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Insights from protein frustration analysis of BRD4–
cereblon degrader ternary complexes show
separation of strong from weak degraders†
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PROteolysis TArgeting Chimeras (PROTACs), also known as ligand-directed degraders (LDDs), are an

innovative class of small molecules that leverage the ubiquitin–proteasome system to induce the

degradation of target proteins. Structure based design methods are not readily applicable for designing

LDDs due to the dynamic nature of the ternary complexes. This study investigates the dynamic properties

of five LDD-mediated BRD4–cereblon complexes, focusing on the challenges of evaluating linker efficiency

due to the difficulty in identifying suitable computational metrics that correlate well with the cooperativity

or degradation propensity of LDDs. We uncovered that protein frustration, a concept originally developed

to understand protein folding, calculated for the residues in the protein–protein interface of the LDD-

mediated ternary complexes recapitulate the strength of degradation of the LDDs. Our findings indicated

that hydrophobic residues in the interface are among the highly frustrated residues pairs, and they are

crucial in distinguishing strong degraders from weak ones. By analyzing frustration patterns, we identified

key residues and interactions critical to the effectiveness of the ternary complex. These insights provide

practical guidelines for designing and prioritizing more efficient degraders, paving the way for the

development of next-generation LDDs with improved therapeutic potential.

Introduction

PROteolysis TArgeting Chimeras (PROTACs), also known as
ligand-directed degraders (LDDs), are an innovative class of
therapeutics that induce the degradation of target proteins
by harnessing the ubiquitin–proteasome system.1–4 LDD
molecules facilitate the degradation of a protein of interest
(POI) by recruiting an E3 ubiquitin ligase, leading to
ubiquitin-mediated proteasomal degradation of the POI.
These heterobifunctional molecules consist of two binding
motifs connected by a linker, one binding the POI and the
other binding the E3 ligase. Unlike traditional inhibitors
that simply block protein function, LDDs offer a
mechanism for complete target protein removal. LDDs have

shown promise in treating diseases such as cancer,
neurodegenerative disorders, and infectious diseases.5–7

Recent advancements have been made in the computational
modeling of the ternary complexes formed by the LDD with
the POI and the E3 ligase, using molecular docking,
molecular dynamics (MD) simulations, and other in silico
techniques to predict the formation and stability of the
ternary complexes necessary for effective protein
degradation.8–10 These studies have facilitated the
identification of potential LDD candidates and have helped
in optimizing their structures for enhanced efficacy and
selectivity.11

Despite these advancements, several challenges remain in
the development of LDDs. One such challenge is the
impediment in using the conventional structure-based ligand
design methods using crystal structures of the ternary
complexes. This is because LDD ternary complexes are very
dynamic and the challenge includes the design of efficient
linkers that would balance the ternary complex stability with
the catalytic efficiency of ubiquitin transfer. Virtual screening
and structure-based drug design have played a crucial role in
addressing these issues by enabling the rapid evaluation of
large compound libraries and predicting the interactions
between LDDs or molecular glues and their targets.11–13

However, a fast and efficient computational tool to calculate
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Fig. 1 Structure and dynamics analysis of LDD-mediated BRD4–cereblon complexes. In this figure, CRBN stands for cereblon. A) 2D structures of
the five LDDs under study. B) 3D structure overlay of the five complexes, aligned by CTD. Only BRD4 and CTD are shown, with all LDDs hidden for
clarity. C) 3D structure overlay of the five complexes, aligned by NTD and HBD. The whole protein is shown, with all LDDs hidden for clarity. D) 3D
structure of L2 and L3 molecules in the context of the BRD4–CTD interface. E) Five equally spaced conformations in the PC1 space extracted from
principal component analysis (see Methods) of the aggregated trajectories L1, L2, L3, and L5 (middle panel) and L4 (right panel). The perspective of
the protein structure is shown in the left panel. F) The contour map of the conformational ensemble of all the LDD complexes projected in the
PC1 and PC2. G) Plot of conformational entropy versus logDC50 for the five LDD complexes.
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properties that would evaluate the degradation efficiency
(DC50) of LDDs ahead of synthesis is still lacking.

