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Polymer composite performance depends significantly on the polymer matrix, additives, processing con-

ditions, and measurement setups. Traditional physics-based optimization methods for these parameters

can be slow, labor-intensive, and costly, as they require physical manufacturing and testing. Here, we

introduce a first step in extending Polymer Informatics, an AI-based approach proven effective for neat

polymer design, into the realm of polymer composites. We curate a comprehensive database of commer-

cially available polymer composites, develop a scheme for machine-readable data representation, and

train machine-learning models for 15 flame-resistant, mechanical, thermal, and electrical properties, vali-

dating them on entirely unseen data. Future advancements are planned to drive the AI-assisted design of

functional and sustainable polymer composites.

1 Introduction

Composites are materials created by combining two or more
physically and chemically distinct phases to achieve desired
properties or performance enhancements.1–3 In polymer com-
posites, as illustrated in Fig. 1, the main constituent phases
include a matrix of base polymer, co-polymer, or polymer
blend, and additional components such as reinforcement
fibers, fillers, flame retardants, or functional additives.2–6 A
natural example of a polymer composite is wood, containing
cellulose fibers embedded in lignin, a complex organic
polymer.7,8 In this arrangement, the continuous lignin matrix
carries and distributes applied loads among the cellulose
fibers, giving wood its mechanical strength. By combining
diverse polymer matrices, reinforcement fibers, and functional
additives3,5,9–20 synthetic polymer composites may simul-
taneously meet multiple application-specific requirements,
such as lightweight, high strength, corrosion resistance, dura-
bility under extreme conditions, and cost-effectiveness. As
highlighted in Fig. 1, synthetic polymer composites are widely
utilized across industries, including aerospace,6 automotive,21

and energy storage and conversion.22,23

Designing polymer composites, i.e., rationally identifying
formulations that meet predefined criteria for specific appli-
cations, is traditionally challenging, costly, and time-intensive,
as candidates must be physically synthesized and tested.1

Fig. 1 (Center panel) polymer composites, formed by implanting
reinforcement fibers, fillers, or functional additives in a polymer matrix,
and (surrounding panels) their applications in different sectors of human
life.
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Because of the inherent complexity of these materials, physics-
based evaluation methods like molecular dynamics simu-
lations and finite-element analysis are highly intricate, while
quantum mechanical approaches such as density functional
theory remain largely out of reach. Empirical models and
rules, such as group contribution, the “rule of mixtures”,24–27

the “Cox-Merz rule”,28 and the “Halpin–Tsai equations”,29,30

provide practical alternatives within specific domains but
come with their own limitations.31 Accordingly, a new robust
evaluation method is essential to support experiments in
polymer composite design.

Since the 2010s, machine-learning (ML) techniques have
emerged as valuable complements to traditional approaches in
materials science.32–40 In the field of polymer composites, ML
has been used to accelerate simulations41 and predict physical
properties42 such as conductivity,43,44 tensile strength,45–47 frac-
ture behavior,48 and ductility.45,46 The training data of these
models are predominantly experimental in nature,45,46,48 while
some of them were generated using finite element method.43,44

The data volume is typically small, ranging from less than ten47

to a few dozens,45,46,49 and up to a few hundreds at most.48

Apparently, data shortage is a major challenges in the future of
accelerated design of polymeric materials.39

This work aims to develop a set of robust ML models for
polymer composites. To this end, we compiled and curated a
database of over 5000 polymer composites, fabricated in lab-
oratories and/or industry, with multiple measured properties.
Using this database, six multi-task ML models were trained
and deployed to predict 15 properties in 4 groups, including

flame resistance, mechanical, thermal, and electrical charac-
teristics. The developed models demonstrate good perform-
ance on the validation data curated separately and kept unseen
to the entire process. We believe that ML, when combined
with sufficiently large and diverse datasets and suitable rep-
resentations, offers a pathway toward the accelerated design of
polymer composites.

