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Geometric learning of knot topology†

Joseph Lahoud Sleiman,‡a Filippo Conforto, ‡a Yair Augusto Gutierrez Fosado a

and Davide Michieletto *ab

Knots are deeply entangled with every branch of science. One of the biggest open challenges in knot theory

is to formalise a knot invariant that can unambiguously and efficiently distinguish any two knotted curves.

Additionally, the conjecture that the geometrical embedding of a curve encodes information on its

underlying topology is, albeit physically intuitive, far from proven. Here we attempt to tackle both these

outstanding challenges by proposing a neural network (NN) approach that takes as input a geometric

representation of a knotted curve and tries to make predictions of the curve’s topology. Intriguingly, we

discover that NNs trained with a so-called geometrical ‘‘local writhe’’ representation of a knot can distinguish

curves that share one or many topological invariants and knot polynomials, such as mutant and composite

knots, and can thus classify knotted curves more precisely than some knot polynomials. Additionally, we also

show that our approach can be scaled up to classify all prime knots up to 10-crossings with more than 95%

accuracy. Finally, we show that our NNs can also be trained to solve knot localisation problems on open

and closed curves. Our main discovery is that the pattern of ‘‘local writhe’’ is a potentially unique geometric

signature of the underlying topology of a curve. We hope that our results will suggest new methods for

quantifying generic entanglements in soft matter and even inform new topological invariants.

1 Introduction

Knots are fascinating objects that have captured the attention
of humans for centuries. From Incas’ knotted Quipus,1 and
Lord Kelvin’s theory of elements as knotted ether,2 to sailors
and climbers whose lives often rely on the strength of knotted
rope, knots are deeply intertwined with history and art and
often carry mystical meaning. The human obsession with knots
brought Peter Guthrie Tait to compile the first knot tabulation
of up to 10 crossings by hand;3 currently, more than one
million unique knots up to 16 crossings have been tabulated
using computer programs.4

To rigorously prove that the early tabulated knots did not
contain duplicates, so-called topological invariants and knot
polynomials were developed, the first of which was the Alexander
polynomial,1,5,6 followed more recently by the Jones and HOMFLY
polynomials.1,7 Knot polynomials are mathematical constructs
that can be computed on knot diagrams and are invariant under
smooth deformations of the curve, i.e. deformations that preserve
the curve topology. However, there are knots that share many

topological invariants and cannot even be distinguished by knot
polynomials. Famously, the 11-crossing Conway knot has the same
Alexander polynomial as the unknot and shares the same Jones
polynomial of its mutant, the Kinoshita–Terasaka (KT) knot.1 More
generally, all mutants of a knot have the same HOMFLY poly-
nomials and the same hyperbolic volume,1 while some composite
knots share the same homeomorphic complements.8–10

Alongside the development of topological invariants, several
attempts were made to identify a relationship between a specific
geometric embedding of a knot and its underlying topology.11 We
note that this relationship is different from the one sought between
so-called geometric and algebraic invariants,12,13 e.g. between the
hyperbolic volume of a knot and its Jones polynomial.14 Perhaps
one of the most rigorous results in this direction is the Fáry–Milnor
theorem, stating that the total absolute curvature of non-trivially
knotted curves must be greater than 4p.15 Unfortunately, this result
only imposes a weak constraint on the topology of the underlying
curve, as an unknot can itself have large total curvature due to, for
example, deformations of its contour. In parallel, a large body of
work on so-called ‘‘ideal knots’’ was carried out with the aim of
finding geometric features that could reflect the underlying knot
topology. One impressive result in this context is that different DNA
knots display a spatial separation when run on a gel electrophoresis
that is linearly proportional to the so-called average crossing
number;16,17 this result entails that there is an intimate relationship
between the physical shapes assumed by knots and their under-
lying topology. Another result that inspired our work is that the
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total so-called ‘‘writhe’’ (see below) of an ideal knot is the same (up
to a constant that is only a function of the curve length) as that of a
non-ideal, thermally agitated curve with the same topology.18

