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Forensics relies on the differentiation and classification of document papers, particularly in cases involving

document forgery and fraud. In this study, document papers are classified by integrating Raman spec-

troscopy with machine learning models, namely, random forest (RF), support vector machines (SVMs),

and feed-forward neural networks (FNNs). Among the machine learning models, the RF model effectively

calculated the feature importance and identified the critical spectral region contributing to classification,

enhancing the transparency and interpretability of the result. Spectral preprocessing with the first deriva-

tive significantly improved the classification performance. The spectral range 200–1650 cm−1 was ident-

ified as a highly informative region for differentiation, reducing the number of input variables from 756 to

360 while enhancing the model accuracy. The FNN model outperformed the RF and SVM models, with

an F1 score of 0.968. The results underscore the potential of combining Raman spectroscopy with

machine learning for forensic document examination, offering an interpretable, computationally efficient,

and robust approach for paper classification.

1. Introduction

Forensic investigations require the identification and differen-
tiation of document papers, particularly in cases of document
forgery related to crime scenes and taxation. Forensic-paper
analysis plays a pivotal role in the detection of forgeries such
as falsified dates on real estate contracts, helping to establish
authorship, verify authenticity, and detect discrepancies in
comparisons of seized paper samples.1–8 Document forgery
often involves the altering or replacement of pages without the
knowledge of all involved parties. In such cases, the character-
istics of the paper of the altered page can provide crucial evi-
dence to support or refute a forgery claim.

Conventional methods such as fiber identification, filler
composition analysis, and fluorescence analysis have been
widely used in document examination.9 However, these
methods often require large sample sizes or destructive
testing, which limit their applicability. Advanced non-destruc-
tive analytical techniques, including X-ray diffraction,10,11

elemental analysis,1–3 infrared spectroscopy,6,12,13 image ana-

lysis,5 and pyrolysis gas chromatography,14 have expanded the
toolbox of forensic document examination. Despite their effec-
tiveness, these methods generate large datasets that are error-
prone and time-consuming when processed manually.

These limitations have been overcome by various chemo-
metric approaches for handling complex datasets.15 Lee et al.16

demonstrated the forensic value of integrating chemometric
techniques with spectroscopic data. The classification and
regression tree (CART) method, which combines attenuated
total reflectance-Fourier transform infrared spectroscopy with
principal component analysis (PCA), distinguished white copy
paper with a prediction accuracy of nearly 90%. Similarly,
diffuse reflectance ultraviolet–visible–near infrared spec-
troscopy combined with PCA discriminated among writing,
office, and photocopy papers with an accuracy of up to
99.7%.17

Raman spectroscopy is a vibrational spectroscopic tech-
nique that analyzes molecular interactions through scattering
rather than absorption. In this respect, Raman spectroscopy
differs from infrared (IR) spectroscopy. While Raman spec-
troscopy primarily detects the vibrations of homonuclear
bonds such as CvC and S–S, IR spectroscopy is more sensitive
to polar functional groups such as CvO and C–O–C.18,19 In
chemometric approaches for forensic document examination,
IR spectroscopy has been extensively studied while Raman
spectroscopy remains underutilized. Few studies have inte-
grated Raman spectroscopy with machine learning techniques
for forensic applications.6,12,16,20–22
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The present study tests the abilities of different machine
learning models—random forest (RF), support vector machine
(SVM), and artificial neural networks (ANN)—in the classifi-
cation of document-paper manufacturers from Raman spectral
data. Among these models, the RF model can calculate the
feature importance, identifying the critical spectral regions
contributing to classification and enhancing the transparency
and interpretability of the results. By incorporating feature
importance into the model development process, this study
achieves robust classification performance while minimizing
the computational costs. The findings demonstrate that
Raman spectroscopy combined with machine learning effec-
tively analyzes forensic documents, offering an efficient and
interpretable approach for paper classification.

2. Experimental
2.1. Document paper

The methods were tasked with classifying 10 commercial docu-
ment papers from 10 different products in five countries (see
Table 1). Each product was selected based on its country of
production and market share ranking. All samples were typical
white-colored office papers with a grammage of 80 g m−2.