BRD4 (bromodomain-containing protein 4) is a pivotal
target in LDD studies due to its role in regulating gene
expression by binding to acetylated histones. It is implicated
in various cancers, making it an attractive therapeutic
target.14,15 Studies have shown that LDD-mediated
degradation of BRD4 leads to significant antitumor activity,
highlighting its therapeutic potential.16–18 The well-
characterized nature of BRD4, along with its established
interactions with E3 ligases, and the availability of several
crystal structures of BRD4-LDD-cereblon complexes, makes it
an ideal system to study LDD ternary complex dynamics and
its mechanisms. In this study using the BRD4-LDD-cereblon
complex structures in combination with molecular dynamics
(MD) simulations we have identified computational
properties of protein–protein interactions and their
correlation to the degradation efficiency of LDDs.

Frustration is a concept originally developed to
understand protein folding, referring to the presence of
conflicting interactions within a protein that prevent it from
reaching a single, well-defined energy minimum.19–21 This
concept has been extended to study protein–protein
interactions (PPIs), where it helps identify regions of
structural flexibility and functionality.22,23 In this study, using
the crystal structures of the BRD4–cereblon with 5 different
LDDs as a test system,24 we showed that residue pairs that
are in a less optimized energy state or “frustrated state” in
the interface between BRD4 and cereblon recapitulate the
activity of the LDD in the ternary complex towards targeted
degradation (DC50). By analyzing the frustration patterns
within the PPI interface, we have identified key residues and
interactions that contribute to the efficiency of LDD-induced
degradation, that could potentially guide the design of more
effective degraders.

Results
Structural analysis of BRD4–cereblon-LDD complexes

There are only five LDDs with ternary complex structures for
the BRD4–cereblon pair.24 In this study we have used
extensive molecular dynamics simulations totaling to 6 μs for
each of the five LDD ternary complex to study the dynamics
of the five LDD ternary complexes and calculated properties
from the dynamics trajectories with the goal of being able to
distinguish a strong LDD from a weak LDD. The five LDDs
used in this study are shown in Fig. 1A. We refer to the five
LDDs as follows: L1 (from PDB: 6BN9, dBET70, DC50 ∼ 5
nM), L2 (from PDB: 6BOY, dBET6, DC50 ∼ 10 nM), L3 (from
PDB: 6BN7, dBET23, DC50 ∼ 50 nM), L4 (from PDB: 6BNB,
dBET57, DC50 ∼ 500 nM), and L5 (from PDB: 6BN8, dBET55,
DC50 ∼ 1800 nM) (https://doi.org/10.1038/s41589-018-0055-y).
The degradation values are taken from literature.24 We
categorize the five LDDs into strong degraders (L1, L2, L3)
and weak degraders (L4, L5) based on their DC50 values. All
five LDDs have the same cereblon binder (R3 in Fig. 1A) but

have different BRD4 warheads (R1 or R2 in Fig. 1A). The five
LDDs differ mainly in their linker chemistry. The strong
LDDs (L1, L2, L3) all have an octyl chain as the linker, but
they are connected differently to the BRD4 warhead (enolate
group in R1 or methyl ester group in R2) or cereblon ligand
(amine or carbamate linkage). The two weak LDDs differ
primarily in linker length and chemistry: L4 has a very short
alkyl linker, while L5 has an eight unit ethylene glycol chain,
placing them at opposite ends of the linker length spectrum.
Hereafter in this paper, we will refer to the entire ternary
complex as the L* complex (where * goes from LDD 1 to 5)
and the LDD molecule as the L* molecule.

Because of the different linker chemistry, there are
observable differences in the LDD ternary complex structures.
In this manuscript, we only considered the residues that are
resolved in all the complexes of the BRD4 domain, cereblon
C-terminal domain (CTD), N-terminal domain (NTD), and
helical bundle domain (HBD),24 ensuring that all systems
have the same number of amino acids and comparable.
Aligning the crystal structures of all the complexes by the
CTD of cereblon, we observed a distinct orientation of BRD4
in L4 complex that is different from the rest of the complexes
(Fig. S1†). While L1, L2, L3, and L5 complexes have a highly
similar CTD–BRD4 orientation, in L4 complex, the BRD4 flips
to a different direction (Fig. 1B and S1†). When aligned by
the HBD and NTD of cereblon, we notice that the CTD in L4
complex is positioned very differently compared to the other
four LDDs. The CTD in L4 complex is far away from the NTD
(Fig. 1C). This could be due to an artifact in the high salt
crystallization conditions used for crystallization.24 This
could also be due to the shorter linker in L4.