Though this suggests that ‘‘writhe’’ may be a good measure that
is invariant under thermal fluctuations, there is no one-to-one
relationship between the global writhe of a knot and its underlying
topology; for instance, the global writhe of the 41 knot is 0, the
same as the unknot.11

Thus, the problem of determining a curve topology based
only on the geometric information of its segments (without
using any projection or algebraic invariant) is an open challenge in
knot theory that has ramification in many fields, for instance
polymer physics, biophysics and fluid dynamics. In this paper,
we propose to address this open challenge by using the power of
artificial intelligence, and in particular deep learning, in recognis-
ing and classifying patterns in certain knot geometric features. Our
main discovery is that by using a quantity we dub ‘‘local writhe’’,
even simple machine learning (ML) algorithms can identify the
topology of knotted curves undergoing thermal fluctuations with
very high accuracy. We argue that this is an example of geometric
learning, whereby the only quantity we pass to the ML algorithm is
a quantity that can be computed from the Cartesian positions of a
curve’s segments, without the need to compute algebraic invariants
such as Alexander or Jones polynomials. Our method can even
distinguish 11-crossing knots that are otherwise impossible to
distinguish using standard invariants (the Conway and KT knots).
Finally, we show how this algorithm can be scaled to classify all 250
prime knots up to 10 crossings with 95% accuracy, and can even be
employed to solve knot localisation problems. Overall, we argue
that local writhe is an excellent feature – determined purely by the
3D positions of a curve segments – that results in patterns easily
identifiable by ML algorithms. We argue that our results will be
applied to other classification problems such as threading19,20 and
entanglements21,22, and also prompt knot theorists to employ local
writhe to define new geometric knot invariants.

2 Results

Two recent papers by Vandans23 and Braghetto24 have shown
that machine learning is a promising tool to solve knot classi-
fication problems. They mostly considered the Cartesian posi-
tion of the monomers, or adjacent monomer distances and
dihedrals to classify the 5 simplest knots. In this work, we set
out to test the use of a different type of geometric feature that
our group recently utilised to identify essential crossings of a
knot and plectoneme-like double folding of ring polymers.25,26

More specifically, we focused on a generalisation of the Gauss
linking integral applied to a single closed curve, often asso-
ciated with its writhe27 and average crossing number.25,28 This
choice is inspired by the intuition that writhe captures the
geometrical entanglement of a curve with itself, and we thus
define a generalised local segment-to-segment (StS) writhe as

oStSðx; yÞ ¼
tðxÞ � tðyÞð Þ � rðxÞ � rðyÞð Þ

rðxÞ � rðyÞj j3
; (1)

where r(x) and t(x) are the 3D position of, and the tangent at,
segment x, respectively. Intuitively, eqn (1) captures the mag-
nitude and the chirality of the entanglement between segment
x and segment y (Fig. 1(A) and (B)). The quantity oStAðxÞ ¼H
g oStSðx; yÞdy is the local segment-to-all (StA) writhe and char-

acterises how geometrically entangled segment x is with respect
to the whole closed curve g. In practice, the calculation of StS
and StA writhe are conducted on discrete segments, taking a
finite ‘‘window’’ with length lw = 10s to smooth out short length
fluctuations (see ESI† for details).

The StA writhe, oStA(x), is a 1D geometrical representation of
a knot that we hypothesise may display some patterns that are
topology-dependent (Fig. 1(A)–(C)). Since complex pattern
recognition is a task that naturally lends itself to being
addressed using a machine learning approach, we thus asked
ourselves if a neural network (NN) trained to recognise patterns
within oStA(x) was able to solve ambiguous knot classification
problems. To do this, we built feed forward and recurrent (long-
short term memory, LSTM) neural networks (FFNN and RNN,
respectively) and trained them using 105 statistically uncorre-
lated and pre-labelled conformations for each knot. To generate
these conformations, we initialised a bead-spring polymer with
known topology, N = 100 beads, and persistence length lp = 10s
(other lengths and lp are reported in the ESI†) using KnotPlot
(knotplot.com) and subsequently evolved the polymer config-
urations in LAMMPS29 via Langevin dynamics in an implicit
solvent and fixed temperature, using a Kremer–Grest model30

to preserve polymer topology (see Methods and ESI† for more
details). The code to generate these conformations are available
open access at https://git.ecdf.ed.ac.uk/taplab/mlknotsproject.
We confirmed that the topology was conserved either by computing
their Alexander determinant via KymoKnot (https://kymoknot.sissa.
it)31 or, when ambiguous, visually.

