will not recover back to the
original thickness by itself. To investigate such scenarios, large
amplitude oscillatory shear (LAOS) studies on the electrolyte
are beneficial. Fig. 8 shows typical Lissajous curves for SAOS
and LAOS behaviors. In the SAOS, shear and applied strain have
linear correlation (Fig. 8A), while for LAOS the correlation
is nonlinear (Fig. 8B). Considering the possibility of plastic
deformation of electrolytes, a strong adhesion can suppress

debonding of electrode and electrolyte, which will be discussed
in the next section.

During the charging/discharging process, the volume expan-
sion/contraction of electrodes induce stress in the electrolyte
with the mechanical resistance determined by the modulus,
which can be approximated by storage modulus and relaxation
modulus obtained from rheological experiments. Since the
total strain is fixed in this process, the lower the modulus
is, the lower the generated stress will be. The associated
stored energy (Gstored) per unit volume is the area under the
stress–strain curve. Based on Fig. 8C, the stored energy in either
the charging or discharging stage (i.e., half cycle) can be
approximated as:

Gstored ¼
1

2

ðþe0
�e0

Vsde (1)

In which, s is the stress, e is the strain, and V is the
electrolyte volume with contact area of A with the electrode
and thickness h. Therefore, the stored energy in an electrolyte
can be estimated from the electrolyte viscoelastic modulus:

s = e0[E0(o)sin(ot) + E00(o)cos(ot)] (2)

where e0 is the maximum strain amplitude; E0 and E00 are the
storage and loss components of complex modulus E* = E0 + iE00

in elongation mode, respectively; o is the frequency; and t is
the time. The dynamic shear modulus, G* = G0 + iG00, from
standard rheological measurements can be used to get the
measure of E0 and E00 by using complex Poisson’s ratio, W*, as
follows:

E* = 2G*(1 + W*) (3)

In many practical cases, Poisson’s ratio is approximately
constant, often assumed to be around 0.3–0.5 for soft materials
and 0.5 for incompressible materials including gels.

Another phenomenon to be considered at high charge/
discharge rates is the generation of significant Joule heating
due to the internal resistance (also known as resistive or ohmic
heating). This heat raises the temperature of the battery

Fig. 8 3D Lissajous curves with projections on the stress–shear rate, stress–strain, and strain–shear rate planes for typical (A) SAOS and (B) LAOS
experiments.209 Reproduced from T. B. Goudoulas, A. Didonaki, S. Pan, E. Fattahi and T. Becker, Polymers 2023, 15(6), 1558, under the terms of the
Creative Commons Attribution (CC BY) license. (C) A schematic of the maximum stored energy (hatched area) and dissipated energy (the area inside the
curve) in a typical Lissajous curve.
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components, causing thermal expansion of internal materials
such as the electrodes, electrolyte, and separator. The accumu-
lated expansion of these components leads to a noticeable
swelling of the battery cell, which can compromise the mechan-
ical integrity, increase internal pressure, and potentially lead
to safety issues such as leakage, debonding of the electrode
and electrolyte, or even thermal runaway if not properly
managed.210 The Joule heating has a wide effect on the electro-
lyte. First, the yield strain in the polymer gels usually decreases
by increasing temperature; therefore, their tolerance range for
being in the linear region decreases. However, for physical gels,
temperature change can cause structure changes and/or sol–gel
transition, providing possibilities for rejuvenation if properly
exploited. It should be noted that different thermal expansion
coefficients for electrodes and electrolyte can induce additional
bulk strains on electrolytes upon temperature change.

Another rheological consideration for GPEs and SPEs is
stress relaxation behavior. In other words, keeping the volume
change for a long time (i.e., battery at rest or disconnected from
circuit) induces a force at almost fixed strain on the electrolyte,
which may lead to a nonrecoverable deformation in it. There-
fore, performing stress relaxation experiments above and below
yield strain are beneficial. Alternatively, linear viscoelastic
results obtained from SAOS can be converted to stress relaxa-
tion behavior using established mathematical methods, such
as the Krieger–Kocsis approximation.