It should be noted that only the L2 and L3 complexes have
the LDD molecule resolved in the protein–LDD complex
structures (Fig. 1D). In contrast, L1, L4, and L5 complex only
have the proteins resolved, but the LDD molecules were not
resolved in the X-ray structure. To prepare the structures for
the dynamics study, we modeled the unresolved LDD
molecules into the resolved protein complex. We modeled
just the LDDs, L4 and L5 molecules using L2 molecule as a
template, and L1 molecule using L3 molecule as a template
(see Methods), because they share the same BRD4 warhead
(Fig. S2†). Additionally, the modeled systems and the
template systems show only minor differences in the root
mean square deviation (RMSD) in coordinates in the warhead
binding region (Fig. S3†). This indicates that even if the LDD
molecules are not resolved in the modeled system, the
warheads should bind in a similar manner; otherwise, we
would expect a highly different warhead binding region.

Dynamics and flexibility of LDD-mediated BRD4–cereblon
complexes

Due to the different conformation of the L4 complex, many
computational metrics can easily distinguish L4 from L1, L2,
and L3. However, the L5 complex is highly similar to the
strong LDD complexes, making it particularly challenging to
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distinguish L5 from L1, L2, and L3. However, the L5 complex
is like the strong LDD complexes, making it a major
challenge to separate L5 from L1, L2, and L3. Starting from
the crystal structures of the ternary complexes with L1 to L5
we performed 5 runs of MD simulations totaling to 6 μs for
each system. To understand the domain motion in the
dynamics of these complexes we performed principal
component analysis (PCA) (see Methods for details). The
dynamics of LDDs and LDD-mediated BRD4–cereblon ternary
complexes exhibit distinctly different motion in the MD
simulations. Overall, the L4 complex shows a very distinct
global motion compared to the other four complexes. The
dominant motion in the L4 complex is the relative motion
between BRD4–CTD and NTD–HBD domains (Fig. 1E right).
In contrast, in the other four LDD complexes, the dominant
motion occurs between BRD4 and cereblon (Fig. 1E middle).
L4 makes contacts only with the CTD and not the NTD
domain of cereblon and hence does not stabilize the closed
domain conformation of cereblon. Therefore, the flexibility of
the L4 bound ternary complex primarily arises from the
relative domain motion between the NTD–CTD domains
within cereblon.

The flexibility of the L4 complex is higher than that of the
other four LDD complexes, as evidenced by higher RMSD in
coordinates (Fig. S4†) and a wider spread of the
conformations in the PC space (Fig. S5†). The L5 complex
also shows distinctly displaced ensemble of conformations
compared to L1, L2 and L3 complexes in the PC space
perhaps due to the long flexible linker (Fig. 1F). Focusing on
the LDD molecules themselves, the L4 molecule has the
lowest flexibility as seen in the RMSD versus time plots, due
to its short linker, while the L5 molecule has the highest
flexibility due to its longest linker (Fig. S6†). We then
calculated the conformational entropy using the populations
of the different microstates in the PC landscape. The
conformational entropy calculated from the populations of
the various conformations (see Methods), cannot distinguish
strong and weak LDD complexes (Fig. S7†). However, the
entropy of the residues in the BRD4–CTD protein–protein
interface can clearly separate strong from weak LDD
complexes (Fig. 1G). This indicates that protein interface
plays a critical role in recapitulating the strength of LDDs
rather than the overall properties of the ternary complexes.

Evaluating protein frustration in LDD-mediated BRD4–
cereblon complexes

Since the properties of the protein–protein interface (PPI) in
the ternary complexes more closely recapitulate the
effectiveness of the LDDs we turned our attention to studying
the interface more in detail. Protein frustration is an
increasingly recognized concept when discussing PPIs.25

Originally developed to study protein folding, frustration
occurs when residue interactions within a protein or between
proteins are in a sub-optimal energy state. Previous studies
have shown that although the overall protein might be in an

energy optimal state, structural regions and/or residue pairs
might be in a sub-optimal energy state. Such “frustrated
residue pairs” in a protein structure are typically in the active
site or on the surface of proteins where other proteins couple
and form complexes.20 Recent work has shown that residues
in the ligand binding sites can be frustrated.23 In this study,
to understand how frustration relates to effectiveness of
LDDs, we calculated the mutational frustration26 for every
residue pair using the Frustratometer27 software for the
crystal structures of the ternary complexes and also for all
the MD snapshots from the trajectories of the 5 ternary
complexes.

Frustratometer classifies residue pairs as highly, neutrally,
or minimally frustrated based on pair-wise interaction
energies compared to mutations at the same position. For a
residue pair, if the wild type (WT) energy is more favorable
than most mutations (with a Δ(WT-Mut) Z-score less than
−1), the pair is considered minimally frustrated. Conversely,
if the WT energy is less favorable than most mutations (with
a Δ(WT-Mut) Z-score greater than 1), the pair is highly
frustrated. If the WT energy is close to the average of all
mutations (with a Δ(WT-Mut) Z-score between −1 and 1), the
pair is neutrally frustrated.