2 ML models for polymer composites
2.1 Data survey and curation

Polymer composites are manufactured by carefully controlling
the selection of the polymer matrix, additives, their compo-
sitions, and processing conditions. However, recorded infor-
mation is often incomplete. Data on polymer composites typi-
cally comes from two main sources: research articles and tech-
nical datasheets or brochures from manufacturers. Generally,
research articles supply more detailed information than tech-
nical datasheets. As illustrated in Fig. 2(a), one study50 exam-
ined composites with 50% ethylene-vinyl acetate (EVA) matrix
combined with some specific compositions of magnesium
hydroxide (MH), aluminum trihydroxide (ATH), and nanoclay
(modified montmorillonite), all considered potential flame
retardants. Manufacturing, processing, and measurement
details, along with measured flammability-related character-
istics, can be found in this reference.50

Data provided in technical datasheets of commercialized
polymer composites are generally less detailed. Fig. 2(b) shows

Fig. 2 Two sources of polymer composites data curated for this work are (a) research articles and (b) technical datasheets/brochures provided by
the manufacturers/distributors of commercialized products. Panel (a) was adapted from ref. 50 with permission while panel (b) was taken from a
product brochure obtained from https://www.albis.com.
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a top part of the brochure of “Ultramid® B3G7 R02”, a product
of BASF. This material is labeled as PA6-GF33, implying that it
consists of Nylon 6 (PA6) as the polymer matrix and 33% of
glass fibers (GF). Such conventions are fairly standard across
the polymer composite industry,21 although interpretations are
not always straightforward. In case of “ALCOM® PA66 910/1.3
CF/GF30”, a product of MOCOM Compounds Corporation, the
label PA66-(CF + GF)30 implies that it contains PA66 polymer
matrix and a total of 30% of glass fibers and carbon fibers
(CF), but their separate compositions are unknown. Likewise,
in the label of (ABS + PA6)-GF8 used for “Terblend® N NG-02
EF” (supplied by INEOS Styrolution), the polymer matrix is a
blend of ABS and PA6, but their compositions are also unavail-
able. In another example, the label of PA6-GF30 FR used for
“ALTECH PA6 A 2030/140 GF30 FR” (also provided by
MOCOM) indicates that this material contains some flame
retardants (FR), but does not provide their identity and
compositions.

Such information incompleteness is expected to impede
the targeted models in certain ways, for example, by introdu-
cing some level of uncertainty in the model’s inferences.
Nevertheless, if the database is large enough, the undesirable
effects of missing data might be partially neutralized and
diminished. On the other hand, data extracted from technical
datasheets is critically important for our users, as it pertains to
materials that are currently available on the market and can be
readily purchased in a large quantity.

Our polymer composite database, curated from the two
major sources and summarized in Table 1, contains 15 data-
sets for 15 flame-resistant, mechanical, thermal, and electrical
properties. The flame-resistant datasets were curated from
hundreds of research articles while the mechanical, thermal,
and electrical datasets were extracted from about 10 000 tech-
nical datasheets, manually collected for about 5000 commer-
cialized polymer composites. The reported properties
were measured under some widely recognized standards, e.g.,
ASTM E1354 (Cone calorimeter) and ASTM E662

(smoke chamber) for the flammability properties and ISO 527-
1/-2 for the mechanical properties. Therefore, testing/measure-
ment conditions are consistent across different sources for
the same property/group of properties of the polymer
composites.

As discussed above, the description of the materials,
needed for the inputs of the ML models, is generally more
complete in the research articles than in technical datasheets.
The identity and the composition of the polymer matrix and
additives are available in the flame-resistant datasets.
However, such information is not always available in the
mechanical, thermal, and electrical datasets. In some entries,
the compositions of polymer matrix blend and the additives
may be missing. Notably, for those involving flame retardants,
no information on their identity and composition is available.
A snapshot of the flame-resistant, mechanical, thermal, and
electrical datasets is given in Fig. 3 while more information on
the polymer matrices, the additives, and the flame retardants
can be found in ESI.†

2.2 Methods

In this work, ML models for 15 properties (summarized in
Table 1) were trained using Gaussian Process Regression (GPR)
and deep learning (DL) algorithms, with 5-fold cross-validation
as part of the training process. The entire workflow was
carried out using the PolymRize™ platform. Model perform-
ance was also tested on completely unseen data, as described
in Section 2.4.