The NNs were built with an input layer that was determined
according to the input representation being studied, e.g., the
Cartesian (XYZ) coordinate representation used 3 neurons (one for
each dimension) per polymer bead. Other local input features,
such as StA writhe, used one neuron per bead, while the StS writhe
feature requires N � N input neurons. The optimal number of
hidden layers, hidden units, learning rate and batch size were
determined via an automated hyperparameter tuning method
conducted on the Cartesian representation (KerasTuner32). Unless
otherwise stated, our NNs contained 4 hidden layers, with around
4 � 105 trainable parameters. The output layer consisted of C
output neurons, corresponding to the C knot types being classi-
fied, each implemented with a softmax activation function in
order to return the probability that a given input is a certain knot
type. We took the sparse categorical cross-entropy as the loss
function, as the most appropriate for individual class probabilities
and integer target labels, i.e. our knot types (Fig. 1(D)).

2.1 NNs trained with StA writhe yield more accurate knot
classification than Cartesian features

We first tackle a 5-knot classification problem with the 5
simplest knots, which can be satisfactorily solved using NNs
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trained on center-of-mass-corrected Cartesian coordinates (XYZ)
or adjacent bead input features.23,24 In line with these previous
works, we find that our NNs can accurately predict the topology
of unseen conformations (80.1% accuracy with a FFNN and 86%
accuracy with a recurrent NN architecture, Fig. 1(E)). These
values are lower than the ones reported in ref. 23 since we use
a smaller training dataset and simpler NNs. We then trained the
same NNs using a range of other geometric features, such as
local curvature, density and 1D writhe26 (see ESI† for details),
and found that most of them performed more poorly, or at best
equally, with respect to the XYZ representation (Fig. 1(E)). A
similar outcome was also obtained in ref. 24 In stark contrast,
models trained using oStA(x) outperformed all other models and
were found to achieve 99.9% accuracy, irrespective of the FFNN
or RNN architectures (we also tested random forest algorithms,
see ESI†). Additionally, the networks reached the early stopping
criterion in about 50% fewer epochs or less, compared to those
trained using the XYZ representation (see ESI†). When plotted as
a confusion matrix, the results clearly indicate that the XYZ input
feature struggles to classify knots with a similar number of
crossings, e.g. the 51 and 52 knots. In contrast, our local 3D
writhe (StA) feature generated a near-perfect confusion matrix
(Fig. 1(F)).

We found that these results are generally robust for different
choices of dataset splitting, persistence length (lp = 1 � 10 s),

window length chosen to perform the StA calculation, and
length of the chains (see ESI†). Nevertheless, they do display
a significant reduction in accuracy when tested on knots
generated using a different method (for instance freely jointed
chains), and also when the window length for the StA writhe
calculation is comparable to the full contour of the chain. In
this case, the StA writhe is constant and equals the global
writhe of the knot, which is not unique for different knots.11

This is also in agreement with principal component analysis
(PCA, see ESI†) of the StA-trained NNs, where we see that
different knots are clearly separable in the reduced 2D PCA
space, yet the 01 and 41 cluster together due to the fact that they
share the global writhe (zero), which is related to the mean
value of oStA(x) along the contour.