We calculated the number of highly frustrated residue
pairs in the POI–E3 interface in the ternary complexes. For
each LDD complex, we calculated the percentage of the
highly frustrated residue pairs to the total number of residue
pairs in the BRD4–cereblon interface (Fig. 2A), for each MD
simulation snapshot. The interface residue pairs come from
both inter-protein (BRD4–cereblon) or intra protein (within
BRD4 or within cereblon, but both residues of the pair are in
the interface). We then calculated the average of this
percentage over MD snapshots. This is defined as the
frustration level.

As shown in Fig. 2B, the PPI frustration level clearly
separates strong LDD complexes from weak ones. The strong
LDDs (L1, L2, and L3) show a more frustrated PPI compared
to weak LDDs (L4 and L5). This suggests that frustration
values at the PPI calculated using a conformational ensemble
is a computational metric that can be used to sort strong
LDDs from weak LDDs prior to synthesis, in cases with a
high confidence model of the ternary complex.

For an unknown set of degraders, we came up with a
thumb rule to distinguish the strong ones from the weak. We
plotted the distribution of the number of trajectories that are
within a certain frustration level range in the PPI as shown in
Fig. S8.† The Gaussian kernel density fit shown in black in
the figure, contains three peaks. The boundary between weak
and strong is ∼0.4 for this BRD4:CRBN system. However, this
cutoff value in frustration level may not apply for other target
protein or E3 ligase ternary complexes. For an unknown case,
we propose that the LDDs under the tallest peak on the high
frustration level are predicted to be strong and can be
prioritized for testing.

To identify the location of highly frustrated interactions
within the system, we mapped the top three persistently
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highly frustrated residue contacts (based on the number of
MD snapshots that they showed frustration in, across
multiple MD simulations) onto the structures (Fig. 2C and D,
S9†). The 3 strong LDD systems (L1, L2, L3) share the same
top 3 persistently highly frustrated pairs, which are C:P352–
B:W81, C:P352–B:Q78 and B:Q78–B:W81. In contrast, the two
weaker LDD systems show variations. In L4 ternary complex,
BRD4 binds to cereblon in a different orientation compared
to the other four LDD systems, resulting in a different set of
top three persistently highly frustrated contacts: B:K91–B:
N93, C:S396–B:N93 and C:Q390–C:S396. The L5 ternary
complex, however, shows a binding conformation like the
three strong LDD systems and shares two of the top three
persistent highly frustrated pairs with them: P352-W81 and
P352-Q78. The third pair for L5 is B:K155–C:G151. To
quantitatively assess the protein–protein interaction residues
that distinguish between strong and weak LDD complexes,
we calculated the p-value of the frequency of highly frustrated
residue interactions between the strong group (L1, L2, L3)
and the weak group (L4, L5) for each contact pair. Two
persistent interactions (frequency >70% in at least one
system) were identified as significantly different, with a

p-value less than 0.05, as shown in Fig. 2E. One residue pair,
C:P352 and B:W81 (C indicates from cereblon and B for
BRD4), is highly frustrated in strong LDD complexes (82–
86%) and less so in weak LDD complexes (60% in L5
complex). It should be noted that although C:P352 and B:
W81 is in the top 3 persistently frustrated residue pairs in L5,
its frequency is still far less (61%) in the L5 LDD complex
compared to strong LDD L1 (89%), L2 (89%), L3 (91%)
complexes. Another pair, B:W81 and B:Q78, may also
potentially distinguish the two categories but with less
separation (85–90% in strong LDD complexes and 74% in L5
complex). In the 3D structure (Fig. 2D and S9†), we observed
that B:W81 is sandwiched between the cereblon ligand and
the BRD4 warhead of the LDDs, while C:P352 and B:Q78 are
immediately around this region.

