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analysis of nanomagnetism
models for the evaluation of particle energy in
magnetic hyperthermia

N. Maniotis, *a M. Maragakisb and N. Vordosb

Magnetic nanoparticles (MNPs) have attracted significant research interest due to their unique magnetic

properties, which differ from their bulk counterparts and enable applications in information technology,

environmental protection, and biomedicine. Among these applications, magnetic particle hyperthermia

(MPH) has emerged as a promising therapeutic approach for cancer treatment. This review provides

a comprehensive analysis of nanomagnetism models used to evaluate the heating potential of MNPs in

MPH. Specifically, we examine (i) theoretical approaches for estimating the magnetic properties of

nanoparticle systems and (ii) numerical simulation strategies that predict their response to externally

applied magnetic fields. Common modeling frameworks typically focus on key magnetic parameters

such as total energy, magnetization, anisotropy, and hysteresis loop morphology. However, precise

characterization of these properties remains challenging due to their dependence on multiple

interrelated factors, including particle size, shape, composition, and interparticle interactions. To address

these challenges, this review discusses various analytical and numerical models that aid in the qualitative

and quantitative assessment of MNP behavior under alternating magnetic fields. By critically evaluating

these methodologies, we aim to enhance the understanding of magnetic field-driven heating

mechanisms and contribute to the optimization of MNPs for hyperthermia-based therapeutic

applications. Looking forward, the integration of advanced multiphysics simulations, combining

magnetization dynamics with biological, thermal, and fluidic environments, is anticipated to revolutionize

the predictive accuracy and translational potential of MPH technologies.
Introduction

Magnetic particle hyperthermia (MPH) is an innovative and
minimally invasive cancer treatment that utilizes a magnetic
uid, also known as ferrouid, as a localized heat source.1–4 This
ferrouid consists of a stable colloidal suspension of magnetic
nanoparticles (MNPs), which can be directly injected into the
tumor or delivered through intravenous administration via
passive or active (functionalized) targeting.5,6 Those systems are
usually of iron oxide nanoparticles that are suspended – very
nely distributed – in water. Aer administration, magnetic
nanoparticles can be directed toward the tumor site either
through passive targeting mechanisms—such as the enhanced
permeability and retention (EPR) effect—or via active targeting
strategies involving surface functionalization with ligands that
bind to tumor-specic receptors.7 Once accumulated to the
tumor area, nanoparticles are exposed to an external alternating
magnetic eld (AMF) that causes reversal of their magnetic
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moments, activating mechanisms of energy transfer in the form
of heat.8,9

Due to their unique properties, MNPs have gained signicant
research attention which emerges from their nanoscale dimen-
sions and differentiates them from their bulk counterparts.
Beyond the advantages of miniaturization in high-tech applica-
tions and enhanced surface-area-to-volume ratios in conventional
technologies,10–13 MNPs exhibit a novel magnetic behavior driven
by their reduced dimensionality.14–16 As the size of a material
approaches the nanometer scale, surface effects become increas-
ingly substantial, oen rivaling or surpassing bulk
contributions.17–19 In order to ensure both stability and biocom-
patibility, MNPs are commonly coated or functionalized with
biocompatible materials such as polyethylene glycol (PEG),
dextran, or starch.16,20,21 These coatings not only stabilize the
particles by reducing surface energy and preventing agglomera-
tion but also improve their dispersion and circulation time in
biological environments.22 Furthermore, structural defects result-
ing from broken crystalline symmetry play a crucial role in
determiningmagnetic properties, while additional physical effects
emerge when the particle size reaches the material's intrinsic
characteristic length scales. These size-dependent effects make
MNPs highly sensitive to variations in size, shape, and chemical
© 2025 The Author(s). Published by the Royal Society of Chemistry
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composition, necessitating specialized theoretical and computa-
tional approaches to accurately describe their behavior.23–26

The collective magnetic properties of MNPs arise from
a complex interplay between intrinsic parameters such as the
magnetic moment and anisotropy and external experimental
conditions like the applied magnetic eld and the measurement
timescale.27 While signicant progress has been made in under-
standing these properties, accurately modeling the dynamic
response of MNPs under alternating magnetic elds—particularly
in the context of MPH—remains a challenge. The difficulty
primarily stems from the wide range of relevant length and time
scales involved, making conventional atomistic simulations
computationally demanding and oen impractical.28 Moreover,
large-scale simulations of dense nanoparticle systems encounter
limitations due to the complex interactions between particles and
externally appliedmagnetic elds, as well as the lack of universally
reliable models, valid for these type of interactions.29–32

A key challenge in simulating realistic MNP systems is that
neither atomic-scale models nor continuum-based approaches
alone can fully capture the intricate magnetic behaviors at
intermediate scales. The mesoscopic regime—spanning approx-
imately from 10−9 to 10−6 meters—bridges the gap between
atomistic simulations and macroscopic continuum models.33,34

Within this scale, individual nanoparticle dynamics are still
relevant, yet the system is too large to be efficiently simulated
using purely atomistic methods. Mesoscopic modeling provides
an effective way to address this challenge by considering local
equilibrium at the microscopic level while capturing emergent
behaviors on longer timescales.35 One of the most widely used
techniques at this scale is micromagnetic modeling,36 which
provides a phenomenological framework for determining equi-
libriummagnetization congurations in MNPs based on applied
eld conditions,37 particle geometry,38 and material properties.39

The eld of numerical micromagnetics continues to evolve, with
ongoing advancements improving its predictive capabilities.40,41

Given the complexity of MNP interactions and their strong
dependence on microstructural and morphological factors,
a combination of analytical and numerical approaches is
necessary to effectively model their heating potential in hyper-
thermia applications. This review provides a comprehensive
analysis of mesoscopic models designed to estimate and opti-
mize key magnetic properties relevant to MPH, including
anisotropy, total energy, magnetization, and hysteresis loop
area. Special emphasis is placed on numerical simulations,
which enable the study of non-local magnetic interactions and
dynamic processes that cannot be resolved analytically. By
critically assessing these modeling strategies, we aim to
enhance the understanding of eld-driven heating mechanisms
in MNPs, ultimately contributing to the development of more
efficient hyperthermia-based therapies.
Fig. 1 Schematic representation of magnetic domain structures in
nanoparticles based on their size. Particles with a radius r larger than
a critical value rc exhibit a multi-domain structure (left), where multiple
magnetic domains are separated by domain walls. When the particle
radius is smaller than rc, it becomes a single-domain particle (right),
where all atomic spins align coherently, resulting in a net magnetic
moment ~mp in a single direction.43
Single particle approximations:
analytical models in MPH

When magnetic nanoparticles are exposed to an external AMF,
as used in MPH, the total energy they acquire primarily
© 2025 The Author(s). Published by the Royal Society of Chemistry
originates from two key contributions. Firstly, there is the Zee-
man energy, which corresponds to the energy transferred to the
nanoparticles by the external eld. Secondly, there is the
anisotropy energy, which arises due to the deviation of the
nanoparticle's magnetic moment from its preferred easy-axis
direction, under the inuence of the alternating eld. This
misalignment imposes an additional energy cost on the system.
Since MNPs in MPH applications experience continuously
changing magnetic elds, their magnetization dynamics is
translated to hysteresis losses, which contribute to the dissi-
pation of energy as heat, an essential feature for hyperthermia
treatment. Analyzing the total energy involved in this process
requires rst considering a single nanoparticle, before extend-
ing the analysis to an ensemble.

Let us consider a ferromagnetic nanoparticle of volume V,
with a saturation magnetization Ms and an effective anisotropy
constant Keff. Unlike bulk ferromagnetic materials that exhibit
multi-domain structures, nanoparticles below a critical radius
rc (which depends on the material and its shape) exist in
a single-domain state to minimize their total energy (Fig. 1).
Since the critical dimension for most materials falls within the
nanometer range, MNPs used in MPH are typically assumed to
be single-domain entities. Their energy dissipation, governed by
hysteresis losses and relaxation mechanisms, plays a crucial
role in determining their heating efficiency under an AMF.