2.2 NNs trained with StA writhe can distinguish knots with
identical knot polynomials

Given that our NNs can distinguish knots with the same
minimal number of crossings, i.e., the 5-crossings knots, we
asked ourselves if they could also solve more complicated
problems where knots shared algebraic knot polynomials.
To this end, we first considered three knots with identical
Alexander polynomials: the square, granny, and 820 knots
(see Fig. 2(A)). The first two knots are 6-crossings knots con-
sisting of trefoil composites with different chirality (hence they

Fig. 1 (A) Examples of equilibrium knotted polymer conformations colour coded to indicate the knot contour (from red, to white, to blue). In this figure
we consider the 5 simplest knots: 01, 31, 41, 51 and 52. (B) A graphical representation of StS writhe oStS(x,y) showing an instance of small and large writhe
between two segments. (C) Examples of patterns for oStA(x) for three different knots. (D) A graphical representation of the (feed-forward) network. The
input layer contains N (or 3N) neurons corresponding to the size of the input feature representation, and the output layer yields a probability for each knot
class. (E) Accuracy score, tested on unseen polymer conformations for different input features. The StA writhe classifies the 5-simplest knots with 99.9%
accuracy irrespective of the network architecture. (F) Confusion matrices obtained by training the network with XYZ and StA writhe input features.
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are homeomorphic knot complements), whereas the latter is an
8-crossings knot. Once again, we trained our FFNN using the
oStA(x) profiles (Fig. 2(B)) and obtained a striking accuracy of
99.98%, compared with 91.8% obtained by training with COM-
shifted XYZ coordinates (Fig. 2(C)).

We then asked ourselves if our NN could distinguish knots
sharing multiple knot polynomials. As mentioned above, mutant
knots share the same hyperbolic volume and several knot
polynomials, including HOMFLY. We therefore performed simu-
lations of the Conway (K11n34) knot and one of its mutants, the
Kinoshita–Terasaka (KT, K11n42) knot. These 11-crossings knots
have a number of identical knot invariants, sharing the same
Jones, Alexander, and Conway polynomials.1 Intriguingly, the
latter two are also shared with the unknot. Thus, we generated
105 statistically uncorrelated conformations of N = 200 beads
long polymers with the Conway, KT, and unknot topologies
(Fig. 2(D)), and trained our FFNN to classify them either using
a COM-subtracted XYZ or oStA(x) (Fig. 2(E)) representations.
When tested on unseen conformations, we found that while
the XYZ-trained NN could not distinguish the Conway and KT
knots, both were accurately distinguished from the unknot
(Fig. 2(F)). In marked contrast, we discovered that the StA-
trained NN perfectly disentangles the three knots with 99.6%
accuracy (Fig. 2(F)). We therefore conclude that the StA-trained
NN has the ability to convert StA patterns into a topological knot

classification, even for knots sharing multiple knot polynomials,
such as mutants and composites. In turn, we argue that the StA
writhe is a geometric quantity computed on a particular 3D
embedding of a curve that carries high-density information
about its underlying topology. Importantly, we stress that to
classify these knots, the network does not compute any knot
polynomial, as other standard software do.

Somewhat unsatisfactorily, we cannot fully pinpoint why
StA writhe is so powerful at identifying different topologies.
We hypothesise that the 1D patterns generated by StA writhe-
specifically the sequence, sign and amplitudes assumed by
consecutive maxima and minima - contain information on
the relative orientation and magnitude of consecutive entangle-
ments. As mentioned above, the average value of oStA(x) is
related to the global writhe of the knot, which itself contains
non-unambiguous information about its topology. Thus, we
argue that the NNs can extract additional information from the
full oStA(x) patterns, related to the chirality of individual
entanglements and render the information unique. This
hypothesis is also supported by the fact that the unsigned StA
writhe (which cannot distinguish chirality) yields, in general, a
lower accuracy (see Fig. 1(E)). We thus hypothesise that the
information encoded in the pattern of the StA writhe may be
related to the underlying knot’s Dowker code. These hypotheses
will be tested in more detail in future works.