2.2. Dataset

2.2.1. Raman spectra. The Raman spectrum of each paper
was obtained on a confocal micro-Raman spectrometer
(LabRAM Soleil, HORIBA France SAS, France) using a 532 nm,
5.2 mW laser as the excitation source. The Raman-scattered
light was detected using a charge-coupled device detector
(Syncerity, HORIBA Instruments Incorporated, USA) with a
600 g mm−1 grating configuration. All Raman spectra were col-
lected within a 2 s acquisition time with 5 accumulations. The
spectral range was 200–3600 cm−1 and the spatial resolution
was less than 1 μm. Samples were focused under a microscope
with a 100× objective lens. A total of 100 Raman spectra were
acquired by measuring 10 spectra per sample from 10 different
paper samples. Finally, the Raman spectra of 200–3000 cm−1

were used to construct classification models.
2.2.2. Data preprocessing. First, the Raman spectra were

preprocessed to remove cosmic ray effects and baseline drift
and the spectral quality was enhanced by denoising

preprocessing.21–23 The baseline was corrected with poly-
nomial fitting.24 Fig. 1 shows the raw Raman spectrum and
baseline-corrected Raman spectrum of KOR1. Then, the
Raman spectra were preprocessed using a Savitzky–Golay
filter.25 The original spectra were converted into first-derivative
spectra using a third-degree polynomial with 13-point smooth-
ing. Finally, the Euclidean (L2) norm vector of the prepro-
cessed Raman spectrum was calculated as:

Normalized vector ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

jvij2
s ; ð1Þ

where v is the vector (Raman spectrum) to be normalized, vi is
the ith element (i.e., data point) of the vector, and n is the total
number of elements in the vector. The dataset of normalized
original and first derivative Raman spectra was used to con-
struct classification models.

2.2.3. Dataset splitting. The Raman spectral dataset was
divided into training and test sets at a ratio of 7 : 3. The train-
ing and test sets were used for model construction and vali-
dation, respectively. The ratio of each data class was preserved
with a stratified sampling method. Threefold cross-validation
was also performed to avoid overfitting and enhance the pre-
dictive performance of the models.

2.3. PCA

The underlying structure of the Raman spectral data was deter-
mined through PCA. In this step, the high-dimensional
Raman spectra were projected onto a new orthogonal coordi-
nate system represented by ten principal components (PCs). By
visualizing the data in two-dimensional space, PCA enables
the exploration of inherent patterns within the dataset, enhan-
cing the interpretability of the data.

2.4. Random forest

The RF classifier26 is an ensemble learning method that effec-
tively mitigates premature convergence. Ensemble learning
combines the outputs of multiple models, enhancing the pre-
diction accuracy beyond the capabilities of individual classi-

Table 1 Paper samples collected and analyzed in the present study

No. Sample Country Manufacturer
Grammage
(g m−2)

1 KOR1 Korea A 80
2 KOR2
3 KOR3
4 KOR4
5 IDN1 Indonesia B
6 IDN2 C
7 CHN1 China D
8 CHN2 E
9 THA Thailand F
10 BRA Brazil G

Fig. 1 Raw Raman spectrum and baseline corrected Raman spectrum
of KOR1.
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fiers. RF can also analyze the importance of features and is
commonly applied in pattern recognition tasks. In this study,
the fundamental components of the RF model were decision
trees (DTs).27

To increase diversity among the DTs, the RF algorithm
employs random subsampling, which prevents the simul-
taneous use of all input variables and fosters the development
of independent trees. The subsampling method of RF is boot-
strap sampling, in which data points are randomly selected
with replacement from the training dataset. The DTs are
trained on approximately two-thirds of the data, known as in-
bag samples; the remaining data, referred to as out-of-bag
(OOB) samples, are reserved for validating the performance of
the tree models.28

The probability of a data point being excluded from a set of
m samples during random sampling with replacement is (m −
1)/m. When this process is repeated m times, the likelihood of
a sample being excluded from all iterations converges to
approximately 36.8%, as expressed in eqn (2):

OOB ¼ lim
m!1 1� 1

m

� �m

¼ e�1 � 0:3678: ð2Þ

The RF model was developed by training multiple DTs on
in-bag samples. The predictions of all trees were averaged to
obtain the final classification of new data. Following the CART
approach,27 all DTs in the RF model were independently con-
structed without pruning. This study trialed different input
variables (n_feature) of tree generation square root (sqrt),
binary logarithm (log 2), and one-third (1/3) of the total spec-
tral points, and different numbers of trees (n_tree) (10 to 500).
The values of n_feature and n_tree were optimized by minimiz-
ing the OOB errors through a grid search approach.29