To further explore the impact of LDD molecules on the
protein interface, we calculated the contact frequency—
defined as the percentage of MD simulation snapshots where
two residues are in contact—between the LDD and the
protein. The contacts involving the two binding moieties of
the LDD (Fig. S10A and B†) and the linker of the LDD
(Fig. 2F) were analyzed separately. On the contact heatmaps,

Fig. 2 Frustration in the BRD4-LDD-cereblon complex. In this figure, CRBN stands for cereblon. A) A 2D scheme to show the PPI region (red
curve) considered for frustration calculation in this study. B) PPI frustration level comparison among the five LDDs complex. P-Value for
significance: L1–L4: 0.0003; L2–L4: 0.001; L3–L4: 0.004. L1–L5: 3.8 × 10−10; L2–L5: 4.3 × 10−9; L3–L5: 6.9 × 10−8. C) The top 3 persistent (in terms of
frequency in MD simulations) highly frustrated contact pairs in L1 shown as cartoon. D) The top 3 persistent (in terms of frequency in MD
simulations) highly frustrated contact pairs in L1 mapped on the 3D structure. The short black lines show the persistent highly frustrated contact
pairs. BRD4's cartoon and sidechains are in pink. Cereblon's cartoon and sidechains are in grey. E) Heatmap of frequencies of highly frustrated
residue pairs in the BRD4–cereblon interface and between PPI residue pairs. Pairs that are shown here are those with significant difference (p value
< 0.05) between strong and weak LDD system and frequency greater than 70% in at least one system. F) Contact frequency between LDDs' linker
and protein residues, with contact frequency greater than 70% in at least one system. B stands for BRD4. G) Proposed mechanism scheme to
explain how LDD linker affects PPI frustration. Dashed line refers to LDD linker-protein residue contact. Solid lines refer to protein residue
frustration.
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only residues showing significant differences in contact
frequency between strong and weak LDD systems are
displayed. For residues that are in contact with LDD's binding
moiety (Fig. S10A and B†), B:F83, B:V87 and C:N351 exhibit
more persistent interactions with strong LDDs compared to
weak ones. The heatmap for LDD linker-protein contacts
(Fig. 2F) indicates that W81 in BRD4 consistently contacts the
linker in strong LDD complexes, but to a lesser extent in weak
LDD complexes. Combination of frustration analysis and
LDD-protein contacts, shows that the linker of strong LDDs
form more stable interactions with W81 on BRD4 compared
to weak LDDs. This suggests that strong LDDs may lead to
more persistently highly frustrated pairs of C:P352–B:W81
and B:Q78–B:W81 than observed in weak LDDs (Fig. 2G).

Differentiating strong and weak LDD complexes through
hydrophobic patch integrity and water energy profiles

The residue contact frequency in the PPI (Fig. S10C†), shows
significant difference between strong and weak LDDs. There
are several hydrophobic residues located in the cereblon:
BRD4 interface, including B:L148, B:M149, C:F102, C:F150, B:

F79, C:P352 (Fig. S10C†). These hydrophobic residues form a
tight hydrophobic patch in the L1 ternary complex as shown
in Fig. S10D.† The results show the critical role of
hydrophobic residues and their interactions in distinguishing
strong from weak LDDs. This suggests that water molecules
may significantly influence PPIs, potentially affecting the
efficiency of LDDs as detailed in this section.

To evaluate the effect of the entry of water into the PPI
and LDD binding site, we calculated the water occupancy
map using the VolMap tool from VMD (see Methods). As
shown in Fig. 3, the hydrophobic patch of residues formed
by F102 and F150 from cereblon with F79 from BRD4 shows
no persistent water molecules during MD simulations.
Additionally, there is another hydrophobic patch around
residue W81 in BRD4 with the aromatic groups of the
cereblon ligand and the BRD4 warhead (Fig. 3A left). The
same trend is observed in the L2 and L3 complexes (Fig.
S11A†). However, in the L5 complex, although a similar
hydrophobic patch F102 (cereblon)–F79 (BRD4)–F150
(cereblon) exists, the hydrophobic patch formed by the W81
with the aromatic moieties of the LDD is broken
(Fig. 3A right). In the L4 complex, there is no hydrophobic

Fig. 3 Water plays a critical role in the interface of the ternary complexes. A) Water occupancy <1% over simulations in the hydrophobic region
for L1 (left) and L5 (right). B) Water energy for one frame from the L5 simulation, zooming in on the highlighted water energy around W81. C)
Counting the number of waters around W81, using 3 angstrom as the cutoff. P-Value for significance: L1–L4: 1.1 × 10−10; L2–L4: 2.3 × 10−15; L3–L4:
5.4 × 10−17. L1–L5: 2.1 × 10−5; L2–L5: 1.9 × 10−7; L3–L5: 2.7 × 10−10. D) Residue–residue packing score (RRCS) of the hydrophobic core formed by C:
F102–B:F79–C:F150 hydrophobic patch. P-Value for significance: L1–L5: 0.004; L2–L5: 2.8 × 10−5; L3–L5: 8 × 10−7.
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patch observed around the LDD linkers, and no hydrophobic
patch formed by F102 (cereblon)–F79 (BRD4)–F150 (cereblon)
due to the different orientation of BRD4 (Fig. S11A†). For L4,
the previously described difference in the orientation of
BRD4 with respect to cereblon prevents the formation of the
same hydrophobic path observed in other complexes.
Instead, the L4 complex stability relied on the short linker
and surrounding residues. In short, the weak L4 and L5 LDD
complexes have less hydrophobic residues in PPI, while the
strong LDD complexes have two hydrophobic patches in PPI.

