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Machine learning-aided engineering of a
cytochrome P450 for optimal bioconversion
of lignin fragments†

Artur Hermano Sampaio Dias,ab Yuanxin Cao,a Munir S. Skafb and
Sam P. de Visser *a

Using machine learning, molecular dynamics simulations, and density functional theory calculations we gain

insight into the selectivity patterns of substrate activation by the cytochromes P450. In nature, the reactions

catalyzed by the P450s lead to the biodegradation of xenobiotics, but recent work has shown that fungi utilize

P450s for the activation of lignin fragments, such as monomer and dimer units. These fragments often are the

building blocks of valuable materials, including drug molecules and fragrances, hence a highly selective

biocatalyst that can produce these compounds in good yield with high selectivity would be an important step

in biotechnology. In this work a detailed computational study is reported on two reaction channels of two

P450 isozymes, namely the O-deethylation of guaethol by CYP255A and the O-demethylation versus

aromatic hydroxylation of p-anisic acid by CYP199A4. The studies show that the second-coordination sphere

plays a major role in substrate binding and positioning, heme access, and in the selectivity patterns. Moreover,

the local environment affects the kinetics of the reaction through lowering or raising barrier heights.

Furthermore, we predict a site-selective mutation for highly specific reaction channels for CYP199A4.

Introduction

Lignin is one of the most common polymer structures in nature
and is mainly present in the secondary cell wall of plants. The
lignin structure mostly contains aromatic and phenolic consti-
tuents bridged by ether bonds. Its biodegradation by peroxides
typically reduces these polymers to monomer and dimer units,1

that in nature form the building blocks of natural products. In
biotechnology, however, these lignin fragments have broad use
for the biosynthesis of fragrances, resins, and drug molecules,
to name just a few. As lignin is a sustainable compound from
plants, harnessing the biotechnological potential of such lignin
fragments is an attractive way to create a greener production
line in many industrial settings. However, often natural
enzymes produce a mixture of products making the reaction
of limited interest for industrial applications. On the other
hand, if through site-selective mutations the processes can be

optimized to reduce waste-products and enhance the selectivity
of specific products this will enhance their use. To gain insight
into the renewable synthesis of valuable chemicals from lignin
monomers, we performed a computational study targeting the
activation of lignin fragments by cytochrome P450 enzymes and
their product distributions.

Cytochromes P450s (CYPs) are highly efficient enzymes for
the biosynthesis and biodegradation of chemicals in nature
and are also found in various parts of the human body.2

Particularly, in the liver there are a range of CYP450 isozymes
involved in the biodegradation of xenobiotics while several
other CYP450 isozymes take part in the biosynthesis of hor-
mones. The CYPs typically act as mono-oxygenases and install
one oxygen atom from O2 into a substrate, usually through an
aliphatic or aromatic hydroxylation reaction.2 Although the
CYPs are not known to activate lignin chains, there is evidence
they react with lignin fragments, i.e. monomers, dimers, or
trimers. To be specific, two lignin-degrading CYP isozymes have
been identified recently, namely CYP255A, also known as GcoA,
and CYP199A4. The former has been shown to take on a
diversity of lignin monomers and react these through oxygen
activation to the corresponding products arising from O-
dealkylation and aromatic hydroxylation.3 Thus, CYP255A
binds the lignin fragment guaethol and performs the oxidative
O-deethylation to form catechol and acetaldehyde products,4

while the CYP199A4 isozyme reacts with the lignin fragment
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p-anisic acid to give p-hydroxybenzoate through O-demethylation.4b,5

On the other hand, the Nocardia corallina bacterium produces a
mixture of p-hydroxybenzoate and isovanillic acid products through
CYP activation of p-anisic acid,6 Scheme 1. Recent work on the
CYP199A4 S244D mutant showed enhanced reactivity as compared
to wildtype with alkyl hydroxylation as the dominant pathway in a
reaction with p-alkylbenzoic acids as substrates.7 In CYP199A2 the
engineering of active site Ser residues to an anionic amino acid led
to a change in regioselectivity of p-cresol activation.8 More recently,
Cong et al. engineered the H2O2 access channels in CYP199A4 and
showed enhanced peroxygenase activity.9 Similarly, biomimetic non-
heme iron complexes react p-anisic acid with H2O2 to form a mix-
ture of products originating from O-demethylation and ortho-
hydroxylation.10