2.5. Feature-importance measure

The significance of the spectral variables was evaluated
through the mean decrease impurity (MDI)30 method, which
identifies the Raman shifts dominating the document-paper
classification. The process by which tree-based models assess
the impact of input variables on the classification outcome is
called feature-importance assessment or variable importance
assessment.13,29 The feature importance I(nj) is determined as:

IðnjÞ ¼ wjCj � wLjCLj � wRjCRj ; ð3Þ
where nj is the parent node, Lj and Rj are the left and right
child nodes branched from nj, respectively, wj is the node
weight, which equals the number of samples, and Cj is the
impurity of nj. The importance of variable i in a DT is com-
puted as

IðfiÞ ¼

X
j

IðnjÞX
k[nall

IðnkÞ
; ð4Þ

where I( fi) represents the importance of variable i within the
DT model. In an RF model, the importance scores from all
DTs in the ensemble are aggregated to give the overall variable

importance. Before aggregation, the importance score of each
variable is normalized using eqn (5) to ensure consistency
across the ensemble:

normIðfiÞ ¼ IðfiÞX
j[fall

IðfjÞ
: ð5Þ

Subsequently, the final importance of the variable in the RF
model is averaged over all DTs as follows:

IðRFiÞ ¼

X
j[tall

normI fij
� �

T
; ð6Þ

where t denotes the DT model, normI( fij) is the normalized
importance of variable i in the RF model, and T is the total
number of DTs.

2.6. Model comparison

The classification capabilities of the developed RF models
were compared with those of two traditional machine learning
algorithms: feed-forward neural networks (FNN) and SVMs. All
models were trained on the same dataset, enabling direct com-
parison of their classification performances.

2.6.1. FNN. The ANN classifier was developed on an FNN
architecture employing the backpropagation algorithm. The
activation function was the rectified linear unit and the loss
function was the cross-entropy. The loss function was opti-
mized through stochastic gradient descent (SGD) and adap-
tive-moment estimation (Adam). The learning rate ranged
from 0.0001 to 0.1 with a maximum of 1000 iterations. The
FNN architecture included one or two hidden layers, each with
16, 32, 64, 128, 256, or 512 nodes. The hyperparameters were
optimally configured by fine-tuning using a grid search
method.

2.6.2. SVM. The SVM models were constructed with a
radial basis function kernel.31 The SVM algorithm seeks the
optimal hyperplane that maximizes the margin between
different data classes in a high-dimensional space. The per-
formance of SVM is governed by two primary hyperpara-
meters: cost and gamma. The cost parameter balances the
margin maximization with the reduction of misclassification
errors in the training data, whereas the gamma parameter
determines the flexibility of the Gaussian kernel, thus
affecting the model’s ability to handle nonlinear relation-
ships. In this study, the cost and gamma values were ranged
from 2−5 to 25 and from 10−5 to 105, respectively, and the
hyperparameter combination was optimized through a grid
search method.

2.7. Evaluation metric

In classification tasks, correctly identified observations in the
positive and negative classes are referred to as true positives
(TP) and true negatives (TN), respectively, positive-class obser-
vations that are misclassified as negative are labeled as false
negatives (FN), and negative-class observations incorrectly
classified as positive are identified as false positives (FP).32

Analyst Paper

This journal is © The Royal Society of Chemistry 2025 Analyst, 2025, 150, 1785–1794 | 1787

Pu
bl

is
he

d 
on

 1
8 

m
ar

zo
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

3/
02

/2
02

6 
22

:2
1:

31
. 

View Article Online

https://doi.org/10.1039/d4an01529k


The F1-score is a key performance metric that effectively
balances the precision–recall tradeoff.33 Precision measures
the proportion of correctly identified positive cases among all
predicted positive cases, and recall quantifies the model’s
ability to identify positive cases among all actual positive
cases. Calculated as the harmonic mean of precision and
recall, the F1-score more robustly determines the classification
performance than accuracy, which may not adequately reflect
the model’s ability to handle FP and FN. The precision, recall,
and F1-score metrics are, respectively, calculated as follows:

Precision ¼ TP
TPþ FP

; ð7Þ

Recall ¼ TP
ðTPþ FNÞ ; ð8Þ

F1 ¼ 2� precision� recall
precisionþ recall

: ð9Þ

All data processing and classification modeling were con-
ducted using R statistical software (R Core Team, ver. 4.4.1,
Auckland, New Zealand).