Is water within these hydrophobic patches energetically
unfavorable? To answer this question, we calculated the
water energy using the Maestro water map module (see
Methods for details). The results confirm that water
molecules around hydrophobic patches have unfavorable
energy (shown as red spheres Fig. 3B). We counted the total
number of waters in both hydrophobic patches and found
significantly more water around B:W81 in the L4 and L5
complexes (Fig. 3C), which could distinguish weak LDD
complexes from the strong ones. However, the number of
water molecules in the F102–F79–F150 hydrophobic patch
cannot significantly separate the L5 complex from strong
LDD complexes (Fig. S11B†), indicating that even in the weak
LDD complex, water will not penetrate the hydrophobic core
and destabilize the PPI.

Although there is no significant difference in the water
numbers in the F102–F79–F150 hydrophobic core, the
residue packing in this hydrophobic core is weaker in the L5
complex (Fig. 3D). We analyzed the packing between residues
in BRD4 and cereblon using a program called residue–
residue contact score (RRCS).28 RRCS evaluates the packing
efficiency between two residues by summing up the distances
between every possible pair of non-hydrogen atoms from the
two residues. This difference in packing suggests that the
F102–F79–F150 hydrophobic patch is indeed less well-packed
in the L5 complex, although not to the degree that would
allow water penetration. Based on the analysis of the water
profile, we conclude that strong and weak LDD complexes
can be separated based on their ability to maintain the
hydrophobic patches in the PPI.

Discussion

Our data suggest a confluence of multiple mechanisms
underlying the degradation efficiency of LDDs. A strong LDD
with high degradation efficiency must maintain a proper
hydrophobic interface between BRD4 and cereblon, while a
weak LDD with lower degradation efficiency may exhibit a
less hydrophobic PPI due to various factors as illustrated in
the scheme in Fig. 4.

The linker allows for proper rotation and flexibility,
enabling the warheads and E3 ligase ligand to pack with the
ring of W81 forming the ‘LDD-B:W81 hydrophobic patch’.
Additionally, the linker must be sufficiently extended so that
BRD4 and cereblon can form the ‘C:F102–B:F79–C:F150
hydrophobic patch’. If the linker is not extended enough and
lacks flexibility, as seen in the L4 complex, it forces BRD4
into an orientation relative to cereblon that causes C:F102,
C:150, and B:F79 to point in different directions, thus
breaking the C:F102–B:F79–C:F150 hydrophobic patch.
Consequently, the BRD4–cereblon PPI is primarily
maintained by the LDD linker and a few surrounding
residues, leading to a worse DC50.

Conversely, if the linker is too extended and very flexible,
as in the L5 complex, while the C:F102–B:F79–C:F150
hydrophobic patch can still form, albeit with less stability,
the linker is too flexible to pack B:81 between the two
warheads, thus disrupting the LDD-B:W81 hydrophobic
patch. As a result, the BRD4–cereblon PPI is mainly
maintained by the C:F102–B:F79–C:F150 hydrophobic patch
and lacks support from the LDD-B:W81 hydrophobic patch,
also leading to a worse DC50.

In summary, our work has identified that residue pair
frustration in the interface cereblon and the protein of
interest recapitulates the degradation efficacy of LDDs. This
metric is new to the LDD field and can be used to prioritize
synthesis of multiple LDDs. By highlighting the importance
of hydrophobic patches and their role in maintaining proper
cereblon–BRD4 interactions, we provide valuable insights
into the structural and dynamic requirements for effective
LDDs. This study not only advances our understanding of

Fig. 4 Proposed mechanism scheme to explain the degradation efficiency of LDDs. CRBN stands for cereblon.
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LDD-mediated degradation but also offers practical
guidelines for designing more efficient degraders in future
research. These findings pave the way for developing next-
generation LDDs with improved therapeutic potential.