Traditionally, each ML model is trained independently on a
single dataset in a procedure known as single-task (ST) learn-
ing. On the other hand, multi-task (MT) learning combines
multiple related datasets to train a single model, leveraging
potential correlations among material properties rooted in
physical and chemical laws. Technically, these datasets are
stacked together and indicated using an additional selector
vector appended to the standard descriptors. The combined
dataset can be used for any learning algorithm. In this work,

Table 1 Summary of the datasets, including time to ignition TTI, peak heat release rate PHRR, averaged heat release rate AHRR, total heat release
THR, optical smoke density Ds, maximum optical smoke density Dmax, tensile modulus E, stress at break σbreak, glass transition temperature Tg,
melting temperature Tm, longitudinal coefficient of thermal expansion αlong, transverse coefficient of thermal expansion αtran, relative permittivity at
1 MHz ε1 MHz, relative permittivity at 100 Hz ε100 Hz, and breakdown electric strength Ebd, collected, cleaned, and used herein

Class Property Standard Unit Data range Data size

Flame resistant TTI ASTM E1354 S 3.0–281.3 527
PHRR ASTM E1354 kW m−2 12.9–1876 576
AHRR ASTM E1354 kW m−2 58–750 100
THR ASTM E1354 MJ m−2 2.5–609 316
Ds ASTM E662 — 0.1–857 474
Dmax ASTM E662 — 1.0–964 124

Mechanical E ISO 527-1/-2 MPa 7.4–38 100 4098
σbreak ISO 527-1/-2 MPa 12–329 2738

Thermal Tg ISO 11357-1/-2 C −109–337 608
Tm ISO 11357-1/-3 C 122–388 2044
αlong ISO 11359-1/-2 10−6 K−1 −2.4–250 3373
αtran ISO 11359-1/-2 10−6 K−1 1.17–230 2889

Electrical ε100 Hz IEC 62631-2-1 — 2.5–15.0 813
ε1 MHz IEC 62631-2-1 — 2.5–7.0 797
Ebd IEC 60243-1 kV mm−1 15–50 611
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MT learning is referred to as “physics-informed” (Pi) learning,
as it uses augmentation data to implicitly convey these
physics-containing correlations without requiring explicit
mathematical expressions. Pi/MT approach is different from
“physics-enforced” learning methods, which rely on directly
encoding the correlations, given in terms of specific math-
ematical expressions, into the model. This study examines the
Pi/MT approach against traditional ST learning for developing
the targeted ML models (see Section 3 for details).

2.3 Descriptors

Table 2 summarizes the descriptors used to develop the
models. Ideally, if SMILES strings51 encoding the chemical
structure of polymer repeat units are available, they can be
converted into numerical descriptors.36–38 However, many
polymer matrices in our database lack well-defined SMILES
strings, as they are often cross-linking and/or without
sufficient information, making descriptor calculation infeas-
ible. Therefore, the polymer matrices are represented by a cat-
egorical descriptor, cat_polym, taking their name (e.g., PA6,
ABS, PBT) as its value. The composition of glass fibers, carbon
fibers, glass beads, and minerals is captured by the numerical
descriptors num_gf, num_cf, num_gb, and num_md, respect-
ively. The presence of impact modifiers and flame retardants
is indicated by cat_impact and cat_fr1 (Yes/No values). Next,
cat_condition specifies the sample state during standard tests
as either dry (fully dried) or conditioned (ambient exposure at
23 °C and 50% humidity). Lastly, due to missing details in the
thermal, mechanical, and electrical datasets, the density
(num_density) is included as an augmentative descriptor, as it
is consistently available across materials.