Interfacial phenomena at
electrode–electrolyte junctions

Interfacial phenomena, such as instability and poor contact,
significantly hinder the practical use of lithium metal anodes.
Lithium’s high reactivity leads to side reactions with organic
electrolytes, forming an SEI that acts as a barrier between the
electrolyte and the electrode, improving the system’s dynamic
stability.211 However, this interphase is typically weak and
brittle, which influences the battery’s cycling stability.212,213

For instance, the large volume fluctuations during lithium
plating can induce cracking in the SEI, which promotes uneven
Li deposition and the growth of dendrites. The repeated break-
ing and reforming of the SEI layer continuously deteriorates
both lithium metal and electrolyte, reducing Coulombic effi-
ciency and eventually leading to battery failure.214 Therefore,
interfacial instability is the primary obstacle to the real-world
implementation of lithium metal anodes.214,215 This is the
reason why in conventional LIBs, graphite and LiMO2 com-
pounds (with M being mainly a mixture of Ni, Co, Mn, and/or
Al) are used as the anode and cathode, respectively.206,216

Interfacial instability in LIBs arises from several factors on
both anode and cathode sides. In liquid electrolytes, recent
studies of composite graphite electrodes showed that in
response to periodic volume changes in the graphite particles,
their morphology and the surface films that cover them are very
stable in carbonate-based electrolytes, such as EC and cosol-
vents of DMC, DEC, or EMC and salts of LiAsF6 or LiPF6.

However, the surface films may not be able to fully accommo-
date the volume changes of the graphite particles due to
intercalation with lithium. Over time, small-scale reactions
occur between the solution and lithiated graphite as solu-
tion species pass through the surface films. These reactions
create insoluble compounds that thicken the surface films,
gradually increasing the electrode’s impedance during repeated
cycling.217

For SPEs, the significant volume change of the anode during
charging and discharging can easily lead to detachment at
the interface, increased resistance, hindered ion/electron trans-
port, and even dendrite formation.218 These issues can be
hindered by using GPEs instead of SPEs. On the cathode side,
SPE decomposition also contributes to high interfacial resis-
tance and cell degradation.219 Additionally, uneven lithium
transport can cause localized reactions, stress accumulation,
and microcracks in active materials, while metal ion diffusion
from the cathode into the electrolyte can further degrade
performance.220 These issues can be hindered by using GPEs
instead of SPEs.

GPEs can be used to address the issue of reactivity of lithium
metal anodes with electrolyte without deteriorating conduc-
tivity.221 GPEs also provide polymer elasticity to endure the
volume expansion of the electrode and the liquid-level wett-
ability to decrease the interface resistance.221 The adhesion
between electrolyte and the electrode plays an important role in
the stability and resistance of the interfacial layer. There is a
strong correlation between interfacial resistance (Rint) and
adhesion strength (sadh): lower Rint values correspond to higher
adhesion strengths. Therefore, increasing the wettability
enhances the interfacial adhesion and interfacial strength,
decreasing Rint.

222 There are reports showing that by moving
from solid electrolytes towards GPEs, the wetting property
improves, Rint decreases, and Li ion migration across this
interface will become easier.223

Adhesion can be theoretically characterized by calculating
the work of separation for different atomistically represented
molecular models of the surfaces in contact. The work of
separation (Wsep) has been defined by Finnis224 as the rever-
sible work required to separate an interface into two ideal free
surfaces while suppressing plastic and diffusional degrees
of freedom. It can be defined unambiguously and can there-
fore be calculated by theoretical models. The work of separa-
tion per unit area can be related to the interfacial tension
between phases 1 and 2 (g12) and the surface free energies per
unit area of the individual surfaces (g1 and g2) by the Dupré
equation:225

Wsep = g1 + g2 � g12 (4)

For specific electrodes, therefore, we need to increase the
surface energy of the electrolyte and/or decrease the interfacial
tension to increase the Wsep. Enhancing interactions between
the electrode surface and the solvent can reduce interfacial
tension,226 for example by increasing adsorption and binding
energies,227–229 matching polarities based on the similar
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polarity compatibility,230 and promoting hydrogen bonding231

and electrostatic interaction.232

The interfacial tension and the Flory–Huggins interaction
parameter (w) are related:233

g12 ¼ kT r0wð Þ
1
2
bA þ bB

2
þ 1

6

bA � bB
bA þ bB

� �2
" #

(5)

where bi = ribi, in which r0 is the number average monomer
density and bi is the Kuhn statistical segment length; k is
Boltzmann’s constant; and T is the temperature.233 This rela-
tionship indicates that systems with higher affinity (lower w)
have lower interfacial tension, meaning higher work of adhe-
sion and more stable interface.

To minimize the electrode–electrolyte separation in electro-
lytes, especially during the discharging cycle that the electrolyte
undergoes extensional deformation, strong molecular inter-
actions are required between the electrode and electrolyte.

The presence of functional groups that make GPE more elec-
tronegative and can form a solvated structure of lithium ions
suppress Li dendrite formation and lead to more stable SEI,
diminishing electrode–electrolyte separation.181

The adhesion energy between the electrode and electrolyte
resists against the separation:

Gadh = Wsep � A (6)

Since the anode and cathode have different chemistries,
their adhesion energy is not the same. Thus, as shown in Fig. 9,
interfacial stability is governed by the competition between the
strain-induced energy per unit volume stored in the electrolyte
and the energy cost of breaking adhesive bonds at each inter-
face. Comparing these quantities can provide a predictive
criterion for when electrode–electrolyte separation will occur
under repetitive volume changes. As the electrolyte is under
tension from two sides, half of the stored energy, which can be

Fig. 9 Competition between elastic energy stored in the electrolyte under cyclic deformation and interfacial adhesion energy governs the mechanical
stability of the electrode–electrolyte interface.