Methods
Structure preparation and simulation setup

The cereblon-LDD-BRD4 ternary complexes crystal structures
were downloaded from the protein data bank (PDB) (ID: L1 –

6BN9, L2 – 6BOY, L3 – 6BN7, L4 – 6BNB, L5 – 6BN8). To save
computational time, DDB1 chain was deleted. Cereblon's
residue 44–63 and 424 to 427 were deleted. Because in 6BNB,
these segments are not resolved. The missing residue on
cereblon (210–218) were modeled using 8CVP as template.
For 6BN9, 6BNB and 6BN8, the LDDs are missing in the
crystal structure. To model the ligand, 6BN7 was used as
template for 6BN9. 6BOY was used as template for 6BNB and
6BN8. The template was selected based on the chemical
similarity of LDD. The ligands were modeled by overlaying
protein and rebuilding the linker of the LDD. Minimization
of the ligand was performed in Maestro after modeling. The
ternary complex was prepared using the Maestro Protein
Preparation Wizard module. Capping groups were added on
the termini. SelenoMET was converted to MET. For 6BN8,
BRD4–A145 was mutated back D145 (it is D145 in other 4
structures).

LDD molecules were saved in mol2 format for
parameterization. Minimization of the LDD was performed
using MacroModel in Maestro using OPLS4 as forcefield. The
PRCG29 method and 0.05 convergence threshold were used
for minimization. LDD forcefield parameters were derived
using the Antechamber module from AmberTools 23.30

Partial charges (atomic electrostatic potential charges) were
calculated using the Jaguar31 module in Maestro. For Jaguar,
HF and 6-31G** basis set were used. Accuracy was set to
ultrafine. ESP was selected for output. PBF was used for
solvation model and water was selected for solvent. The
charges generated in the last step of the out file were used to
replace the charge in .lib file generated by Antechamber.

FF14SB32 force field was employed for protein. Gaff2 (ref.
33) was loaded for ligand. ZAFF34 forcefield was used for the
coordinating Zn ion in cereblon. The ternary complex was
solvated in a truncated octahedron TIP3P water box with at
least 15 Å margin from the protein surface using tleap from
the AmberTools 23. Na+/Cl− were used as counterions for
neutralization. Na+/Cl− were also added to make water box
salt concentration of 0.15 M. In Amber the N-termini cap is
named NME. Chlorine is named Cl. They should be modified
manually if it is not named in this way.

The MD simulations were run with Amber22.35 A two-
phase minimization procedure was performed initially.
During the first phase, a minimization of 2000 steps was
performed, where a constraint of 10 kcal mol−1 Å−2 was
imposed on all atoms except for water. In the subsequent
phase, all atoms were allowed mobility for another 2000 steps

minimization. For each round of minimization, the steepest
descent method was employed for the first 1500 steps, then
conjugate gradient method was used for 500 steps. The
equilibration phase began with a short NVT heating stage of
0.5 ns, gradually increasing the temperature from 0 K to 300
K, while maintaining a 10 kcal mol−1 Å−2 restraint on the
protein and LDD. The system then underwent an eight-steps
NPT equilibration process at 300 K and 1 bar, during which
restraints were progressively relaxed from 10 kcal mol−1 Å−2

down to 1 kcal mol−1 Å−2 in decrements, with each step lasting
5 ns. After this, a 50 ns equilibration of the ligand occurred,
by releasing the restraint on LDD but maintaining a 1 kcal
mol−1 Å−2 restraint. Then the whole system was equilibrated
for 10 ns with no restraint. The equilibration's last frame
served as the starting point for the production simulations. 20
independent production runs were initiated with random
velocities, extending for 500 ns each, with snapshots saved
every 100 ps. Trajectories were also saved every 500 ps for the
following analysis. Temperature and pressure throughout the
simulations were regulated using the Berendsen method.36

The reference temperature and pressure of production run
was the same as NPT equilibration. The particle Mesh Ewald
method37 calculated the van der Waals forces. Non-bound
interactions were assessed using a cutoff of 10 Å. SHAKE38

was applied on bonds involving hydrogen.

Simulation analysis

RMSD and trajectory selection. CTD–BRD4 Cα RMSD was
calculated to select trajectories that maintained stable ternary
complex. For each LDD, 12 trajectories whose RMSD running
average was always lower than 4 Å were selected for the
following analysis. 12 is the minimum number of trajectories
that satisfied the RMSD cutoff among all the 5 LDD systems.