The flame-resistant models share several descriptors with the
thermal, mechanical, and electrical models, including cat_polym,
num_gf, num_cf, and cat_fr1. For cat_fr1 specifically, this
descriptor specifies the identity of the first flame retardant, if
present, while num_fr1 gives its composition. This numerical
descriptor is unique to the flame-resistant models due to the
absence of such data, as discussed above, in models of the other
properties. Since materials in the flame-resistant datasets can
contain up to four flame retardants, additional descriptors
(cat_fr2, num_fr2, cat_fr3, num_fr3, cat_fr4, num_fr4) were
included. Similarly, to account for up to two additional reinforce-
ments and two additives beyond glass and carbon fibers, the

Fig. 3 Top ten base polymer matrices in four group of polymer compo-
site datasets curated and used for this work.

Table 2 Features used to develop the ML models

Feature Description Applicable to

cat_polym Categorical, PA6, ABS, PBT, etc. All models
num_gf Numerical, weight fraction of glass fibers All models
num_cf Numerical, weight fraction of carbon fibers All models
num_gb Numerical, weight fraction of glass beads Thermal, mechanical, & electrical models
num_md Numerical, weight fraction of minerals Thermal, mechanical, & electrical models
num_density Numerical, material density (g cm−3) Thermal, mechanical, & electrical models
cat_impact Categorical, yes/no, if impact modifier included or not Thermal, mechanical, & electrical models
cat_condition Categorical, dry/conditioned, measurement condition Thermal, mechanical, & electrical models
cat_rif1 – cat_rif2 Categorical, identity of other reinforcements if included Flame-resistant models
num_rif1 – num_rif2 Numerical, weight fraction of other reinforcements if included Flame-resistant models
cat_adv1 – cat_adv2 Categorical, identity of other additives if included Flame-resistant models
num_adv1 – num_adv2 Numerical, weight fraction of other additives if included Flame-resistant models
cat_fr1 Categorical, yes/no, if first flame retardant included Thermal, mechanical, & electrical models

Categorical, identity of first flame retardant if included Flame-resistant models
num_fr1 Numerical, weight fraction of first flame retardant Flame-resistant models
cat_fr2 – cat_fr4 Categorical, identity of other flame retardants if included Flame-resistant models
num_fr2 – num_fr4 Numerical, weight fraction of other flame retardants Flame-resistant models
num_cone_heatflux Numerical, incoming heat flux (kW m−2) in ASTM E1354 test TTI, PHRR, AHRR, & THR models
num_cone_thickness Numerical, thickness (mm) of the sample in ASTM E1354 test TTI, PHRR, AHRR, & THR models
num_smoke_heatflux Numerical, incoming heat flux (kW m−2) in ASTM E662 test Ds & Dmax models
num_smoke_thickness Numerical, thickness (mm) of the sample in ASTM E662 test Ds & Dmax models
cat_flaming Categorical, true/false, flaming mode in ASTM E662 test Ds & Dmax models
num_smoke_time Numerical, time (s) of the optical smoke density measurement Ds & Dmax models
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descriptors cat_rif1, num_rif1, cat_rif2, num_rif2, cat_adv1,
num_adv1, cat_adv2, and num_adv2 were used.

Beyond material descriptors, additional features are required
for the specific tests measuring flame-resistant performances.
Cone calorimeter tests, conducted under ASTM E1354, measure
time to ignition (TTI), peak heat release rate (PHRR), average heat
release rate (AHRR), and total heat release (THR). Two key para-
meters of the tests, i.e., the incoming heat flux and the sample
thickness, are described by num_cone_heatflux and num_co-
ne_thickness. Likewise, smoke chamber tests, following ASTM
E662, measure optical smoke density (Ds) and maximum optical
smoke density (Dmax) under flaming or non-flaming mode.
Therefore, for Ds and Dmax models, num_smoke_heatflux, num_s-
moke_thickness, cat_flaming (flaming vs. non-flaming mode),
and num_smoke_time (measurement time) are included, as Ds is
time-dependent.