3. Results and discussion
3.1. Raman spectral characteristics of the document papers

Fig. 2 presents the Raman spectra of the document paper
samples. The prominent peaks at 280 and 1084 cm−1 corres-
pond to lattice vibrations associated with translations/

vibrations of the (CO3)
2− group and the symmetric stretching

mode of the carbonate ion, both originating from calcium car-
bonate (CaCO3).

34 These peaks are attributed to inorganic
fillers, which are commonly incorporated during the paper-
making process to reduce production costs and improve the
optical properties of the paper.35

Additional peaks at 380 and 436 cm−1 correspond to tor-
sional and flexural vibrations of the pyran ring and to bending
and expansion vibrations of the CCO framework within the
pyran ring, respectively.36,37 The peaks at 508 and 1117 cm−1

are attributed to the C–O–C glycosidic linkages in
cellulose,38,39 and those at 1337 and 1380 cm−1 are associated
with HCC, HCO, and HOC bending and with CH and CH2

stretching in the carbohydrate components (cellulose and
hemicellulose).40,41

The peak at 1602 cm−1 corresponds to aromatic ring
stretching of lignin, while the peak at 1660 cm−1 is attributed
to ring-conjugated C–C stretching of coniferyl alcohol and
CvO stretching of coniferyl aldehyde, both occurring in
lignin.22,42 Finally, the peak at 2895 cm−1 represents CH and
CH2 stretching vibrations in cellulose.40

3.2. PCA of the Raman spectra

Fig. 3 presents the PCA score plots of the first two principal
components (PCs) obtained from the original Raman spectra
and the first derivative spectra. In the score plot of the original
spectra (Fig. 3a), the data points form large clusters. In con-
trast, in the score plot of the first derivative spectra, some data
points are separated from the main cluster, resulting in the

Fig. 2 Original (a) and first derivative (b) Raman spectra of the document paper samples.
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formation of more distinct clusters. These results indicate that
spectral preprocessing using the first derivative is a promising
approach for enhancing the differentiation of document
papers using Raman spectra.

Fig. 4a shows the Raman spectra of the KOR4, IDN2 and
THA products and Fig. 4b presents the PC1 and PC2 loadings
of the first derivative Raman spectra of the document paper.
The peaks at 280 cm−1 and 1084 cm−1 (Fig. 4b) correspond to

CaCO3 from inorganic fillers, which explains their positioning
along the PC1 axis, reflecting differences between KOR4 and
THA. The variation in ash content, in itself, serves as evidence
supporting these distinctions.6,11 The peak at 1380 cm−1 was
attributed to HCC, HCO, and HOC bending, as well as CH and
CH2 stretching in the carbohydrate components (cellulose and
hemicellulose), which partially explains the differences in posi-
tioning along the PC2 axis as shown in Fig. 3b. The residual

Fig. 3 PCA score plots of the original Raman spectra (a) and first derivative spectra (b). Percentages in parentheses are the scores of the explained
variance of each PC.

Fig. 4 Raman spectra of the KOR4, IND2 and THA samples (a) and loadings of the first two PCs of the first derivative Raman spectra of the docu-
ment paper (b).
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carbohydrates were influenced by the alkali charge, tempera-
ture, and processing time during cooking and bleaching,
resulting in variations in the xylan and glucomannan yield of
the final wood pulp—i.e., the raw material for document
paper.43 The crystallinity of cellulose pulp is also affected by
these processes. The cellulose crystallinity of printing paper
depends on the cooking methods and processing
conditions.12,44 As document papers are kraft pulp-based,
their cellulose crystallinity is likely influenced by additional
factors. For instance, recycled pulp may have been used in the
manufacturing process,12,45 and the products may plausibly
contain bleached chemo-thermomechanical pulp (BCTMP), a
high-yield pulp that retains water-soluble components, particu-
larly acetylated galactoglucomannan.13 Recycled pulp and
BCTMP, commonly employed as cost-saving measures in paper
manufacturing, further impact the composition and properties
of the final product.