In the past few years, several computational studies have been
reported on lignin-fragment activation by CYP isozymes.4,11 These
studies report on the mechanistic features of the reaction between
the active species of CYP isozymes, namely Compound I (CpdI or the
iron(IV)-oxo heme cation radical species) and lignin fragments. In
particular, the reaction mechanisms between CpdI and syringol
and guaiacol as substrates for O-demethylation reactions were
reported.4a,11a,b The studies showed that hydrogen atom abstraction
from a phenolic O–H group has low barriers and alternative path-
ways can only proceed when the phenol group of the substrate
points away from the heme and/or forms hydrogen bonds with the
protein. Furthermore, engineering cytochrome P450 substrate spe-
cificity can be a way of optimizing small compound production and
creating environmentally friendly production lines of valuable mate-
rials. Computational modelling was shown to be useful to predict
enzyme mutants and is regularly done alongside experiment.12 For
instance, computational guided protein engineering converted
S-mandelate synthase into R-mandelate synthase.13 In this work,
we combine machine learning, molecular dynamics, and quantum
mechanics approaches to investigate product distributions of engi-
neered protein structures and study the conversion of p-anisic acid
and guaethol by various P450 variants.

Methods
MD simulations

The guaethol-bound CYP255A and p-anisic acid-bound
CYP199A4 structures were taken from Protein Data Bank
(5OMS and 4DO1 PDB IDs, respectively).4a,5b,14 The two struc-
tures were cleaned of solvent molecules and two enzymatic

structures were created for the CYP199A4 system, namely one
where the substrate was retained in the crystal structure
coordinates and one where the substrate was removed and
then docked back into the structure with Autodock Vina.15

These two models for the CYP199A4 system had the substrate
in a similar orientation and resulted in enzyme folds that were
very close (ESI,† Fig. S5). Hydrogen atoms were added to each of
the structures using the H++ webserver, considering pH 7
conditions.16 All protonation states of titratable residues were
further manually inspected, and all carboxylate groups were in
their deprotonated forms, while all Arg and Lys side chains
were protonated. The histidine amino acid side chains in the
enzyme structures were all taken as singly protonated on either
the Nd or Ne atom. The heme was manually converted into a
Compound I (CpdI) structure by adding an oxygen atom to the
heme at a distance of 1.686 Å above the iron atom and the heme
forcefield parameters were determined with the MCPB.py rou-
tine available in Amber 2018.17,18 Subsequently, the LEaP
module as available in Amber 2018 was used to solvate each
structure with TIP3P water molecules in rectangular box with a
10 Å of padding in all directions, while sodium and chloride
ions were added to create a simulation box with net charge
zero.19 The protein and substrate atoms were described by the
ff14SB force field,20 and each system was subjected to 10 000
steps of energy minimization, that is 5000 of steepest descent
followed by 5000 of conjugate gradient. The energy-minimized
structures were then heated to 300 K and equilibrated in three
consecutive steps at constant pressure for 40 picoseconds, in
steps of 2 fs. An MD production run without geometric con-
straints was performed for 750 ns for CYP255A and 1000 ns for
its mutants.