This choice of descriptors may not be ideally comprehen-
sive or complete, potentially omitting useful information if
SMILES strings or polymer categories are available and usable.
Nevertheless, for the curated data, this technical solution
offers not only respectable model performance (discussed in
Section 2.4) but also the convenient simplicity needed by the
majority of model users.

2.4 Model performances and validations

For 15 properties summarized in Table 1, 15 ST models and 5
Pi/MT models were trained. Each Pi/MT model was trained on
a set of properties that are intuitively/clearly correlated. For
example, among 6 flame-resistant properties, TTI, PHRR,
AHRR, and THR are typically measured simultaneously using
a Cone calorimeter, thus they are clearly related and should be
combined in a Pi/MT model. Likewise, Ds and Dmax are
measured simultaneously using a smoke chamber, thus
another Pi/MT predictive model was developed for them.
Starting from similar rationale, 3 other Pi/MT models were
developed for the mechanical, thermal, and electrical
properties.

As expected, the physics-informed MT models are systemati-
cally better than the corresponding ST models in multiple
measures of performances, including the determination coeffi-
cient R2, the absolute root-mean-square error aRMSE, and the
relative root-mean-square error rRMSE, defined as the ratio
between aRMSE and the whole range of the true data. While
aRMSE cannot be compared across different datasets and
models, rRMSE is more reliable for this purpose. These 3 per-
formance metrics, computed on the training data, are sum-
marized in Table 3. Among 15 models, 12 of them reach R2 >
0.9, while other 2 models have R2 > 0.8; rRMSE metric for all of
them is about 5–6% and below. The electric strength model
has a moderate R2 = 0.57 and rRMSE ≃ 12%. This result is
reasonable and promising, given that our database suffers
from unavoidable missing information and that the electric
strength is related to and governed by multiple physics-based
processes, spanning over multiple length and time scales, and
thus understanding it is always highly challenging.52–54 These
5 models, visualized in Fig. 4, are available in PolymRize™.55

These deployed models were then validated on 15 comple-
tely unseen datasets curated independently. For each of them,
the data were featurized and the targeted properties were pre-
dicted and compared with the ground truth. Predictions for
time to ignition TTI, peak heat release rate PHRR, averaged
heat release rate AHRR, total heat release THR, optical smoke
density Ds, and maximum optical smoke density Dmax, tensile
modulus E, stress at break σbreak, glass transition temperature
Tg, melting temperature Tm, longitudinal coefficient of
thermal expansion αlong, transverse coefficient of thermal
expansion αtran, relative permittivity at 1 MHz ε1 MHz, relative
permittivity at 100 Hz ε100 Hz, and breakdown electric strength
Ebd on the unseen validation data are shown in Fig. 5. For all
of the models, the predictions agree very well with the ground
truth and aRMSE that is comparable with that reported in
Table 3. In summary, all 5 MT models for 15 flame-resistant,
mechanical, thermal, and electrical properties can reasonably
predict the unseen data, suggesting that the training data of
these models are sufficiently big and diverse to represent the
common cases of polymer composites.

3 Physics-informed MT learning
approach

The advantage of the physics-informed MT models over their
ST counterparts is desirable and expected when the corre-
lations among the training datasets are strong. Fig. 6 provides

Table 3 Summary of five deep-learning physics-informed MT models
(separated by horizontal lines) developed for (1) time to ignition TTI,
peak heat release rate PHRR, averaged heat release rate AHRR, and total
heat release THR, (2) optical smoke density Ds and maximum optical
smoke density Dmax, (3) tensile modulus E and stress at break σbreak, (4)
glass transition temperature Tg, melting temperature Tm, longitudinal
coefficient of thermal expansion αlong, and transverse coefficient of
thermal expansion αtran, and (5) relative permittivity at 1 MHz ε1 MHz, rela-
tive permittivity at 100 Hz ε100 Hz, and breakdown electric strength Ebd