In the single-domain model, all spins are parallel to one
another and the magnetic moment m can be described as
a single giant magnetic moment:

jmj=MsV (1)

the amplitude of which is independent of its spatial orientation.
Eqn (1) depicts the so-called “macrospin” and “coherent rota-
tion” approximations.42

Another approximation is that the magnetic nanoparticle is
assumed to have a uniaxial magnetocrystalline anisotropy
according to which the crystal system has a single-axis of high
symmetry. Assuming these approximations, the energy of
a magnetic nanoparticle placed in an AMF H is given by the
Nanoscale Adv., 2025, 7, 4252–4269 | 4253
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Fig. 2 Schematic representation of the energy landscape variation
with the “easy” axis-magnetic moment angle (double-well approxi-
mation) for x = 0.5 and 4 = 30°. The red arrows show the magnetic
moment orientation. When x s 0, q1, q2, and q3 values deviate slightly
from 0, 180 and 90 degrees which correspond to parallel antiparallel
and perpendicular orientation, with respect to the “easy” axis,
respectively. Although this deviation exists, we can approximately
employ 0 and 180 degrees as the minimum energy positions without
a significant deviation from the realistic experimental behavior.45
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following equation which was rst introduced by Stoner and
Wohlfarth:44

E(q,4) = KeffV sin2(q) − m0MsVH cos(q − 4) (2)

with q the angle between the easy axis and the magnetic
moment m and 4 the angle between the “easy” axis and the
magnetic eld H. The rst term in eqn (2) represents the energy
contribution due to the effective anisotropy of the nanoparticle
while the second term, known as Zeeman energy, is propor-
tional to nanoparticle's energy originating by the interaction
with the AMF. The latter is a harmonic eld that can be written
as H = H0 sin(2p), where H0 and f are the eld amplitude and
frequency respectively. According to the Stoner–Wohlfarth
model, E(q) behavior can be estimated by assuming zero
thermal effects (i.e. at T = 0 K) and a constant “easy” axis angle
with the magnetic eld orientation (specic value of 4) which is
a reasonable hypothesis for a single particle. Normally, eqn (2)
is solved through energy minimization processes without
applying time-dependent temperature variations. In order to
take into account the thermal energy contribution kBT at
temperatures higher than 0 K in the energy solution, the

dimensionless parameters s ¼ KV
kBT

and x ¼ m0MsVH
kBT

are

introduced. The parameter s is usually referred as anisotropy
barrier. Then, the reduced magnetic energy normalized to kBT
is:

Eðq;4Þ
kBT

¼ s sin2ðqÞ � x cosðq� 4Þ (3)

If the external magnetic eld is applied along the “hard” axis
(4 = p/2), then the energy is expressed as E = K sin2 q + m0HMs

sin q, and the angle q that minimizes the energy in this case is
found by:

dE

dq
¼ ð2K sin qþ m0HMsÞcos q ¼ 0 or q ¼ � p

2
þ pn

and

d2E

dq2
¼ �2K sin2

q� m0HMs sin q

þ 2K cos2q. 00

8><
>:

q ¼ p

2
0m0H\ � m0HK

q ¼ �p

2
0m0H.m0HK

The unique way that these conditions are satised is when

m0HK ¼ 2K
Ms

0K ¼ m0HKMs

2
; where m0HK corresponds to the

anisotropy eld representing the eld at which m reaches its
maximum value i.e. reaches saturation. When the applied
magnetic eld m0H is higher than the anisotropy eld, the
energy landscape displays only one minimum, which denes
the equilibrium position, i.e., along the anisotropy axis direc-
tion. Conversely, when m0H is lower than m0HK, the energy
prole as a function of q displays two minima at positions (q1,
E1), (q2, E2) and two maxima as depicted in Fig. 2 for 4 = 30°.
4254 | Nanoscale Adv., 2025, 7, 4252–4269
The upper maximum point at position (q3, E3) is known as the
saddle point.

As described, the total energy minimization and the esti-
mation of E(q) behavior can be done analytically in the case of
a single nanoparticle. However, in the case of an assembly of
magnetic nanoparticles, where the system is characterized by
a random distribution in 4 values, this analytical solution is not
valid and computational techniques should be utilized.43,46 On
this, the most frequently used technique is the Monte Carlo
(MC) minimization method. This simulation approach is based
on the generation of random numbers (random sampling) to
obtain numerically the minimization of a given energy func-
tional. In magnetic nanoparticles, the random numbers coin-
cide with “easy” axis orientations because they are used to
generate trial orientations of the magnetization vector relative
to the easy axis and the minimization proceeds for the energy
function E(q,4) given by eqn (2). The described methodology
was employed in a characteristic system of iron oxide (Fe3O4)
magnetic nanoparticles47 at room temperature T = 300 K, for
magnetic elds amplitudes typically used in MPH and
a frequency equal to 300 kHz. Since the applied magnetic eld is
alternating, the considered case is essentially quasi-static, and
therefore, the conditions ruling the system are expressed by an
energy minimization processes.

The results of the above procedure are more clearly com-
prehended by Fig. 3 where the E/kBT ratio is plotted versus q for
various values of H in the range typically used in biomedical
applications and more specically for magnetic hyperthermia
protocols.48–50 For x = 0, a value that corresponds to the absence
of magnetic elds or for innite temperatures, m can take two
equivalent equilibrium values at q1 = 0° and q2 = 180°, i.e.,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Magnetic energy as a function of angle q for various values of
m0H at T = 300 K and f = 300 kHz. The results were obtained after
energy minimization with the Monte Carlo method for a single Fe3O4

magnetic nanoparticle.45 The transformation of the energy profile
under increasing external magnetic field strength is visually demon-
strated by clearly showing the disappearance of the metastable state
and the emergence of a single energy minimum aligned with the easy
axis.
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along its “easy” axis. For a nite positive value of x, the magnetic
eld favors one of the two minima. Increasing x, moves the
abscissa of this minimum progressively so that the parallel
orientation of m to the magnetic eld is favored. In the example
shown in Fig. 3, when the applied magnetic eld is higher than
the anisotropy eld, the energy landscape (as a function of the
angle q between easy axis and m) displays only one minimum,
which denes the equilibrium position, i.e., along the anisot-
ropy axis direction (curves corresponding to an applied
magnetic eld amplitude of 40 and 50 mT in Fig. 3). Conversely,
when the applied magnetic eld is smaller than the anisotropy
eld, the energy prole as a function of q displays two minima
and two maxima (curves corresponding to an applied magnetic
eld amplitude of 10 and 20 mT).

In order to calculate the total energy, we examined the case
where nanoparticles have reached saturation and, thus,
magnetization was assumed to be independent to the applied
magnetic eld H and equal to a constant value Ms. In order to
expand the validity of this approach and thoroughly study the
magnetic properties of nanoparticles, the dependence of
magnetization on H should be introduced through analytical
relationships of the M(H) curve. First, let us consider a case of
zero or very low anisotropy barrier, i.e. KeffV/kBT� 1 and Keff# 1
kJ m−3 where the virgin magnetization curve is given by:

M(H) = MsL(x) (4)

with LðxÞ ¼ cothðxÞ � 1
x

being the Langevin function which

intrinsically neglects the anisotropy of magnetic nanoparticles
and introduces the Zeeman term as the main contribution of
the total energy in eqn (2). Eqn (4) is valid in the case of very
© 2025 The Author(s). Published by the Royal Society of Chemistry
small nanoparticles with dimensions lying in the super-
paramagnetic regime which are characterized by a low KeffV
product. On the other hand, the Langevin function fails to
describe the magnetization of magnetic nanoparticles with
effective anisotropy above 1 kJ m−3 and/or large nanoparticles
with dimensions lying in the superparamagnetic to ferromag-
netic transition range. Using theories for domain stability in
ne particles and bulk properties available in the literature, one
can determine the characteristic size up to which single-
domains are stable. This series of magnetic “phases” as
a function of size is shown in Fig. 4 for different ferromagnets,
which includes a “single-domain” size Dsd, below which the
material will not support a multi-domain particle, and a size Dsp

dened by the superparamagnetic effect, below which a spon-
taneous ip in magnetization occurs due to thermal effects at
room temperature.

For MPH applications, it is a prerequisite to know the
magnetic status of the MNPs since the energy release and thus
the heating mechanism differs for particles possessing or not
hysteresis.