Principal component analysis and conformational entropy

Principle component analysis (PCA) was performed to
investigate conformational dynamics of the protein complex.
The simulation trajectories were first converted to Gromacs
format. Protein backbone PCA was conducted with Gromacs
2022.39 The contour map of PC1 and PC2 was plotted by
concatenating trajectories of all the LDDs. Conformational
flexibility was evaluated by computing Schlitter entropy.12 For
each LDD independent runs were concatenated for
calculation. The Schlitter entropy was computed with
Gromacs 2022.40 For entropy of the protein complex all the
Cα atoms were selected for the calculation. For interface
entropy, all the atoms of the residues which have been
detected as in contact with the other protein in any of the
snapshots were selected for the calculation. The snapshots
shown in Fig. 1E are extracted by Gromacs module anaeig
setting “nframes” as 5.

Frustration calculation

Frustration analysis was conducted by Frustratometer 2.27

The PPI frustration level was defined by the number of highly
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frustration pairs divided by the number of all frustration
pairs. In each frame, residue pairs on the PPI that any heavy
atoms are in 4.5 Å were used to calculate the PPI frustration
level. The NTD–BRD4 and CTD–BRD4 interface frustration
number were analyzed separately. The full PPI frustration
level was calculated by averaging the NTD-BRD4 and CTD-
BRD4 interfaces. Protein structures were saved every 5 ns
from the simulation for the calculation.

Residue contacts and residue–residue contact score

The protein–protein and protein ligand contacts were
computed by python scripts GetContacts.41 The contact
polarity was determined from the atom-based contact
types. Hydrogen bond, salt bridges and pi–cation
interactions were considered polar. Pi-stacking van der
Waals interactions are nonpolar. For each residue pair, if
it contains polar atom interactions, it will be categorized
as polar contacts. Otherwise, it is nonpolar contacts.
Through the MD simulation, if over 10% of frames one
residue pairs are polar, then will be colored as blue in
the heatmap. Otherwise, it will be defined as nonpolar
contact and colored black. Residue–residue contact score
(RRCS) was utilized to evaluate the packing of constant
contacts (>40%) on the protein–protein interface.28 In
each snapshot, the RRCS for one residue pair is the
summation of distance-based score of all the heavy-atom
pairs on both residues. To plot the RRCS heatmap, the
score for each contact pair was averaged along all the
frames.

Water volume map, water number counting and water energy
calculation

Water volmap analysis was conducted with VMD Volmap.42

The calculation was conducted on all the frames that were
overlayed to the first frame, and results were combined
using the average of each snapshot. The map type was set
to occupancy and resolution was set to 1 Å. The whole
water molecule within 5 Å of protein complex were used
for the calculation. The zoomed in map on PPI are shown
in Fig. 4. Water number near specific residues was counted
by selecting water molecules within 3 Å of the heavy atoms.
Water energy was calculated by WaterMap (version: v2022-2)
panel in Maestro (Schrödinger, New York, NY, USA). To
select the representative snapshots for water energy
calculation, RMSD clustering on the four hydrophobic
residues (F79, W81 on BRD4 and F102, P352 on cereblon)
were carried out in Gromacs 2022 with Gromos method
and cutoff of 1 Å. The representative frame of top 4 cluster
that covers at least 55% of the conformational population
were saved. Water molecules that are within 7 Å of both
cereblon and BRD4 at the same time were considered as
PPI water and saved with the ternary complex for water
energy calculation. The water energy state was defined by
the excessed energy that was measured relative to bulk

water. The water energy map of cluster 1 structure of L5 is
shown in Fig. 4.

Kernel density of the frustration level distribution calculations

The PPI frustration level distribution shown in Fig. S8,† was
calculated using the average PPI frustration level from each
MD trajectory (a total of 60 data points: 5 LDDs × 12
velocities). The bar graph showing the number of MD
trajectories for any given value of the frustration level, was
generated using the matplotlib “hist” function. For bar graph
of all the data, the histogram bins were set to 20. For the bar
graph of strong and weak LDDs separately, the bins for the
weak and strong LDDs were set to 15 and 11, respectively, to
ensure similar bar widths for both categories. The density
curve was fitted using the “GaussianMixture” module from
the “sklearn.mixture” package in Python, with three Gaussian
components fitted to the distribution.

Statistical analysis

The p-value was computed from T-test using scipy.stats.
ttest_ind module in Python. If the p-value < 0.001, it would
be labeled as “***”. If the p-value is between 0.001 and 0.01,
it would be labeled as “**”. If the p-value is between 0.01 and
0.05, it would be labeled as “*”. If the p-value > 0.05, it would
be labeled as “ns”.
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