DFT cluster model calculations

In this work we use QM cluster models, where we take the
oxidant, substrate and a second-coordination sphere region
that determines the shape and size of the substrate binding
pocket and helps with positioning the substrate and oxidant in
the enzyme. These cluster models have been used extensively to
gain insight into enzymatic reaction mechanisms, the electro-
nic and spectroscopic properties of short-lived intermediates of
catalytic cycles and predict product distributions of wildtype
and mutant structures.21 In particular, in recent studies on
caffeine activation by CYP1A2 cluster models of about 300
atoms were shown to reproduce the experimental product
distributions quite well even though the absolute barriers
differed by less than 4 kcal mol�1.22 Furthermore, using QM
cluster calculations on hydrogen atom abstraction from taurine
by the nonheme iron(IV)-oxo species of taurine/a-ketoglutarate-
dependent dioxygenase reproduced the experimentally
obtained free energy of activation to within 1 kcal mol�1.23 As
such, these cluster models of larger than 200 atoms should give
an accurate representation of enzymatic reactivity.

The snapshot selection from the MD runs to create cluster
models was based on two variables, namely the number of
hydrogen bonds between the substrate and the protein and the
root-mean-square-deviation (RMSD) of protein residues with

Scheme 1 Guaethol and p-anisic acid activation by P450 enzymes.
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respect to their average structure. Thus, the MD trajectory for
each system was analysed and the structure (snapshot) that was
geometrically the closest to the average structure of that MD
was selected. Scheme 2 shows the wildtype QM cluster models
of CYP255A with guaethol bound and CYP199A4 with p-anisic
acid bound. Thus, the CYP199A4 cluster model was composed
by 255 atoms and included a truncated heme with all side
chains replaced by hydrogen atoms, the iron atom with its
distal oxo and axial thiolate ligands, the p-anisic acid molecule,
two water molecules, and the side chains of the residues Arg92,
Ser95, Leu96, Glu99, Phe182, Val181, Phe185, Arg243, Ser244, Ser247,
Ala248, Gly249, Thr252 and Phe298. The CYP255A cluster model
was composed of 306 atoms and involved the truncated heme
group, the iron atom, the distal oxo group and the axial Cys
residue abbreviated as methylthiolate. In addition, the model
contained the guaethol substrate, two water molecules, and the
side chains of the residues Phe75, Ile80, Ile81, Phe169, the chain
Val241-Tyr242-Leu243-Leu244-Gly245-Ala246-Met247-Gln248-Glu249,
Ile292, the dimer Ala295-Thr296 and Phe395. The net charge of the
CYP255A QM cluster model was �1, whereas that of CYP199A4
was zero. All cluster model calculations were run without
geometric constraints as the use of constraints often leads to
a string of small imaginary frequencies that affects the accuracy
of the free energy values. However, the absence of constraints in
the structure and a comparison of the optimized geometries
with the crystal structure coordinates and the MD simulation
results show little changes in the position of the protein chains.

Geometry optimizations, analytical frequencies and con-
straint geometry scans were carried out in Gaussian-09 using
the unrestricted hybrid density functional method UB3LYP
with the LANL2DZ basis set with effective core potential on
iron, and the 6-31G* basis set for the C, H, N, O, and S atoms
(basis set BS1).24–26 Full geometry optimizations for the transi-
tion state structures were performed and their outcome was

confirmed by a frequency calculation. A single imaginary
frequency confirmed the correct vibrational distortion of the
structure to be a transition state, while local minima were
confirmed by finding real frequencies only. Single-point calcu-
lations were done with a continuum polarized conductor model
with a dielectric constant mimicking chlorobenzene (e = 5.7),27

and an enlarged basis set consisting of 6-311+G* basis set on H,
C, N, O, and S atoms and LACV3P+ basis set with core potential
on iron (basis set BS2). Free energies were calculated at a
temperature of 298 K. These methods have been validated
against experimental free energies of activation for biomimetic
oxygen atom transfer reactions and reproduced experimental
data within 3 kcal mol�1.28 In addition, using large cluster
models the selectivity patterns of substrate activation could be
predicted and gave the correct trends compared to experi-
mental product distributions.29