The second case emerges for
KeffV
kBT

[1 and m0HK > m0H and

assumes the neglection of excited energy states inside each
energy well, therefore, magnetization calculations only depend
on the position of the two energy minima E1 and E2 and the
energy maximum E3 as depicted in Fig. 2. This approach is
known as the double-well (DW) approximation and has been
applied not only in the study of magnetic nanosystems,51,52 but
also in many elds of physics such as quantum mechanics,53–55

neural networks56,57 and protein structure prediction.58–60 The
values of E1, E2 and E3 are obtained aer solving eqn (2) either
for random or parallel (4 = 0) orientation of the magnetic eld
with respect to the “easy” axis. When applied magnetic eld is
below m0HK, the magnetization can switch from the one
minimum to the other at a rate n1 expressed by:

n1 ¼ n01 exp

�
� E3 � E1

kT

�
(5)

Similarly, the switching rate n2 from the opposite direction is
given by:

n2 ¼ n02 exp

�
� E3 � E2

kT

�
(6)

where the frequencies v01 and v02, under specic assumptions,
can be related to the Larmor frequency which is given as
a function of both material parameters (gyromagnetic ratio,
damping, saturation magnetization and anisotropy constant)
and experimental conditions (temperature and magnetic eld
strength). An approximate expression for the Larmor precession

frequency nL to reect this dependency is nL ¼ gm0Heff

2p
where g

is the gyromagnetic ratio and Heff is the effective magnetic eld,
which encompasses contributions from the anisotropy eld,
external eld, and internal demagnetizing elds. For the sake of
simplicity, these frequencies are kept constant and equal to 1/
s0, where s0 is a typical time value for ferromagnetic resonance61
Nanoscale Adv., 2025, 7, 4252–4269 | 4255
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Fig. 4 Nanomagnetic size effects: top graphs outline the collective magnetic features exhibited by the hysteresis loops and spin configurations
in each one of the three regions with surface spins also sketched at the outer layer of the particle. Main graph shows the magnetic transitions
occurring as MNPs grow in diameter. transition area between red and blue bars corresponds to transition from (SPM) superparamagnetism to
(SD) ferromagnetism-single-domain particles while the rightmost edge of blue bars corresponds to the critical diameter above which the
formation of (MD) multiple domains is energetically favored. Next to the bar charts effective anisotropy and room temperature saturation
magnetization values are given as collected from ref. 47.
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set equal to 10−10 s. In the case of small magnetic eld ampli-
tudes H i.e. low values of x (as in MPH application) the two
energy minima can be approached as q1 = 0° and q2 = 180°.
Thus, the energy differences DE1 and DE2 between each
minimum and the saddle point can estimated by eqn (5) and
(6), for the case of 4 = 0, as DE2,1 = KeffV(1 ± H0/HK)

2. Calling P1
the occupation probability of position E1 and P2 the corre-
sponding one of position E2, the time evolution of P1 is esti-
mated by:62

vP1

vt
¼ P2n2 � P1n1 ¼ ð1� P1Þn2 � P1n1 (7)

Considering v/vt = (v/vH)(vH/vt) andM = Ms(P1 cos q1 + (1 −
P1)cos q2) eqn (7) becomes:

vM

vH
¼

vM

vt
vH

vt

(8)

where
vM
vt

¼ Msðcos q1 � cos q2Þfð1� P1ðtÞÞn2 � P1ðtÞn1g:
A time dependent applied magnetic eld H(t) of frequency f

with a sweeping rate
vH
vt

¼ �4fH0 is assumed. For negative
4256 | Nanoscale Adv., 2025, 7, 4252–4269
sweeping rates, the magnetic eld reversal occurs (demagneti-
zation process). For very large values of effective anisotropy and
for “easy” axis alignment along the direction of the applied
magnetic eld (4 = 0), the analytical solution of eqn (8)
converges to:

M = Ms × tanh(x) (9)

The above analysis was applied in Fe3O4 nanoparticles, used
previously as a model system, to generate the virgin magneti-
zation curve M(H). Fig. 5 depicts the calculated M(H) curves for
different values of effective anisotropy. Initially, a Monte Carlo
simulation is applied for various values of effective anisotropy
in order to estimate E1(Keff), E2(Keff) and E3(Keff) from energy
minimization. Then, for each Keff value the corresponding (q1,
E1), (q2, E2) and (q3, E3) are substituted in eqn (5) and (6) to
estimate n1 and n2, respectively. Lastly, the differential eqn (8) is
solved numerically.

The solutions of this equation for different Keff values reveal
a progressive evolution of the magnetization curves from the
Langevin function (0 kJ m−3) to the tanh function of eqn (9),
(250 kJ m−3). When the particle's anisotropy is relatively small,
the curve of magnetization follows the Langevin function where
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Monte Carlo simulation resulted curves of magnetization of
Fe3O4 magnetic nanoparticle with diameter 40 nm versus external
field varied from 0 to 0.1 T and for different values of the effective
anisotropy. The magnetic field is applied along the easy axis (4 = 0).45
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the magnetic moments can take all the possible orientations (q
˛ R). Following effective anisotropy increment, the obtained
magnetization also increases.

For large values of Keff, the magnetic moments of nano-
particles have only two stable orientations, parallel and anti-
parallel to nanoparticle's “easy” axis (the two minima of the
energy landscape at q1 and q2). In the presence of magnetic eld
this behavior saturates faster, compared to the small anisotropy
case, the magnetization and thus the Langevin function is
replaced by the faster growing function tanh. Each one of the
Keff values used in simulations satised the prerequisite for the
application of DW approximation as soon as they resulted to
anisotropy elds higher than the applied magnetic eld (0.1 T).

Numerical solutions of eqn (8) based on multiple demag-
netization and magnetization cycles�
vH
vt

¼ �4fH0 and
vH
vt

¼ 4fH0 respectively
�
; provide the full

hysteresis loop for specic values of the involved parameters
(Keff, V,Ms,H0, f, T) but only for the case of oriented particle (4=

0). When the eld is applied at an arbitrary angle 4 relative to
the easy axis different expressions should be given. Those
expressions are crucial when modeling ensembles of non-
interacting nanoparticles with random orientations. Unlike
the aligned case the critical eld at which the barrier vanishes
depends on 4. The analytic expression for DE2,1 is more
complex, but in the following we will present some useful
approximations.

Starting from the original Stoner–Wohlfarth model,
described by eqn (2) and holds at zero temperature, the critical
(switching) eld Hsw where an irreversible jump of the magne-
tization direction occurs, is given by the condition
dE
dq

¼ d2E
dq2

¼ 0: This equations system has no algebraic closed-

form for arbitrary 4. The explicit solution involves solving
© 2025 The Author(s). Published by the Royal Society of Chemistry
a transcendental equation, by eradicating the angle q, which
leads to

Hsw = HK[cos
2/3 4 + sin2/3 4]−3/2 (10)

Although there are no analytic equations, analyzing the
energy difference numerically with the help of eqn (2) and (10) it
turns out that the expression:

DE2;1ð4;HÞ ¼ KeffV

�
1� H0

Hsw

�2

(11)

describes the results surprisingly correctly.
In the updated model at nite temperature:
� The system is assumed to be in one of two wells (q= 0 orp).
� The transition rates between wells are governed by

Arrhenius-type equations.
� The magnetization at time t M(t,4) is a statistical average of

the projection of magnetic moments in those wells onto the
eld direction.

The magnetization will be then given by:

M(t,4) = Ms(P1(4,t)cos(q1 − 4) + (1 − P1(4,t))cos(q2 − 4)) 0

M(t,4) = Ms(2P1(4,t) − 1)cos 4 (12)

and the hysteresis loop, at the random orientation case, will
occur by implementing the rate eqn (7) and (8).

To get the total magnetization Mtotal for a randomly oriented
ensemble of non-interacting particles presenting known
volume and anisotropy distributions P(V) and P(K) respectively,
one has to simply integrate according to:

Mtotal ¼
ðp=2
0

ðN
0

ðN
0

Mðt;4;K ;VÞPðVÞPðKÞdVdK sin 4d4; (13)

then, to substitute the eqn (12) and (13) and nally employing
again the rate eqn (7) and (8).

Both approximations (aligned and random orientation) are
derived assuming thermally assisted transitions within Néel–
Arrhenius-like dynamics and also that the particle does not
switch deterministically, but rather probabilistically due to
thermal uctuations. This means it is especially valid when the
barrier height is a few kBT or more: DE$ 10kBT. If the barrier is
too small, thermal uctuations cause rapid switching and the
rate equation approach may no longer be meaningful. An
example is presented in Fig. 6 for a spherical iron oxide nano-
particle with diameter equal to 40 nm. Suggestively, the used
magnetic eld amplitude and frequency are typical values of
magnetic hyperthermia schemes. A simpler approach for
solving the DW system is, owing to the nonlinearities of the
treatment, to work for a given value of the angle 4 and to make
a numerical average over all possible 4 values (at least, in the
presence of complete randomness of the directions of the easy
axes). In each case, the proposed methodology can be treated by
any soware, keeping in mind that the core of the script should
be the numerical solution of a rst-order differential equation.