Fig. 10 (A) Conventional SiO electrodes undergo severe structural degradation during lithiation and delithiation due to substantial volume fluctuations
of SiO particles, resulting in particle-level and electrode-level cracking. The blue lines indicate the binder network within the electrode. (B) In contrast, the
incorporation of a highly elastic GPE provides an integrated electrode structure during cycling. Acting as an intra-electrode cushion (orange), the GPE
mitigates thickness expansion and mechanical failure during lithiation and facilitates structural recovery during delithiation.234 Reproduced from Q.
Huang, J. Song, Y. Gao, D. Wang, S. Liu, S. Peng, C. Usher, A. Goliaszewski and D. Wang, Nat. Commun. 2019, 10(1), 5586, under the terms of the Creative
Commons Attribution (CC BY) license.
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calculated from eqn (1), affects each electrode interface. There-
fore, separation takes place when:

1

2
Gstored 4 min Gadh;An;Gadh;Ca

� �
(7)

where Gadh,An is the adhesion energy between the electrolyte
and anode and Gadh,Ca is the adhesion energy between the
electrolyte and cathode.

It should be noted that the interfacial adhesion is mainly
critical for the two-phase reaction front in the SEI.232 In addition,
the electrode cracking can happen due to several lithiation and
delithiation and volumetric changes (Fig. 10A). GPEs can mini-
mize the cracking, consequently improving structural integrity
during cycling (Fig. 10B).234

Despite the growing interest in multivalent ion batteries, the
expansion behavior of electrodes in the presence of divalent
ions and their interfacial properties remain underexplored. For
MIBs as an example, few materials can reversibly store Mg2+

ions, with MgxMo3S4 being the most studied.235,236 The main
challenge is Mg2+’s high charge density, which causes strong
electrostatic interactions and hinders ion mobility. To address
this issue, there are studies on nanostructured and integration-
type electrodes for better performance and cycling stability.237,238

Conclusions and future outlooks

In this perspective, gels are defined as biphasic systems com-
prising a 3D network structure and a liquid phase, which
together exhibit solid-like rheological behavior while retaining
fluid transport properties. Gels are typically categorized as
either physical or chemical. Physical gels are formed through
reversible, non-covalent interactions, whereas irreversible,
covalent cross-linking is dominant in chemical gels. We further
classify GPEs based on their key components and compare the
resulting physicochemical and electrochemical properties.
A significant challenge in LIBs is electrode expansion during
charge/discharge cycles, which imposes cyclic mechanical
strain and stress on the electrolyte, potentially leading to
structural deterioration. The durability of GPEs under such
conditions can be predicted in terms of rheological behavior
and in relation to critical interfacial properties, including
interfacial tension, wettability, and adhesion strength. Compar-
ing the mechanical energy storage of non-liquid electrolytes
with the adhesion energy between the electrolyte and electrode
provides insight into the durability of GPEs in charging–
discharging cycles.

A key research gap in this field is the lack of systematic
studies on how deformation and temperature affect the struc-
ture and conductivity of GPEs, implying the need for simulta-
neous rheological and electrochemical testing. In addition,
further studies are required to show how gel networks reorga-
nize during ion transport and cycling. Therefore, we present the
following potential future work in this field:
� Perform rheological experiments in SAOS and LAOS

regimes while measuring the electrochemical properties to

study the effect of cyclic strain and deformation on the electro-
chemical properties of GPEs.
� Analyze the thermal fatigue within operational tempera-

tures of charging/discharging cycles under cyclic strain and
track changes in elastoviscoplastic behavior, gel morphology,
mechanical stability, and conductivity.

In addition, there are some remaining research questions
that may be addressed in future work:
�What are the differences in ion transport between ordered

and disordered structures in GPEs? How can the changes in the
internal structure of the interconnected conductive domains
affect the ion diffusion?
� How do the non-equilibrium processes (such as repeated

cycling deformation and thermal gradients) restructure the
physical networks of GPEs or impact network relaxation in
chemically crosslinked GPEs?
� Beyond bulk rheology and conductivity, how do different

physical and chemical structures change the surface adhesion
in GPEs and prevent the Li dendrite formation or affect
electrolyte–electrode debonding?
� How does the electrode–electrolyte adhesion affect the

interfacial ion transport? What parameters should be consid-
ered to produce a GPE with optimal interfacial modulus that
enhances facile charge transfer?
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