Results and discussion
Wildtype MD simulations for CYP255A and CYP199A4

We started the work from the crystal structure coordinates for
CYP255A from the protein databank file (pdb) 5OMS, while we
used the 4DO1 pdb for CYP199A4.4a,5b,14 We then manually
created a CpdI active site in each structure by addition of an oxo
group to the sixth ligand position of iron from the heme to
form the iron(IV)-oxo heme cation radical species. Substrates –
guaethol and p-anisic acid – were either kept as they were in the
crystal structures or re-docked onto the binding pocket (ESI,†
Fig. S4–S6). Thereafter, an all-atom NPT molecular dynamics
(MD) simulation was performed for each system, see ESI,†
Fig. S7–S20. The all-atoms root-mean-square-deviation (RMSD)
for each MD trajectory stabilizes within 20–30 ns (see ESI,†
Fig. S7 and S14) for the protein, substrate and heme atoms. We

Scheme 2 QM Cluster models of CYP255A with guaethol bound (left) and CYP199A4 with p-anisic acid bound (right) studied for wildtype protein
reactivities.
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then plotted the RMSD values with respect to the average
structure and show these plots for CYP255A and CYP199A4 in
Fig. 1. As can be seen the structures are highly stable with
minimal changes along the MD run that preserve the overall
fold of the protein.

We also analysed the position of the substrate in the binding
pocket along the MD simulations on CYP255A and CYP199A4,
see Fig. 1(c) and (d). Thus, in CYP199A4 substrate p-anisic acid
is bound tightly through its carboxylate in a salt bridge inter-
action with the side chain of Arg92 at a distance well below 2 Å.
In addition, there are short hydrogen bonding interactions
between the substrate and the alcohol groups of Ser95 and
Ser247. In CYP255A, by contrast, substrate guaethol has no
carboxylate group and only an ether and phenol group available
for hydrogen bonding interactions with the protein. As such it
is substantially weaker bound than p-anisic acid in the CYP450
active site. An analysis of nearby protein residues (Fig. 1(d))
gives the shortest interactions with the peptide chains of Phe75

and Val241.

Wildtype CpdI calculations for CYP255A and CYP199A4

The most representative frame from each trajectory (dashed
lines in Fig. 1(a) and (b)) were used to create QM cluster models
of the active site with substrate, oxidant, and second coordina-
tion sphere included. Scheme 2 above summarizes the wildtype
structures and which residues of the second coordination
sphere were included. These cluster models have been shown
to reproduce experimentally determined product distributions

and rate constants accurately and are good mimics for enzyme
reactivity.22,23 Model I is based on the CYP255A protein struc-
ture and had 306 atoms, whereas Model II is based on
CYP199A4 and had 255 atoms, in both cases with their respec-
tive substrates in the same configuration as in their crystal
structures. We conducted DFT calculations for the individual
systems and optimized all structures in the gas phase without
constraints, considering both doublet (S = 1/2) and quartet
(S = 3/2) spin states, see Fig. 2. Previous calculations on CYP
reactivity showed CpdI to react via multistate reactivity patterns
on competing doublet and quartet spin state surfaces and
consequently we started the calculations from a CpdI system
with nearby substrate, i.e. the reactants complex RC.30 More-
over, experimental work of Green et al. identified CpdI as the
active species that reacts with substrate.31 The two spin states
are close in energy (within 1 kcal mol�1) for the two isozymes
and similar first coordination sphere bonding patterns are seen
(Fig. 2). In particular, the Fe–O distance falls within a small
window of 1.633–1.645 Å, while the Fe–S distance ranges from
2.506–2.584 Å. These optimized geometries match previously
obtained calculations with QM cluster models or QM/MM
well.30

Reaction of CYP255A with guaethol

Next, we explored potential reaction mechanisms for the cluster
models and for CYP255A we studied ethoxy group hydroxyla-
tion as a precursor to the O-deethylation reaction. The results
for guaethol activation by a DFT cluster model of CpdI of