The dependency of the coercive eld and the hysteresis loop
area to magnetic nanoparticles properties (size, anisotropy,
magnetization) and applied magnetic eld parameters
Nanoscale Adv., 2025, 7, 4252–4269 | 4257
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Fig. 6 Magnetization versusmagnetic field loops calculated when the
“easy” axes are aligned with the magnetic field (blue colored loop, 4 =
0), when easy axes are randomly oriented in space (red colored loop)
and when magnetic field is applied vertically to the “easy” axis (black
colored line). Hysteresis loops are obtained after solving eqn (8) for Keff
= 9 kJm−3, V= 3× 10−23 m3,Ms= 80 emu g−1, m0H0= 0.03 T, f= 300
kHz and T = 300 K.45
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(amplitude, frequency) is determined by tting the numerical
results to analytical equations. In the case of 4 = 0, the
following analytical expression for the coercive eld is
obtained:63

m0Hc ¼ m0HK

0
@1� k

1
2

1
A (14)

where the dimensionless parameter k is dened as:

k ¼ kBT

KV
ln

�
kBT

4m0HMsVf s0

�
(15)

It is clear from eqn (15) that k is a crucial parameter, strongly
affected by the temperature, which considers the sweeping rate
of the magnetic eld. For the case of random magnetic eld
orientation, the coercive eld is given by:

m0Hc = 0.48m0HK(b − kn) (16)
Table 1 Summary of experimental results from various materials of inte

System Ms (300 K)a (A m2 kg−1) m0Hmax
b (mT)

FexOy MNPs #92 13.8
Magnetosomes-Af #92 12.5
Magnetosomes-Bg #92 12.5
Co MNPs 162 31.2
FeCo MNPs 240 29
Fe MNPs 218 66
CoFe2O4 75 31.1

a Bulk magnetization per unit mass at 300 K. b m0Hmax magnetic eld of e
been measured, which was calculated using eqn (19). d Aexp hysteresis are
Aexp/Amax.

f Randomly-oriented iron oxide nanoparticles synthesized by bac
the magnetic eld.

4258 | Nanoscale Adv., 2025, 7, 4252–4269
where b and n are tting constants.
Similar to the coercive eld, the estimation of the hysteresis

loop area A is obtained by:

A = 4a × m0HK(1−k1/2)Ms (17)

when the magnetic eld is aligned to the “easy” axis while for
the random orientation case the followed equation is used:

A = 4a × 0.48m0HK(b−kn)Ms (18)

The key feature of hysteresis loop area formulas is the
dimensionless parameter a which is called “squareness” and
characterizes the relative area of the hysteresis loop with respect
to the ideal square one. The parameter a is proportional to the
degree of alignment. For a = 1 the system is perfectly optimized
and the “easy” axes of all magnetic nanoparticles is aligned to
the magnetic eld direction. In a sense, a represents the degree
of optimization of a given system. Themaximum hysteresis area
Amax that can be obtained is:

Amax = 4m0HmaxMs (19)

where m0Hmax is the maximum applied magnetic eld. Table 1
presents the calculation of a from experimental results ob-
tained on various materials of interest.
Many-particles approximations:
numerical models in MPH

Understanding MNPs magnetization dynamics is crucial for
optimizing their heating efficiency. Due to the complex nature
of inhomogeneous magnetization in nano-systems, the use of
dynamical micromagnetic approaches is necessary. In this
regard, full-scale numerical micromagnetic simulations have
become essential for accurately modeling the response of
a large number of MNPs under AMF. Over the past decade,
advancements in computational power and the development of
specialized micromagnetic soware packages—such as
OOMMF, LLG, MicroMagus, MuMax, and NMAG—have enabled
detailed investigations into the magnetization dynamics of
nanoparticles in MPH (Dmytriiev et al. 2012; Leliaert et al. 2018;
Leliaert and Mulkers 2019; Stavrou et al. 2019; Sundara
rest

Amax
c (mJ g−1) Aexp

d (mJ g−1) ae Reference

5 1.5 0.3 64
5 1.3 0.26 65
5 2.3 0.46 65
20.6 3.25 0.16 18
27.8 1.5 0.054 66
57.5 5.6 0.097 67
9.35 0.63 0.067 68

xperiments. c Amax theoretical maximum hysteresis area that could have
a experimentally measured under these conditions. e Calculated as a =
teria. g Iron oxide nanoparticles synthesized by bacteria and aligned with

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Mahalingam et al. 2019). Micromagnetic modeling in MPH is
based on Brown's equation, which denes the total energy of
a ferromagnet, and the Landau–Lifshitz–Gilbert (LLG) equa-
tion, which governs the magnetization dynamics under an
external eld. By solving these equations numerically,
researchers can predict hysteresis losses which are critical for
designing MNPs with optimized heating performance for
hyperthermia applications.

Under the assumption of micromagnetic theory, Brown69

derived a set of equations aer employing the magnetic Gibbs
free energy, such as:

E =
Ð
(Eex + Ea + Ez + Ed + Edip) (20)

This integral in eqn (20) runs over the total volume of the
ferromagnetic body. The details of constituent energies are
mathematically described by eqn (21)–(25) and are theoretically
dened as follows: exchange energy Eex (eqn (21)) indicates the
interaction of spins with nearest neighbors. Volume anisotropy
energy Ea (eqn (22)) indicates the crystal structure and depends
on the crystal type of specimen material i.e. uniaxial or cubic
symmetry. The Zeeman energy Ez (eqn (23)) indicates an exter-
nally applied magnetic eld H. The term Ed indicates the
dipolar nature of the individual magnetic nanoparticles that
produce a demagnetizing eld, also called the stray eld, and
triggers a demagnetizing energy contribution (eqn (24)), while
Edip refers to the magneto-dipolar interaction between
moments (eqn (25)). In the case of an assembly of N magnetic
nanoparticles, the energies involved are given by the following
expressions:

Eex ¼
XN
i¼1

AijVMij2Vi (21)

Ea ¼
XN
i¼1

KiVijMij2 (22)

Ez ¼
XN
i¼1

MiViH (23)

Ed ¼ �m0

2

XN
i¼1

MiHdiVi (24)

Edip ¼ �1

2

XN
i¼1

Mi

XP
jsk

3ejk
�
ejkmpj

�� mpj

Drjk3
(25)

where Ai is the exchange-stiffness constant, Mi the magnetiza-
tion vector and Hdi the demagnetizing eld of the i-th particle.
In eqn (25), mpj is the magnetic moment vector of the j-th
particle and Drjk the distance between j-th and k-th particles.
Magnetic moment vectors of particles mp are treated as point
dipoles located in the centers of closely generated packed
spheres while at the macroscale level Mi is the total magneti-
zation of individual particles.

Eqn (20) generates an effective magnetic eld Heff which
accounts for all relevant contributions to the magnetic Gibbs
© 2025 The Author(s). Published by the Royal Society of Chemistry
free energy E such as the externally applied magnetic eldH, the
demagnetizing eld Hdi, the dipolar magnetic eld and the
exchange eld. When a ferromagnetic material is placed in
a magnetic eld it's magnetization vectorMi “moves” due to the
inuence of Heff. This motion is well described by the Landau–
Lifshitz theorem70 which is expressed by the following equation:

dMi

dt
¼ �gMi �Heff (26)

This equation describes the precession of magnetization
vectorMi in an effective eld Heff. On the other hand, hysteresis
curves tell us that beyond a certain value of an applied magnetic
eld, any magnetic sample can become saturated, i.e., all
moments in the material are aligned along the eld direction
and thus, precession alone cannot describe this process. Energy
dissipation (or damping) must be included to allow for
magnetization to relax toward the saturated state. This is the
reason why Gilbert71 included a phenomenological damping
parameter in eqn (26) to express the experimentally noticeable
damping in ferromagnetic materials. Consequently, the LLG
equation is given by:

dMi

dt
¼ �gMi �Heff þ a

Ms

Mi � dMi

dt
(27)

where a is the damping parameter and g is the gyromagnetic
ratio. The resulting dynamics from eqn (27) is a damped
processional motion of magnetization vector Mi, of each
magnetic nanocomposite phase, around the effective eld.

Moreover, thermal eld is added so the effects of nite
temperature on magnetisation are considered. This is done by
including a random noise eld.72 The magnitude of the noise
eld is assumed to be the same in all three directions
(isotropic), with a zero mean. The subsequent thermal uctua-
tions are also assumed to be uncorrelated. In other words, this
assumption amounts to presuming the thermal noise to be
white, with a at power distribution in all frequencies. Mathe-
matically, these assumptions can be written as follows: hHthi =
0, hjHthj2i ¼ 2akT

gMsV
and hHth(t)Hth(t + s)i = jHthj2d(s). An impor-

tant point to stress is the time-dependence of the noise eld: the
exact magnitude of the noise eld depends on the frequency of
observation, and therefore the selection of the time-step in the
discrete simulation is critical.