3.3. Random forest models for classification of document
papers

Fig. 5 shows the OOB error changes as each classification tree
is added to the RF during training for document-paper classifi-
cation. The original and first derivative Raman spectra exhibit
obvious different trends. For original spectra, increasing the
number of trees initially reduced the OOB errors in both cases
but the first derivative spectra notably accelerated the
reduction from that of the raw spectra. The OOB errors were
minimized during the training process and the first derivative
spectra overwhelmingly improved the performance from that
of the original spectra. The optimized hyperparameters and
classification performances (F1 scores) of the RF models are
presented in Table 2.

Table 2 compares the performances of the RF models
trained on the original and first derivative Raman spectra
across various hyperparameter settings. After training on the
original spectra, the OOB errors remained relatively high
(0.474–0.500), indicating limited predictive accuracy of the RF

methods. The test F1 scores ranged between 0.664 and 0.711,
reflecting low classification performance.

The OOB errors were obviously lower (0.243–0.285) after
training on the first derivative spectra, suggesting an enhanced
predictive reliability of the RF models. Furthermore, the test
F1 scores were markedly improved to 0.838–0.875, affirming
that the spectral preprocessing with the first derivative
enhances the classification performance of the RF models.

Among the tested hyperparameter settings, the “1/3” con-
figuration for the first derivative spectra minimized the
OOB error (0.243) and maximized the F1 score (0.875).
Therefore, “1/3” was deemed the optimal configuration for
this dataset. As highlighted by these findings, preprocessing
steps such as spectral derivative decisively improve the accu-
racy and generalizability of machine learning models on
Raman spectral data, emphasizing the necessity of proper
spectral preprocessing for robust and reliable analytical
applications.22,23,46–48

3.4. Feature-importance measures of the Raman spectra

The spectral regions contributing to document-paper classifi-
cation by the RF models were identified through an MDI-
based feature-importance analysis of the Raman spectral data.
The results are visualized in Fig. 6.

Fig. 6a presents the feature importance results for the
KOR4, IDN2, and THA products based on the first derivative

Fig. 5 Changes in out-of-bag (OOB) error rates with increasing number of classification trees in the classification of document papers (a: original
Raman spectra and b: first derivative Raman spectra).

Table 2 Classification performance of RF models on document papers

Raman spectra

Hyperparameters
OOB
error

F1 score

n_feature n_tree Train Test

Original spectra sqrt 123 0.474 1.000 0.711
log 2 284 0.500 1.000 0.669
1/3 380 0.497 1.000 0.664

First derivative
spectra

sqrt 86 0.271 1.000 0.843
log 2 48 0.285 1.000 0.838
1/3 30 0.243 1.000 0.875
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spectra. In Fig. 6, the red-colored regions indicate high contri-
butions to the differentiation of data classes. The classification
of KOR4 was notably influenced by lignin at 798 cm−1,49 lattice
vibrations associated with calcium carbonate at 1084 cm−1,
and HCC, HCO, and HOC bending, as well as CH and CH2

stretching in carbohydrate components (cellulose and hemi-
cellulose) at 1380 cm−1. For IDN2, the region at 1602 cm−1 was
identified as a significant contributor, corresponding to the
aromatic ring stretching of lignin. The THA product exhibited
a similar pattern. It is well known that a substantial amount of
lignin must be removed during the chemical pulping and
bleaching processes. However, in East Asian countries such as
Korea and China, manufacturers rely on imported wood pulp
as a raw material. Due to this dependence, they often select
BCTMP as a cost-effective alternative.13 BCTMP is produced by
mechanically refining wood chips with a small amount of

sodium sulfite, which facilitates sulfonation (Fig. 7). The sulfo-
nation process removes resin components from the wood
under mildly alkaline conditions while also providing a slight
brightening effect.50 Even after bleaching, a substantial
amount of lignin residues remains, which affects the quality of
the paper such as brightness and yellowness.

Fig. 6b illustrates the spectral feature importance derived
from the entire dataset. In addition to the previously discussed
features, 280 cm−1 and 436 cm−1 were identified as highly
important Raman spectral variables, corresponding to the
presence of calcium carbonate and the pyran ring, respectively.

Overall, the decision-making process of the RF model was pri-
marily influenced by the presence of calcium carbonate and the
type of wood pulp used in paper production, making these
factors key discriminators of paper products. Moreover, the
200–1650 cm−1 spectral range in Raman spectroscopy appears to

Fig. 6 Raman spectral-feature importance analysis of the RF model when classifying document paper samples. Spectral feature importance of the
KOR4, IDN2, and THA products (a) and entire data classes (b). Red indicates higher importance, while blue indicates lower importance.