Fig. 2 (A) Snapshots of three knots with identical Alexander polynomial: square (3l
1#3r

1), granny (3l
1#3l

1) and 820 knots. (B) Examples of StA writhe patterns
from the three knots. (C) Confusion matrices obtained from a 3-class classification problem, training a FFNN with XYZ (91.7% accuracy) or StA writhe
(99.9% accuracy) features. (D) Snapshots of Conway (blue) and KT (orange) knots. (E) Examples of StA writhe patterns, including the one from the unknot
(black). (F) Confusion matrices obtained from a 3-class classification problem, training a FFNN with XYZ (67% accuracy) and StA writhe (99.6% accuracy).
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2.3 StS writhe outperforms StA writhe on knots with more
than 7 crossings

To understand to what extent StA-trained NNs can be used to
classify knotted curves, we trained our NNs on increasingly
complex classification problems, and generated conformations
of all prime knots up to 10-crossings. Among these 250 prime
knots, there are over 30 that share the same Alexander poly-
nomial (see ESI† for a table), making them challenging to
classify using standard tools (for instance KymoKnot). We first
noticed that XYZ-trained NNs rapidly declined in accuracy when
we included knots with 6 or more crossings (Fig. 3(A) and (B)).
In contrast, the confusion matrices from StA-trained NNs
retained relatively high accuracies. However, we noticed that
the knots 51 and 72 created some confusion even in the StA-
trained NNs, causing a drop in accuracy to 98% (Fig. 3(C) and
(D)). We argue that this was due to the fact that oStA(x) of the
two knot types displayed similar patterns. For instance, we
show two knot instances that yield particularly similar oStA(x)
patterns in Fig. 3(C). Thus, to further distinguish these (and
potentially other knots with similar oStA(x) curves) we decided
to consider our original proposition of using the local StS
writhe (eqn (1)); two examples of oStS(x,y) maps are reported
in Fig. 3(E), for the same 51 and 72 knots configurations used to
compute oStA(x) in Fig. 3(C). Interestingly, the oStS(x,y) maps
appear very different, despite generating very similar StA curves
when integrated along y and around the polymer contour. This
is because a given segment x may itself have a certain sequence

of negative and positive entanglements with other segments y.
Once integrated along the contour in the y direction, different
sequences may lead to similar overall values. Motivated by this,
we trained our FFNNs using the StS writhe representation of the
knots, and discovered we could restore a very high (99.8%)
accuracy for the case of a database containing all knots up to 7-
crossings (Fig. 3(F)). More specifically, the confusion between 51

and 72 knots is now resolved thanks to the StS writhe. Ultimately,
the StS-trained NNs produced the most accurate models, achiev-
ing 95% for a 250-class classification task, including all prime
knots up to 10 crossings. In comparison, the XYZ-trained and
StA-trained NNs achieved 17% and 72% on the same problem,
respectively (Fig. 3(G)).

Based on these results, we argue that the StS writhe is
therefore the most scalable and precise geometric feature to
utilise for knot classification problems. Most importantly, we
would like to stress that the impressive accuracy demonstrated
for a 250-class problem was achieved with a simple feed forward
NN with 4 layers (around 3600k for the StS writhe and 400k
parameters for StA writhe). A natural extension going forward
will be to employ more complex architectures, and in particular
convolutional NNs, to classify the 2D StS writhe maps.

2.4 StA-trained NNs can also solve knot localisation problems

In the final part of this paper we turn our attention to the knot
localisation problem, i.e. determining the shortest knotted
arc along the polymer contour. This task is challenging and

Fig. 3 (A) Two example conformations of 51 (blue) and 72 (orange) knots. (B) The XYZ-trained NN on a 15-class classification problem yields 63.8%
accuracy and a rather non-diagonal confusion matrix. (C) Examples of oStA(x) curves for the two knots, displaying a degree of similarity between the
pattern of maxima and minima. (D) The oStA(x)-trained NN achieves 98% accuracy and the confusion matrix shows that 51 and 72 are the knots that are
most confused with each other. (E) Examples of the oStS(x,y) geometric feature for the two knots corresponding to the oStA(x) profiles shown in (C).
(F) Confusion matrix for a StS-trained FFNN to classify all knots up to 7 crossings, achieving 99.8% accuracy (see SI for more confusion matrices for more
complex problems). (G) Accuracy as a function of the number of knot classes being distinguished, up to 10-crossing (250) prime knots.
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particularly important for open curves, such as linear polymers,
DNA, and proteins,33–38 which may contain entanglements and
knots. In this context, identifying the shortest portion of a
polymer that is knotted is akin to being able to identify
entanglements in chain melts.