When thermal agitation is active, the system has a chance to
overcome the barrier before its height is reduced to zero and the
jump has some probability of taking place at an earlier time.73

In addition, the chances for this to occur should be higher the
lower the eld rate of change, because the system spends more
time in front of the barrier to overcome, a process that is also
imposed by the magnitude of magnetic anisotropy.3 As shown
in Fig. 7, additional energy states are raised due to the thermal
interactions between particles dening an inhomogeneously
magnetized material. Nevertheless, in literature, the hysteresis
loop is considered independent of the eld rate. Thus, the
estimation of specic absorption rate values (SAR), a key
measure used for characterizing the heating efficiency of
Nanoscale Adv., 2025, 7, 4252–4269 | 4259
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Fig. 7 Schematic diagram of additional energy states emerged for
a DW magnetic nanoparticle when thermal field is activated in the
micromagnetic approach.45
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nanoparticles in MPH, from hysteresis loop area A, leads to
a direct proportionality between SAR and frequency f, revealed
through the linear relationship: SAR = A × f. However, this
relationship is far from true since, as we explained rate-
independent hysteresis is just a zero-temperature approxima-
tion, and so A should be described as a function of frequency
A(f) at higher temperatures and for low frequencies.

In74 the dynamic hysteresis loops are derived from micro-
magnetic simulations for the various frequency values and are
depicted in Fig. 8 together with the loop obtained at 0 K which is
independent on frequency. From the results is shown that there
are two frequency regimes. One low frequency regime until
z400 kHz where the hysteresis area increases with frequency
due to the increase of the phase delay in the magnetization
response. Aer this critical value of frequency, MNPs
Fig. 8 AC hysteresis loops for 30 mTmagnetic field amplitude and for
various frequencies (50–765 kHz). The largest loop corresponds to 0 K
and is independent of the frequency.35

4260 | Nanoscale Adv., 2025, 7, 4252–4269
magnetization reaches the maximum phase delay i.e. the
maximum relaxation time of spins. The whole process is
dictated by thermal phenomena. At low frequency values
thermal uctuations dominate and, thus, the magnetic
moments of MNPs need more time to surpass the anisotropy
barrier. On the other hand, at room temperature and in the
presence of an AMF, magnetic moments will overcome the
barrier before its height is decreased and the jump has some
nite probability of happening before AMF amplitude reach to
zero. The increase in frequency diminishes the temperature
inuence and induces a kind of small hardening to the MNPs
loop.

This behaviour is also illustrated in Fig. 9 through the
dependence of the coercive eld m0Hc with frequency, where Hc

is the magnitude of the reverse magnetic eld strength. The
results were also tted with eqn (16).

The SAR dependence on frequency is obtained by employing
the equation SAR = m0

Þ
M(H)dH × f where the integral gives the

hysteresis loop area. The results for 0 and 300 K are presented in
Fig. 10.

In the LF regime the exponential tting is given by: SAR = S0
× ehfwhere S0 was found equal to 70W gFe

−1 and corresponds to
the hysteresis losses of the static (zero frequency) loop and h is
a tting constant. Thus, in the LF regime the SAR (f) relation-
ship is more suitably described by an exponential trend rather
than a linear relationship usually employed in literature, and is
valid only in the HF regime.

To illustrate the temperature effect on the hysteresis loop we
show in Fig. 11 someM(H) curves for various temperatures from
0 K to 400 K with a step of 100 K and magnetic eld variations
from −30 mT to 30 mT as above. The value of frequency is now
xed at the value of 765 kHz which is a typical value used in
MPH. The M(H) curves, obtained by micromagnetic simula-
tions, in Fig. 11 illustrate the inuence of the thermal uctua-
tions on the hysteresis curves. For low-temperatures case, the
system is in the blocked state and exhibits ferromagnetic-like
hysteresis losses that originate from the overcoming of the
anisotropy energy barrier while for the high temperatures
thermal excitations are large enough to promote the reversible
Fig. 9 Dependence of the hysteresis loopwith frequency and fitting of
obtained data. The fitting curve and the corresponding equation are
shown with red color.35

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 SAR dependence on frequency for 0 and 300 K. At the low
frequencies (LF) regime and room temperature, the hysteresis loop
area is not constant with frequency and thus SAR(f) diverges from
linearity. An exponential trend is observed until the critical frequency
value of 400 kHz. Above this value, the linear trend is restored at the
high frequency (HF) regime. At 0 K a rate-independent loop results to
a linear behavior of the SAR(f) function in both regimes. Note here that
SAR is estimated in watts per iron mass which is the percentage of iron
in the magnetic nanoparticles mass. The system under study were an
assembly of 40 nm magnetite nanoparticles exposed to an AMF with
an amplitude equal to 30 mT.74

Table 2 Summary of numerical results on magnetic properties as
a function of temperature

T (K) Ms (A m2 kg−1) m0Hc (mT)

0 50 25
100 48 22
200 45 21
300 40 18
400 34 12
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jumping over the anisotropy barrier without energy losses. The
magnetic moments uctuate because of the thermal energy and
consequently uctuations are reduced the smaller the
Fig. 11 Dynamic hysteresis loops of single domain magnetite MNPs
estimated by micromagnetic simulations at various temperatures and
compared to the one observed at 0 K. The applied field amplitude and
frequency were equal to 30 mT and 765 kHz respectively. The value of
anisotropy constant was equal to 9 kJ m−3, a value also used in
analytical models as depicted in Fig. 4 for magnetite. The decrease of
hysteresis loop area and thus the decrease of hysteresis losses is
obvious with temperature increase.

© 2025 The Author(s). Published by the Royal Society of Chemistry
temperature. Thus, the physical tendency of both saturation
magnetization and coercive eld decrease with temperature
increase is observed from the simulations and coincides with
theory. Magnetization saturation and coercive eld values are
depicted in Table 2.

Another interesting plot that may be followed from the
temperature dependent hysteresis loop curves is the one for the
variation of saturation magnetization with temperature. The
temperature dependence of the magnetization, investigated by
using a combination of different experimental methods, is an
important source of information regarding the anomalies and/
or singularities linked to the dimensional connement in
magnetic nanoparticles. The deviation shown by magnetic
material if compared with its highest magnetization state is
given by the spin-wave excitation, also calledmagnon. The latter
is basically originated by the sinusoidal-type distribution of the
spin orientation states within the material, which are forming
a certain angle with respect to each other; thus, a more ener-
getically unfavorable situation of anti-parallel coupling is avoi-
ded. Departing from the spin-wave theory, Bloch proposed an
expression75 aiming to describe the thermal dependence of the
saturation magnetization Ms(T) in a bulk material,

MsðTÞ ¼ Msð0Þ½1� BTn�MsðTÞ �Msð0Þ
Msð0Þ ¼ �BTn (28)

where Ms(0) is the saturation magnetization at 0 K, n is the
Bloch exponent—originally equals to 3/2—and B is a constant
that depends on the spin-wave stiffness and, thus, on the
inverse of the exchange integral J in the following way

B ¼ 0:0587
SQ

�
kB
2JS

�n

and measured in K−n where Q is 1, 2, and 4

for single cubic, bcc, and fcc systems, respectively, and S is the
total electron spin. The exponent n = 3/2 ts well to experi-
mental results in ferromagnetic materials and some spinel
ferrites such as MnxFe3−xO4 (0.2 # x # 2).76

By taking the saturation magnetization data that occurred
from Fig. 11 and analyze them using Bloch's law and determine
the Bloch's constant and exponent, B and n respectively, directly
from the tting (B and n are le as free-tting parameters) of the
saturation magnetization to temperature plot with eqn (28) as
illustrated in Fig. 12.

The Bloch's law, given by eqn (28), indicates that the
decrease in the saturation magnetization with increasing
temperature due to spin-wave excitations is described by
a power law in T. Our data seem to follow the predicted behavior
as displayed in the plot of Fig. 12. There, the solid red line
Nanoscale Adv., 2025, 7, 4252–4269 | 4261
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Fig. 12 Saturation magnetization normalized to saturation magneti-
zation at 0 K vs. temperature at various temperatures obtained by
extracting magnetisation data from the temperature dependent
hysteresis loops resulted from our implemented micromagnetic
simulations. The continuous red line represents the fitting of the Tn

Bloch law. The exponent n value that best fits our numerical data is
equal to 2 while the Bloch constant B is found equal to 3.03 × 10−6

K−2.
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represent the t of the eqn (28) and the agreement between the
latter and numerical data is optimized (R2 = 0.995) for n = 2
a value that deviates from Bloch's law n = 3/2. In the case of
nanoparticles and clusters, some theoretical calculations have
shown that the exponent n is higher than 3/2, and reaches 2 as
a consequence of the reduction in the size of the particles.75

Going back to eqn (28), such deviations are numerically re-
ected in the temperature exponent and the B constant value,
which are increased with respect to the bulk values, indicating
a decrease in the Curie temperature of the studied system. The
main idea behind the explanation of this effect is that the lack
of full coordination at the surface of the MNPs may lead to
larger spin deviations in this region than in the central part of
the MNP. The effect of the limited number of degrees of
freedom at the surface leads to an energy gap in the spin-wave
spectrum resulting in a at magnetization curve at low
temperatures. In other words, the magnetization decreases
faster at higher temperatures in the nanoparticles than in the
bulk material, due to lacking coordination at the surface. Both
micromagnetic calculations45,77 and experimental results78 have
repeatedly shown this behavior. Bloch's constant B is also le as
a free-tting parameter, determined from the tting procedure
and found equal to 3.03 × 10−6 K−2 a value that has been
already reported in the literature for single domain ferromag-
netic nanoparticles.79