Fig. 7 Reaction of a lignin structure with sodium sulfite.
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be a crucial region for tracing and classifying document papers,
and it will be utilized as a selective variable for modeling.

This analysis highlights the effectiveness of spectral feature
selection in improving classification performance by emphasiz-
ing the contributions of specific fillers and wood pulp types
to the distinct spectral characteristics of document papers.
Additionally, it underscores the advantage of reducing compu-
tational costs when constructing machine learning models.13,29,51

3.5. Variable selection and model comparison

This subsection compares the classification performances of
the SVM, FNN, and RF models within the significant spectral
region (200–1650 cm−1) and the entire range (200–3000 cm−1) of
the Raman spectra of the document-paper samples. The vali-
dation of the selected region (200–1650 cm−1) was performed
with first derivative spectra. The performances of all models
across both spectral ranges are compared in Table 3. The classi-
fication performances of all models were improved after restrict-
ing the spectral range to 200–1650 cm−1, highlighting the sig-
nificance of this region for differentiating document papers.

The F1 score of the SVM model improved from 0.732 to
0.935 after transitioning from the entire spectral range to the
selected range, demonstrating that excluding the irrelevant
variables enhances the robustness of the model. Similarly, the
F1 score of the FNN model increased from 0.901 to 0.968 nar-
rowing the spectral region from 200–3000 to 200–1650 cm−1,
emphasizing that the selected spectral range also increased
the computational efficiency. The RF model also demonstrated
an improvement in performance, with an increase in the F1
score from 0.875 to 0.903. Notably, the selected range reduced
the number of input variables from 756 (in the 200–3600 cm−1

range) to 360 (in the 200–1650 cm−1 range). The reduced
number of input variables not only enhances the robustness of
the model by focusing on the most relevant spectral features
but also significantly reduces computational costs.12,13

Therefore, the classification models effectively utilize the criti-
cal spectral features within the 200–1650 cm−1 range, which
correspond to calcium carbonate, cellulose, and lignin. FNN,
which achieved the highest F1 score (0.965), appears to be a
promising tool. However, considering Occam’s razor,52 which
suggests that when accuracy is similar, the simplest model

should be preferred, SVM can also serve as an effective alterna-
tive to FNN. Nevertheless, both FNN and SVM lack transpar-
ency in their decision-making processes, which limits the
ability to interpret or justify their predictions. For this reason,
the authors suggest that each classification model offers dis-
tinct advantages, and no single model can be considered a
complete replacement for another.

As clarified by the above results, narrowing the spectral
range to the most relevant region enhances the model’s robust-
ness and reduces the computational complexity. This finding
underscores the potential of feature selection in developing
efficient and scalable models for document-paper classifi-
cation in practical applications. Identifying the relevant range
(200–1650 cm−1) is a focused, computationally efficient
approach for analyzing document papers. Therefore, our work
can make valuable contributions to forensic investigations and
material classification tasks.

4. Conclusions

This study demonstrated the potential of integrating Raman
spectroscopy with machine learning for forensic document exam-
ination. The RF model computed the feature importance, thereby
enhancing the interpretability, and identified the 200–1650 cm−1

spectral range as the most informative region for classification.
Within this narrowed range, the number of input variables was
reduced from 756 to 360, largely lowering the computational
complexity while improving the robustness and accuracy.

Spectral preprocessing with the first derivative boosted the
classification performance of all models, but most obviously
benefited the FNN model. The FNN model outperformed the
RF and SVM classifiers, achieving the highest F1 score of
0.968. These findings highlight the superior accuracy and com-
putational efficiency of the variable selection based on feature
importance measures with first derivative Raman spectra, con-
firming the suitable choice for forensic document examin-
ation. This work advances the use of Raman spectroscopy and
machine learning in forensic science, offering a scalable, inter-
pretable, and efficient solution for document-paper classifi-
cation in real-world scenarios.

However, this study has certain limitations. Contamination
or aging can significantly alter the Raman spectral character-
istics of paper, potentially reducing the applicability of the pro-
posed approach. Methods that mitigate the spectral distortion
caused by contamination or degradation will be incorporated in
future work. In addition, the research scope will be expanded to
larger datasets and a broader range of paper products. Advanced
methods such as deep learning are expected to further enhance
the classification performance and ensure scalability of the pro-
posed framework to diverse forensic applications.
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