We first tackled this problem using the same FFNN architec-
ture as in the knot classification task, but the accuracies generated
were very low. We hypothesised that this was due to the fact that
FFNNs do not preserve the sequential information along the
polymer. For this reason, we consider a long-short term memory
(LSTM) model, also known as a recurrent NN (RNN). More
specifically, we employed a sequence-to-sequence LSTM, with an
output layer corresponding to a binary sequence of N = 100
neurons, equivalent in dimension to the length of the input
polymer. Each output neuron is passed through a sigmoid func-
tion, which converts the output into a probability between 0 and 1
representing the likelihood that a given monomer is within the
knotted segment of the polymer conformation. The true output
labels were generated using KymoKnot,31 which employs a
minimally-interfering closure algorithm followed by a standard
Alexander determinant calculation to identify the start and end
monomers of the knot. This data was then transformed into a
vector of 100 bits, i.e. a value of 0 or 1, corresponding to whether a
certain monomer was part of the knotted arc.

Unlike normal multi-class classification problems where the
classes are mutually exclusive, here we consider a multi-label
classification task, with mutually non-exclusive class labels (multi-
ple classes per prediction).39 To quantify the error in a multi-label
classification task, we use the binary cross-entropy (BCE) function,
suited to an output layer of sigmoid functions, given by

BCE ¼ 1

N

XN

i¼1
yi log ŷið Þ þ 1� yið Þ log 1� ŷið Þ (2)

where yi is the ith element in the true output vector, y, ŷi is the ith
element in the predicted output vector, ŷ, and N is the dimension
of the output label, corresponding to the length of the polymer in
our knot localisation task. This error is then used to optimise the
model weights.

Finally, to determine the accuracy of the model, we con-
verted the probabilities generated by the sigmoid function yprob

into binary values using a Heaviside step function (ypred =
Y(yprob � 0.5)), and compared the result to the true binary
value obtained using KymoKnot. The final accuracy is given by
the binary accuracy, i.e. Accuracy = correct/total.

Overall, we find that the StA-trained RNNs perform extremely
well, reaching above 90% accuracy in localising any knot that we
tested: the 5 simplest knot types, 01, 31, 41, 51 and 52 (Fig. 4). We
argue that this excellent performance relies on the effectiveness
of RNNs in handling multi-scale sequential data and tracking
multi-scale correlations along the polymer. This capability likely
plays a major role in allowing the network to recognise that
nearby monomers are more likely to be in the same knotted arc.
More precisely, we find that the StA writhe representation is
superior to all other descriptors, with a localisation accuracy of
93%, confirming its potential usefulness as a tool to help in knot
localisation tasks. For instance, in Fig. 4(D) we report the
prediction and ground truth for the 41 knot shown in Fig. 4(A)
and (B). In this case, the StA writhe perfectly agrees with the
KymoKnot ground truth, whereas the XYZ and unsigned StA
writhe yield less accurate localisation predictions.

In the ESI† (Fig. S9), we also used our StA-trained RNN model
to track the unknotting of a 51 knot tied on an open curve. Despite
the fact that the algorithm was not trained on open curves, the
results were surprisingly accurate. The model can be seen to
clearly detect the presence of short knotted arcs even at the final
step before complete unknotting. Once again, we find that the
StA-trained model is largely superior to the XYZ-trained model.

Overall, our results highlight the power of StA and StS writhe
in not only classifying but also localising knots. We acknow-
ledge that our results are non-exhaustive and more work will be
needed in the future to find the best architectures and models
to optimally solve these tasks.