The explained methodology can be extended to optimize the
structural and magnetic properties of magnetic nanoparticles
used inMPH (crystal symmetry, grain size, anisotropy, saturation
magnetization, coercive eld).36,72,77,80–82 Since nanoparticles
synthesis, characterization and evaluation procedures can be
quite costly and time-consuming, the use of numerical simula-
tions instead of experimental measurements to rapidly and
accurately examine a large number of parameters and properties
4262 | Nanoscale Adv., 2025, 7, 4252–4269
and nally, obtain the optimum ones, comes as an advantageous
opportunity. Offered possibilities of employing modern numer-
ical methods and suitable computer soware are in position to
easily deliver a reliable prediction on the hysteresis behavior of
any system designed to operate as an MPH agent.
Discussion on rate equations and
numerical models

In the study of magnetic hyperthermia, understanding and
predicting the behavior of magnetic nanoparticles under alter-
nating magnetic elds is crucial for optimizing heating effi-
ciency. Researchers employ various modeling approaches to
describe the dynamic magnetization processes, ranging from
full-scale numerical simulations based on the Landau–Lifshitz–
Gilbert (LLG) equation to analytical approximations like the rate
equation model under the double-well potential framework.
While both approaches provide valuable insights, analytical
models offer several distinct advantages when dealing with the
physical realities of hyperthermia experiments, especially
considering the immense number of particles involved.

In a typical magnetic hyperthermia experiment, the sample
contains a massive number of nanoparticles. For instance, in
one milligram of MNPs, the number of individual particles can
exceed 1013, assuming a typical particle mass on the order of
10−22 kg. The total number of particles per unit volume can be
estimated by dividing the sample's saturation magnetization
(e.g., measured in A m−1) by the magnetic moment of a single
particle (A m2). This huge number of particles underscores
a fundamental limitation of direct numerical simulations: it is
computationally infeasible to model each particle individually.
Numerical simulations using the LLG equation (implemented
in soware like OOMMF or MuMax3) solve the time evolution of
the magnetization vector for individual or assemblies of
magnetic moments under the inuence of external and internal
magnetic elds. Thesemethods are highly accurate and account
for detailed micromagnetic interactions, including exchange
coupling, dipole–dipole interactions, thermal noise, and
anisotropy effects. However, this accuracy comes with signi-
cant computational cost:

(1) Particle scale modeling LLG simulations are generally
restricted to simulating a few particles or a small grid of
magnetic cells. Simulating 1013 particles, as in a real hyper-
thermia sample, is completely infeasible due to limitations in
memory and processing power.

(2) Statistical limitations: since LLG simulations model only
a tiny fraction of the actual system, they may not accurately
capture the collective response of an ensemble with distributed
particle sizes, anisotropies, or orientations.

(3) Neglect of thermal uctuations or approximations:
including thermal effects requires stochastic LLG formulations,
which signicantly increase computational complexity and
oen require simplications that reduce realism.

(4) No explicit particle count: these simulations oen model
a continuous magnetization distribution rather than discrete
particles. As such, they cannot explicitly incorporate the actual
© 2025 The Author(s). Published by the Royal Society of Chemistry
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number of particles, limiting their usefulness in estimating
macroscopic quantities like specic absorption rate (SAR) per
unit volume.

In the double-well approximation, the time-dependent
magnetization M(t) is obtained by solving the rate equation.
This approach offers several key advantages:

(1) Scalability: since each particle is treated independently
(under the assumption of negligible interparticle interactions),
themodel can be scaled to an arbitrary number of particles. One
can directly calculate the macroscopic magnetization by
summing or integrating over the contributions of all particles,
weighted by distributions in size, anisotropy, and orientation.

(2) Direct incorporation of particle number: unlike LLG
models, analytical models can explicitly include the number of
particles per unit volume. This allows direct estimation of
heating power or SAR by calculating:

SAR = Nsm0
Þ
M(H)dH × f

where Ns is the number of particles per sample mass in kg−1.
This feature is essential for linking theoretical models with
experimental measurements.

(3) Inclusion of distributions: analytical models can easily
accommodate realistic distributions of particle properties (e.g.,
log-normal size distribution, random orientation of easy axes,
or Gaussian anisotropy distribution). These distributions are
integrated into the nal magnetization response using statis-
tical mechanics tools, something that becomes highly complex
in LLG simulations.

(4) Faster computation: analytical solutions or numerical
integration of rate equations is many orders of magnitude faster
than LLG-based simulations, making it feasible to explore wide
parameter spaces (e.g., different eld amplitudes, frequencies,
temperatures) efficiently.

(5) Thermal effects naturally included: since the ipping
rates are based on thermal activation over energy barriers, the
role of temperature is naturally incorporated without the need
for stochastic differential equations.

Analytical models are rooted in equilibrium and nonequi-
librium statistical mechanics. The double-well system is
a prototypical example of a bistable system in statistical physics,
where the populations of each state evolve with time according
to thermally activated transition rates. This connection allows
for a principled approach to modeling macroscopic observables
like net magnetization, entropy production, or hysteresis losses,
using well-established tools. Averaging over distributions is
done through integrals of the form presented in eqn (13). Such
ensemble averaging is essential for comparison with experi-
ments where particle heterogeneity is the norm.

On the other hand, LLG simulations provide microscopic
detail and are valuable for understanding local magnetization
dynamics and complex particles interactions such as the
magnetostatic and dipolar interaction leading to strong
demagnetizing elds. Moreover, the main advantages are:

� It captures full vector dynamics including precession,
damping, and transient behavior.

� Works well at very high frequencies or short timescales.
© 2025 The Author(s). Published by the Royal Society of Chemistry
� Necessary when anisotropy is complex or eld varies non-
sinusoidally.

If researchers working in this eld aim in understanding and
optimizing magnetic hyperthermia heating efficiency, rate
equations methods are typically preferable, unless they study
effects that require full LLG dynamics such as high-speed
switching, precession-dominated regimes and most impor-
tantly strong interactions between nanoparticles.
Linear response theory

InMPH, the linear response theory (LRT) is amodel that aims to
describe the dynamic response of an assembly of small (<20
nm) superparamagnetic nanoparticles using the Néel–Brown
relaxation time, a concept that will be further analyzed below.
The starting assumption of LRT is that the magnetic system
responds linearly with the magnetic eld and its magnetization
can be put in the form M(t) = cH(t) where c is the complex
susceptibility.83 When an alternating magnetic eld of suffi-
ciently high frequency is applied, the magnetisation of
a superparamagnetic particle lags behind the applied eld. As
a result of this phase lag, the susceptibility, c = c0 − ic00 is an
imaginary quantity with the real part c0 representing the in-
phase component, and the imaginary part, c00 the quadrature
or loss-component are given by

c
0ðuÞ ¼ c0

1þ ðusÞ2 and c00ðuÞ ¼ c0us

1þ ðusÞ2 where c0 is the

equilibrium magnetic susceptibility. The equilibrium suscepti-
bility depends on the applied magnetic eld.75,84,85 A conserva-
tive approach consists in treating c0 as the chord susceptibility
represented by a Langevin function L(x) = cothx − 1/x imple-

mented in the following expression: c0 ¼ ci
3
x

�
coth x� 1

x

�

where ci ¼
�
vM
vH

�
¼ m0fMs

2V
3kT

is the initial susceptibility and f

the fraction of saturation magnetisation Ms of the magnetic
nanoparticles to the bulk magnetisation Md: 4 = Ms/Md.
Although c0 decreases with increasing frequency, the imaginary

part, c00, peaks at an angular frequency u ¼ 2pf ¼ 1
s
; where s is

the relaxation time of the particles. These relationships are
identical to the Debye spectra of polar molecules in the absence
of a constant eld. Note here that, ferromagnets exhibit
magnetic resonance at frequencies z 108 to 1010 Hz yielding
a change of sign to negative value of c0(u) and a sharp peak of
c00(u).86,87