Model

Training Validation

R2 aRMSE rRMSE R2 aRMSE rRMSE

TTI 0.95 9.9 0.036 0.73 17.7 0.071
PHRR 0.94 86.1 0.046 0.74 154.7 0.124
AHRR 0.96 32.5 0.047 0.81 57.3 0.124
THR 0.97 17.9 0.029 0.34 35.05 0.172

Ds 0.99 18.4 0.021 0.78 116.2 0.142
Dmax 0.99 25.1 0.026 0.89 69.7 0.105

E 0.97 944 0.025 0.98 624 0.030
σbreak 0.91 16.3 0.052 0.92 14.0 0.065

Tg 0.98 8.76 0.020 0.97 8.54 0.038
Tm 0.98 6.78 0.025 0.98 3.13 0.033
αlong 0.92 13.6 0.054 0.92 11.2 0.064
αtran 0.83 14.3 0.062 0.52 13.7 0.121

ε100 Hz 0.97 0.65 0.052 0.81 1.3 0.096
ε1 MHz 0.85 0.25 0.055 0.48 0.41 0.140
Ebd 0.57 4.21 0.120 0.14 5.04 0.219
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Fig. 4 Visualization of 5 physics-informed MT models developed (and deployed in PolymRize™) for 15 properties of polymer composites. For each
of them, R2 and aRMSE are provided. Each of 5 physics-informed MT models is marked by a distinct color.

Fig. 5 Predictions of the developed models on the unseen validation datasets curated independently. For each of 15 properties, the base polymer
matrix of the validating materials are distinguished by colors.
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a summary of the models trained for time to ignition TTI,
peak heat release rate PHRR, averaged heat release rate AHRR,
and total heat release THR while similar information on all 15
properties can be found in ESI.† Between two learning algor-
ithms, GPR is relatively less effective with TTI and PHRR than
DL, for which R2 is consistently higher than 90%. The physics-
informed MT model trained using DL is clearly better, lever-
aging R2 of all four properties above 95% while making them
more comparable. Similarly, rRMSE is significantly reduced
and becomes more balance across TTI, PHRR, AHRR, and
THR.

The main rationale of the Pi/MT approach is that by deliber-
ately generating, producing, supplying, and thus, “informing”
the training process with data of related properties, the target
ML models can be improved.39 There is, in principle, no limit
in the nature and the volume of the augmented data.
Moreover, the expected correlations among the datasets are
not required to be materialized into any solid mathematical
expression. With these two major advantages, the physics-
informed MT approach is expected to be widely used in the
research area of polymer composites.39

4 Forward-looking perspectives and
conclusions

Polymer composite data are often scarce and incomplete,
posing significant challenges for developing ML predictive
models. Addressing these challenges could unlock opportu-
nities for accelerated property predictions and polymer compo-
site design, specifically for extremes. By deploying five Pi/MT
models on the largest datasets of their kind and demonstrat-

ing predictive performance across 15 widely used properties,
this work marks an initial step toward that future.

From the ML perspective, the physics-informed MT learn-
ing approach consistently outperformed traditional ST learn-
ing, where each model is independently developed for a single
property. Prior studies56,57 suggest that MT architectures can
capture hidden correlations among related properties. This
work supports that theory. Nevertheless, small data size and
large data noise, both of which are common in practice, can
suppress the correlations and limit the MT learning efficiency.
Addressing these issues remains open for future works.

Manual data curation, as performed here, is unsustainable
given the abundance of polymer composite data. Advances in
natural language processing, including large language models,
named entity recognition, normalization, relation extraction,
and co-referencing, may soon offer scalable solutions.
Additionally, representing base polymers by name or label, as
done in this study, is suboptimal. Future improvements could
involve acquiring SMILES strings51 for all polymers and
extending chemical fingerprinting schemes36,37 to better
handle cross-linking polymers and other complex classes,
further advancing model performance.
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crossed and solid patterns, respectively.
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