3 Conclusions

In conclusion, we have discovered that local ‘‘segment-to-all’’ and
‘‘segment-to-segment’’ writhe (eqn (1)) are geometric descriptors

Fig. 4 (A) Example of a 41 knot where the knotted core is localised within B80% of the contour. (B) Signed and unsigned StA writhe profiles for the
conformation shown in (A). (C) Sketch of an LSTM (recurrent) NN, encoding the sequential information of the segments. (D) Profile of the knot probability
Pk(x) as a function of bead index x, as predicted by the RNN with different geometric features. The ground truth was generated using KymoKnot.
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of a curve that contain information about its underlying
topology. Our AI-driven approach can classify, using a single
quantity, complex knot topologies that would otherwise be
impossible to disentangle using a single algebraic invariant.
More specifically, we demonstrated, for the first time, that NNs
can utilise the information encoded in StA and StS writhe to
classify the curve topology significantly more accurately than
what can be achieved using the Cartesian coordinates of the
curve’s segments or other local geometric quantities (Fig. 1).
We hypothesise that our NNs trained on local 3D writhe
representations may numerically encode a new type of geo-
metric topological invariant. This conjecture is supported by
the fact that even a simple FFNN architecture can distinguish
the topology of knot mutants and composites that share several
algebraic knot polynomials (Fig. 2). Finally, we showed that our
new proposed geometric feature (eqn (1)) is robust to more
complex knots than the ones tackled in the literature so far;
indeed, we have managed to classify all 250 prime knots up to
10-crossings with 95% accuracy (Fig. 3). We argue that deeper
NN or convolutional NN may be able to push this result further,
to 410-crossings knots.

We stress that this method only requires a snapshot of a
knot embedding with a list of 3D coordinates for each polymer
segment and is trained on thermal conformations under a
readily tunable temperature. For this reason, it will require
longer training for longer polymers but should be essentially
insensitive to the number of non-essential crossings, as shown
by the excellent accuracy achieved in spherically confined
polymers.24 This feature is in marked contrast to standard knot
topology algorithms, that take 2D projections and need to
compute matrices as big as the number of crossings in a given
projection, irrespective of whether they are essential or not.1

Finally, we show that by deploying recurrent NNs, our geo-
metric StA descriptor can also solve knot localisation problems
(Fig. 4). More work will be needed in the future to determine
optimal NN architectures.

We note that though we do not have a full understanding of
how the NNs are using StA and StS writhe features to identify
knots, we hypothesise that they are classifying the patterns of
consecutive maxima and minima, thus capturing the entangle-
ment of pairs of segments, accounting for their chirality and
magnitude. This argument directly suggests that employing a
distance map between segments or other geometric ‘‘unsigned’’
representations will yield lower accuracies, due to the fact that
they do not capture the chiral nature of the entanglements
between segments. For these reasons, we believe that StS (or
StA) representations are possibly the best features to connect the
geometry of a given curve embedding, to its underlying topology.
A possible limitation of this method is that it is restricted to pair-
wise entanglement. Generalising the Gauss linking number to
higher-order relations is itself an active field of research, and it is
foreseeable that a local version of the Milnor triple linking
number40 may be used to generate 3D tensors of Brunnian links,
for example.

In conclusion, we established that StS/StA-trained NNs are
powerful tools to accurately classify and localise knots in

thermally equilibrated curves. Importantly, knot classification
and localisation are achieved without any explicit calculation of
Alexander or other algebraic invariants. We propose that the
local writhe – once fed through deep NNs – yields an accurate
map from the configurational space of a curve to its underlying
topology. The approach we reported in our paper naturally
lends itself to be applied to protein folding,34,41 DNA42,43

and, in general, entanglements in open curves and complex
systems.20,21,36,44–47 We hope that our results will also inspire
mathematicians and topologists to formulate new topological
invariants based on the geometrical embeddings of knotted curves.
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