When an external magnetic eld that provides sufficient
energy is applied to a system of superparamagnetic nano-
particles suspended in a liquid carrier, the magnetic moment of
the latter may be displaced from its preferred orientation. The
whole system of the liquid and the magnetic nanoparticles is
called magnetic uid or “ferrouid’’.88 Consequently, as the
magnetic moment returns to the equilibrium state, thermal
energy is released. There are two possible relaxation mecha-
nisms of the magnetic moment, Néel and Brownian.89 In Néel
relaxation which is associated with the anisotropy energy, the
magnetic moment alternates between parallel and anti-parallel
Nanoscale Adv., 2025, 7, 4252–4269 | 4263
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directions within the MNPs, while the physical orientation of
the particle remains xed. In the Brownian relaxation mecha-
nism, which relates to the hydrodynamic properties of the
magnetic uid, the physical orientation of the particle changes,
while the magnetic moment remains unaltered with respect to
the particle rotation axis. In the Néel mechanism, the relaxation
time, sN, is given by:63

sN ¼ s0
2

ffiffiffiffiffiffiffiffiffiffiffiffi
pkBT

KeffV

s
exp

�
KeffV

kBT

�
(29)

while Brownian mechanism the relaxation time sB is given by

sB ¼ 3Vhn

kBT
(30)

where Vh denotes the hydrodynamic volume obtained from the
hydrodynamic diameter measured, for example, through
dynamic light scattering and n the viscosity of the liquid carrier.
The hydrodynamic volume of a monodispersed nanoparticle is

given by the relationship Vh ¼
�
1þ d

R

�3

V where R is the

nanoparticle radius and d is the thickness of the surfactant.
Néel relaxation dominates over a short range of particle sizes as
the fastest process. Above a certain critical size, Brown relaxa-
tion mechanism, depicted by eqn (30) takes over. In the region
of that critical size, where both processes are equally probable,
the net relaxation time s is given by their geometric mean:37

1

s
¼ 1

sN
þ 1

sB
(31)

The energy deposition premises an AMF with reversal times
comparable to the effective relaxation time. Then, thermal
energy is deposited due to delay in the relaxation of magnetic
moment. Although both mechanisms are present in the heating
process, a transition between both mechanisms occurs when sB
= sN and depends on several parameters including the crystal
and hydrodynamic volume of the MNPs, the frequency of the AC
eld, the energy barrier and the viscosity of the medium.
Specically, Néel relaxation mechanism is dominant for smaller
particles of low anisotropy, suspended in viscous medium, at
high frequencies of the AMF, while Brownian relaxation
mechanism is favored for larger particle sizes with high
anisotropy, in a medium of low viscosity and at low AMF
frequencies. When the MNPs are immobilized in a medium, for
instance in tumor tissue, or form agglomerations, Brownian
relaxation mechanism is suppressed and Néel relaxation is the
only occurring mechanism.90 Exploitation of magnetic particles
that deposit energy through Néel relaxation mechanism is
encouraged in medical applications, since Brownian relaxation
mechanism is inuenced by the local environment, which
introduces further implications in treatment planning.10,85,91–94

The computation of power dissipation in a magnetic uid
due to susceptibility losses is accomplished by usage of ther-
modynamics theory. Rosensweig developed a model that
calculates the volumetric power dissipation rate through
analytical relationships.13,89 The model applies at low elds,
4264 | Nanoscale Adv., 2025, 7, 4252–4269
hence within the linear response regime of magnetization.
According to the rst law of thermodynamics, the internal
energy U for a system of xed density can be expressed as the
sum of the heat Q added to the system and themagnetic workW
applied on the system. For a unit volume:

dU = dQ + dW.

Assuming an adiabatic process dQ = 0 and the differential
internal energy of the system equals to the differential magnetic
work

dU = dW = H × dB (32)

where B the induced magnetic eld and H the magnetic eld
intensity within the sample. Due to collinearity of the elds the
relationship can be written in terms of magnitudes as dU=HdB
with B = m0(H + M) and by substitution in eqn (32)

DU = −m0
Þ
MdH. (33)

The magnetization M of the magnetic uid can be expressed
in terms of the complex magnetic susceptibility c = c0 − ic00.
The external magnetic eld H(t) and resulting magnetization
M(t) are given by:

H(t) = H0 cosut = Re[H0e
iut] and M(t) = Re[cH0e

iut] = H0(c
0

cosut + c00 sinut) (34)

respectively. From eqn (34) it is obvious that c0 is the in-phase
component and c00 the out-of-phase component of c. By
substitution of M(t) and H(t) from eqn (34) in eqn (33) the
following expression for internal energy is obtained:

DU ¼ 2m0H0
2c00

ð2p
u

0

sin2
utdt (35)

Only the c00 component of magnetic susceptibility also
referred as the loss component is present in eqn (35). Thus, the
time dependent magnetization will be given by the equation:95

MðtÞ ¼ c0�
1þ ð2pf sÞ2

�1=2
H0 cosð2pf sþ 4Þ (36)

here 4 is the phase difference between the two signals H(t) and
M(t) and is given by 4 = arctan(2pfs).

It has been demonstrated by Rosensweig that the volumetric
power dissipation is then given by the product of the internal
energy DU and cyclic frequency f = u/2p:

P = fDU = m0pc
00fH0

2. (37)

if we substitute the c00 relationship c00ðuÞ ¼ c0us

1þ ðusÞ2 in eqn

(37) yields the following expression for the volumetric power
dissipation corresponding to an aqueous monodispersion
assembly of magnetic nanoparticles:
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 14 Hysteresis loop for non-interacting magnetite nanoparticles
of diameter 13 nm. The applied magnetic field amplitude and the bulk
saturation magnetization are equal to 24 kA m−1 (30 mT) and 91 A m2

kg−1 (480 kA m−1). From the shape of the loop, it is revealed that the
linear relationship between magnetization and the applied magnetic
field is reasonable approximation.
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P ¼ pm0c0H0
2f

2pf s

1þ ð2pf sÞ2 (38)

Then the SAR in watt per magnetic material mass would be

given by SAR ¼ P � f

rMNPs
where f is the magnetic nanoparticles

volume fraction inside the magnetic uid and rMNPs is the
MNPs density. It is important to point out that, although
according to eqn (38) the heating efficiency depends on the
magnetic eld amplitude squared, a dependence on the
amplitude cube has been found in literature74,96,97 for higher
frequencies as it is depicted in Fig. 13. In addition, the power
dissipation and thus the SAR of theMNPs is maximized forus=
1. This condition is satised when the relaxation time of the
nanoparticles is equal to the AC eld time constant and deter-
mines the critical frequency of the system.98,99

In several articles, eqn (38) is dened as applying to “relax-
ation losses” of superparamagnetic MNPs. In these articles,
“relaxation losses” are opposed – as if it was a different process –
to the “hysteresis losses” of ferromagnetic NPs. This distinction
can lead to confusion as all the losses, whether the MNPs are in
the superparamagnetic regime or in the ferromagnetic regime
(>20 nm), are always “hysteresis losses” insofar as they are
simply given by the hysteresis loop area. By drawing the para-
metric plot (H(t), M(t)) we can nd the hysteresis loop. Basic
mathematics indicates that eqn (34) and (36) correspond to the
parametric equation of an ellipse in the (H,M) plane that forms
an angle between its long axis and the abscise axis. A typical
hysteresis loop resulted aer employing LRT to a specic MNPs
system is showing in Fig. 14. Thus, LRT is simply one model
among several that aims to calculate the hysteresis loop area
and shape when the magnetic response is linear with the
applied magnetic eld. In63 the authors suggested putting an
end to the distinction between hysteresis losses and relaxation
losses and, rather, making a distinction between different kinds
of models aiming at calculating the hysteresis area.
Fig. 13 SAR index dependence on magnetic field amplitude and
frequency of single domain MNPs. SAR data points are presented with
red and blue color and are fitted with best fitting curve (green dotted
line) for two typical frequency values used in MPH, namely 375 and 765
kHz, respectively.40

© 2025 The Author(s). Published by the Royal Society of Chemistry
In real systems a magnetic uid contains nanoparticles of
different sizes that can be reasonably described by a log-normal

distribution:72,93–96 gðRÞ ¼ 1ffiffiffiffiffiffi
2p

p
sR

exp

2
664
�ln2

�
R
R0

�
2s2

3
775 with

normalization condition
ÐN
0 gðRÞdR ¼ 1 where s is the standard

deviation, R0 the median of ln R and the mean nanoparticle

radius Rm is given by: Rm ¼ R0 exp
�
s2

2

�
: The volumetric power

dissipation �P of a polydispersion is obtained by integrating over
the distribution function: P ¼ ÐN

0 PgðRÞdR: The size distribution
of nanoparticles should be considered in the calculation of
power dissipation, in order to avoid overestimated results. The
degradation of power dissipation for increasing standard devi-
ation, implies that narrow size distributions are desired for
optimum heating efficiency.97–100 It is important to point out
that the effective relaxation time depends exponentially on the
particle volume and anisotropy in systems where Néel relaxa-
tion is the primary heating mechanism. Thus, the inuence of
both parameters on heating efficiency is very signicant.
Tailoring highly anisotropic nanoparticles allows for the tuning
of effective relaxation time on higher levels, enabling highly
efficient systems at lower frequencies and smaller sizes.101–103

Though LRT becomes inaccurate under strong interparticle
interactions and spatial magnetization complexities, it offers
simplicity and speed for estimations and evaluations in SPM
systems where dipolar interactions do not dominate.
Conclusions

A thorough understanding and accurate assessment of the
intrinsic magnetic properties of nanoscale systems are crucial
for both fundamental research and application-driven design.
Nanoscale Adv., 2025, 7, 4252–4269 | 4265
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In this context, the magnetic behavior of individual nano-
particles can be effectively described using simplied analytical
models, such as the macrospin approximation and double well
(DW) models. These approaches assume that the entire nano-
particle behaves as a single giant magnetic moment, capable of
switching between two energy minima (metastable states)
separated by an energy barrier. The thermally activated
magnetization reversals between these states, characterized by
saddle points in the energy landscape, provide a theoretical
basis for estimating the magnetization of a single nanoparticle.
Additionally, numerical techniques, such as Monte Carlo
simulations, are employed to rene these models and extend
their predictive capabilities.

