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us on delocalization error poisoning the
density-functional many-body expansion

Barbaro Zulueta and John A. Keith*

Broderick and Herbert's article (D. R. Broderick and J. M. Herbert, Chem. Sci., 2024, 15, 19893–19906,

https://doi.org/10.1039/D4SC05955G) explores an open concern about using energies from density-

functional approximations when developing force fields and machine learning potentials for large-scale

simulations. The authors explicitly decomposed self-interaction errors (SIEs) from density-functional

approximations (DFAs) and found how they behave in many-body expansions (MBEs) that are leveraged

in large-scale simulations. For DFAs to be deemed reliable for developing many-body potentials, they

would ideally provide stable energetics within the MBE terms that are most often used by force fields

and machine learning potentials (MLPs), i.e., within their three- and four-body terms. It was instead

found that many widely used DFAs produce wild oscillations in these MBE terms, whereby three-body

terms can become problematically enormous. This raises concerns that any force field and/or MLP that

appears well-fitted to DFA data on small systems might be poorly conditioned for large-scale simulations

due to intrinsic SIEs. This commentary provides more context of Broderick and Herbert's work and its

consequences for members of the multiscale modeling community.
Kohn–Sham density functional theory
(KS-DFT)1,2 is the most widely used
quantum chemistry (QC) method due to
its favorable balance of computational
cost, accuracy, and transferability in
determining electronic energies across
chemical compound space. While wave-
function theory (WFT) methods map
electronic energies with exact but
computationally costly approximations
based on orbital populations, KS-DFT
maps ground-state electronic energies
with less exact expressions based on
electronic densities that bring less
computational cost. No KS-DFT method
has yet provided a physically exact
exchange–correlation (XC) contribution,
but density-functional approximations
(DFAs), e.g., the generalized-gradient
approximation and hybrid functionals,
employ parameterized schemes to
recover as much XC as possible, and
inexactness can still cause physical
problems when modeling several impor-
tant classes of systems.
ngineering,

8815, USA.

567
For example, all DFAs carry self-
interaction errors (SIEs) that arise in
inexact treatments of exchange energies,
and these errors cause modeled electronic
densities to always be at least slightly more
delocalized than they should be. Such
errors will be negligible in electronically
conductive systems, but in systems where
electronic structures are more intricate,
e.g., cases ofmaterial semiconductor band
gaps andmolecular applications involving
ions, radicals, vertical excitations, heter-
oatomic bond dissociation, and barrier
heights, delocalization errors can cause
catastrophically incorrect predictions.3

Hybrid (and double-hybrid) functionals
are a transferable protocol to correct SIE
errors, but these methods only mitigate
SIEs to an imprecise extent and they are
substantially more computationally
expensive than non-hybrid DFAs, and
therefore usually less desirable.

Despite these pernicious errors, DFAs
continue to be used in the multiscale
modeling community to train force elds
and machine learning potentials (MLPs)
that map system energies from DFAs onto
computationally efficient many-body
approximations that are better suited for
© 2025 The Author(s
large-scale simulations. Data-driven
machine learning methods have been
introduced to compute water clusters'
many-body expansions (MBEs) from
density-corrected DFT data.4 DFA descrip-
tors on machine-learned many-body force
elds have been used to model bulk solid
and liquid phase interactions of d-block
elements and ligand exchange in metal
complexes.5,6 Others have developed
simulation methods using environmen-
tally dependent analytical many-body
effects that require DFA descriptors (e.g.,
densities, partial charges, and dipole
moment) using either tight-binding7 or
machine learning models.8–10 These works
all have signicant value to the commu-
nity, but it is also possible that intrinsic
and surreptitious errors from the DFAs
might carry over into larger-scale simula-
tions in problematic ways.

The impact of SIEs on their many-body
energy expansions had not been previously
studied explicitly, but Broderick and Her-
bert's work (https://doi.org/10.1039/
D4SC05955G)11 provides a thorough
investigation of intermolecular MBEs
using KS-DFT to analyze fundamental
interactions of water and aqueous ions
). Published by the Royal Society of Chemistry
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(i.e., X(H2O)n, where X is F−, Na+, and H2O
and n is the number of H2O n-mers) via
explicit/implicit solvation modeling. The
authors employed their MBE fragmenta-
tionmethod12 with popular DFAs (i.e., PBE,
SCAN, SCAN0, PBE0, LRC-PBE, B3LYP,
BH&H-LYP, HF-LYP, and uB97X-V) and
Hartree–Fock (HF) methods, all with
various well-known mitigation/error
cancellation strategies (i.e., HF density-
corrected DFT, counter-poise corrections,
dielectric continuum boundary conditions,
and energy-based screening) and different
basis set sizes (i.e., augmented double,
triple, and quadruple zetas, and 6-31G).

The reported results may not surprise
some, but they warrant broad attention.
All of these DFAs, except for functionals
greater than or equal to 50% exchange
(i.e., BH&H-LYP and HF-LYP), suffer from
signicant oscillations in theirMBEs, even
with higher-order energy expansions. Past
work has shown that unphysical predic-
tions due to SIEs can be mitigated with
a sufficient amount of exact exchange,13–15

but this carries over into MBEs as well.
Broderick and Herbert showed that the
inherent delocalizing nature produced by
SIEs was the leading cause for these size-
extensive errors in the MBEs, especially
when anions are present and bonding
between the solute and solvent are
dictated more by electrostatics in the form
of hydrogen bonding than donor–acceptor
bonds. The net effect is that MBEs based
on DFAs will also contain SIEs, and these
errors will get inherited into force elds
and MLPs in ways that may become very
problematic for large-scale simulations.
Higher-order many-body corrections
might correct these accumulating errors,
but that brings inefficiencies from
a simulation perspective.

Although counterintuitive to some in
the community, Broderick and Herbert
show that HF theory provides a better
alternative for MBEs than most DFAs
(except for functionals greater than 50%
exchange) because its MBE errors are
smaller for up to three bodies, and the
MBE contributions monotonically
decrease as n-body contributions increase.
Unlike DFAs, the magnitude of the higher-
order terms beyond the third order were
negligible for HF, in part because HF does
© 2025 The Author(s). Published by the Royal So
not suffer from SIEs. ThismeansMBEs can
be efficiently and satisfactorily constructed
with up to three-body contributions,
similar to dispersion models that usually
contain two- and three-bodies.16 Further-
more, because HF is oen the rst step of
any accurate WFT method (e.g., CCSD(T)
and MPn calculations), the authors rec-
ommended a cost-efficient approach that
employs their many-body expansions on
HF (with screening to consider only suffi-
ciently close interactions) and then
applying accurate post-HF methods that
are free from SIEs to obtain accurate
energetics for intermolecular interactions.

In conclusion, Broderick and Herbert
show that SIEs present in DFAs create wild
oscillations in their MBEs, and these
errors become greater as the system size
increases. This means that force eld and
machine learning potentials that employ
MBEs and are trained to DFA descriptors
may contain signicant errors that would
be deleterious for their predictive reli-
ability, especially in larger simulations.
Looking forward, we suspect that there
will be more interest in developing diverse
and multiscalable QC methods that are
explicitly based on HF or other methods
that are free from SIEs, e.g., ref. 17–19. In
tandem with MBE tools and procedures
developed in Herbert's group, such efforts
should be easier to implement.
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