However, when dealing with many-body systems, where
interactions between multiple nanoparticles become signi-
cant, analytical energy minimization techniques are no longer
sufficient. Instead, micromagnetic simulations and dynamical
models are required to capture the complex magnetization
dynamics. A widely used approach is the LLG equation, which
governs the precessional motion of magnetization in interact-
ing nanoparticle systems. By utilizing micromagnetic simula-
tion soware—such as OOMMF, MuMax, NMAG, and
MicroMagus—hysteresis loops of nanoparticle assemblies can
be computed, enabling the evaluation of their collective
magnetic properties.

In the case of MPH applications, the presence of an exter-
nally applied AMF introduces additional complexity to the
magnetization dynamics. To optimize heating efficiency for
therapeutic use, the arrangement and interactions of nano-
particles under a dynamic magnetic eld must be carefully
examined. Molecular dynamics simulations complement
micromagnetic models by providing insights into nanoparticle
alignment and aggregation under eld inuence, which directly
affects their heating performance. Moreover, in LRT, the
dominant relaxation mechanism depends on factors such as
nanoparticle size, magnetic anisotropy, and surrounding
medium viscosity. Optimizing these relaxation processes is
essential to maximize heat dissipation while ensuring efficient
energy absorption under clinical operating conditions during
a magnetic hyperthermia scheme.

Due to the inherent complexity of magnetization dynamics
in these systems, only relatively simple cases—such as single-
domain nanoparticles described by the macrospin approxima-
tion—can be solved analytically. In contrast, micromagnetic
simulations offer a more realistic and comprehensive repre-
sentation by incorporating all relevant energy contributions,
including exchange energy, anisotropy energy, Zeeman energy,
magnetostatic interactions, and dipolar interactions. This
enables precise predictions of the spatial and temporal evolu-
tion of magnetization under external stimuli.

Micromagnetic modeling continues to be an invaluable tool
for advancing nanoscale magnetic research, bridging the gap
between theoretical predictions and experimental observations.
The future of numerical simulations in this eld lies in the
development of multiphysics approaches, integrating magne-
tization dynamics with additional physical processes such as
heat transfer, uid dynamics, and mechanical stress effects.
4266 | Nanoscale Adv., 2025, 7, 4252–4269
While current soware solutions are making strides toward
such integration, a fully optimized, general-purpose multi-
physics package remains an ongoing challenge. Enhancing
user-friendly interfaces will also be essential for facilitating the
use of micromagnetic simulations in both fundamental
research and applied technologies.

Looking ahead, numerical simulations are expected to
further expand their role as the primary tool for designing and
optimizing magnetic nanoparticles, particularly for biomedical
applications such as MPH. The increasing interest in nanoscale
and many-body magnetic systems underscores the necessity of
simulation-driven design, enabling the tailoring of magnetic
properties for next-generation nanoparticle-based therapies.
Beyond the current state-of-the-art, future efforts are antici-
pated to focus on the development of comprehensive multi-
physics frameworks capable of simultaneously modeling
magnetization dynamics, heat transfer, uid ow, and even
biological interactions at cellular and tissue levels. This holistic
approach will allow for the accurate prediction of nanoparticle
behavior under realistic physiological conditions, bridging the
gap between theoretical models and clinical applications.
Furthermore, coupling micromagnetic simulations with exper-
imental feedback loops and machine learning techniques is
expected to signicantly accelerate the discovery and optimi-
zation of MNPs, delivering customized solutions tailored to
specic patient needs and tumor microenvironments. Ulti-
mately, such advances will not only enhance the therapeutic
efficiency and safety of MPH treatments but will also open new
pathways in the broader eld of nanomedicine, establishing
numerical simulations as a cornerstone in the rational design of
multifunctional nanomaterials for biomedical innovation.
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H. Brząkała, J. Mol. Liq., 2020, 304, 112734.

22 K. Vamvakidis, N. Maniotis and C. Dendrinou-Samara,
Nanoscale, 2021, 13, 6426–6438.

23 P. Appa Rao, K. Srinivasa Rao, T. R. K. Pydi Raju,
G. Kapusetti, M. Choppadandi, M. Chaitanya Varma and
K. H. Rao, J. Alloys Compd., 2019, 794, 60–67.

24 M. Vicentini, R. Ferrero and A. Manzin, Int. J. Therm. Sci.,
2024, 203, 109151.

25 Suriyanto, E. Y. K. Ng and S. D. Kumar, Biomed. Eng. Online,
2017, 16, 36.

26 S. Ruta, R. Chantrell and O. Hovorka, Sci. Rep., 2015, 5, 1–7.
27 P. Allia, G. Barrera and P. Tiberto, Phys. Rev. B, 2018, 98, 1–

14.
28 S. Erokhin, D. Berkov, N. Gorn and A. Michels, Phys. Rev. B:

Condens. Matter Mater. Phys., 2012, DOI: 10.1103/
PhysRevB.85.024410.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl,
A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov,
R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman,
E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska,
T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals,
A. W. Senior, K. Kavukcuoglu, P. Kohli and D. Hassabis,
Nature, 2021, 596(7873), 583–589.

61 S. Chikazumi, Physics of Ferromagnetism, International
Series of Monographs on Physics, Oxford University Press,
2nd edn, 2009, ISBN-13978-0199564811.

62 N. A. Usov and Y. B. Grebenshchikov, J. Appl. Phys., 2009,
DOI: 10.1063/1.3173280.

63 J. Carrey, B. Mehdaoui and M. Respaud, J. Appl. Phys., 2011,
109, 083921.

64 R. Hergt, R. Hiergeist, I. Hilger, W. A. Kaiser, Y. Lapatnikov,
S. Margel and U. Richter, J. Magn. Magn. Mater., 2004, DOI:
10.1016/j.jmmm.2003.09.001.

65 R. Hergt, R. Hiergeist, M. Zeisberger, D. Schüler, U. Heyen,
I. Hilger and W. A. Kaiser, J. Magn. Magn. Mater., 2005, 80–
86.

66 L. M. Lacroix, R. B. Malaki, J. Carrey, S. Lachaize,
M. Respaud, G. F. Goya and B. Chaudret, J. Appl. Phys.,
2009, DOI: 10.1063/1.3068195.

67 B. Mehdaoui, A. Meffre, L. M. Lacroix, J. Carrey, S. Lachaize,
M. Gougeon, M. Respaud and B. Chaudret, J. Magn. Magn.
Mater., 2010, DOI: 10.1016/j.jmmm.2010.05.012.

68 J. P. Fortin, F. Gazeau and C. Wilhelm, Eur. Biophys. J., 2008,
DOI: 10.1007/s00249-007-0197-4.

69 W. Brown, Micromagnetics, Wiley, New York, London, 1963.
70 L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion, 1935,

8, 153.
71 T. L. Gilbert, Phys. Rev., 1955, 100, 1243.
72 T. Schre, J. Fidler, D. Suess, W. Scholz and V. Tsiantos,

Handb. Adv. Magn. Mater., pp. 128–146.
73 G. Bertotti, Hysteresis in magnetism: for physicists, materials

scientists, and engineers, Academic press, 1998.
4268 | Nanoscale Adv., 2025, 7, 4252–4269
74 N. Maniotis, AIP Adv., 2023, 13(6), 065122.
75 N. Modaresi, R. Afzalzadeh, B. Aslibeiki, P. Kameli,

A. Ghotbi Varzaneh, I. Orue and V. A. Chernenko, J. Magn.
Magn. Mater., 2019, 482, 206–218.

76 M. M. Leiva, S. Larumbe, A. V. Martinez, M. Monteseŕın,
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