Fig. 1 Snapshot selection and average substrate–protein distances as obtained from the MD simulations. RMSD is plotted with respect to the average
structure from the MD simulation. (a) RMSD of CYP255A with the selected snapshot highlighted with a dashed line. (b) RMSD of CYP199A4 with the
selected snapshot highlighted with a dashed line and the number of hydrogen bonds between substrate and active site residues for each snapshot on the
right. (c) Substrate–protein distances during the MD simulation on CYP255A. (d) Substrate–protein distances during the MD simulation on CYP199A4.
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CYP255A is shown in Fig. 3. The reaction starts with a hydrogen
atom abstraction from the secondary C–H bond of the ethoxy
group of guaethol via a transition state TS1CYP255A to form a
radical intermediate IM1CYP255A. Thereafter a radical rebound
via transition state TS2CYP255A leads to the alcohol products
complexes PR1CYP255A. Constraint geometry scans for the radi-
cal rebound pathways on either spin state, however, find very
small barriers of less than 2 kcal mol�1 and hence are identi-
fied in Fig. 3 as ‘‘o 0 kcal mol�1’’. This is not unusual as often
the radical rebound is very small in P450 calculated reaction
mechanisms.32 The rate-determining step for guaethol activa-
tion by P450 CpdI is the initial hydrogen atom abstraction and
has a free energy of activation of DG‡ = 6.2 kcal mol�1 on the
quartet spin state surface and DG‡ = 10.6 kcal mol�1 on the
doublet spin state surface. These barriers are very small and
hence the reaction will proceed rapidly to form the alcohol
product complexes with high exergonicity.

The hydrogen atom abstraction transition states are shown
on the right-hand-side of Fig. 3. Both structures bind the
phenol group through a hydrogen bonding interaction with
the peptide chain between Val241–Tyr242 and thereby position
the ethoxy group in the direction of the heme. In the transition
state structures the O–H distance is shorter than the C–H
distance, which implicates a product-type geometry, where
the structure is closer to the IM1 than the RC configuration.
In particular, the O–H distance is 1.257 Å in 2TS1CYP255A and
1.208 Å in 4TS1CYP255A, while the C–H distance is 1.300 Å in
2TS1CYP255A and 1.348 Å in 4TS1CYP255A. Both transition states
are characterized by a large imaginary frequency for the O–H–C
stretch vibration. The structure and imaginary frequency of the
calculated transition states matches previous calculations on
transition states for hydrogen atom abstraction reactions
reported previously.33

Reaction of CYP199A4 with p-anisic acid

For CYP199A4 the activation of p-anisic acid was studied for
aromatic hydroxylation of the C3-position of the substrate
as well as O-demethylation of the methoxy group. Thus,
O-demethylation starts with a hydrogen atom abstraction tran-
sition state (TS1) to form a radical intermediate (IM1), which
after OH rebound leads to the alcohol product complexes PR1.
We ran extensive geometry scans for the OH rebound steps for
the various models in all spin states and in all cases the OH
rebound was facile and led to the formation of the alcohol
product complexes with negligible barrier. This alcohol product
PR1 is expected to release the alcohol product that in solution
or with the help of a proton leads to formaldehyde release.34

The alternative pathway tested from reactants was aromatic
hydroxylation, which starts with an electrophilic transition
state TS2 for C–O bond formation leading to an electrophilic
intermediate IM2. In aromatic hydroxylation, the pathway was
shown to proceed with proton transfer from the ipso-position

Fig. 2 UB3LYP/BS1 optimized geometries of the reactant CpdI cluster
models of CYP255A and CYP199A4 WT with substrate bound. Bond
lengths are in Å. Quartet spin data in parenthesis.

Fig. 3 UB3LYP calculated pathways for ethoxy group hydroxylation of guaethol by CYP255A wildtype model. Free energies (DG in kcal mol�1) are with
energies at BS2 level of theory and with ZPE, thermal and entropic corrections included at 298 K. Also shown are optimized geometries of the
rate-determining transition states with distances in Å and angles in degrees.
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to the heme followed by a shuttle to the oxygen atom to form
phenol products.35 In the calculations reported here the transi-
tion states for proton shuttle were small and negligible and the
electrophilic transition state is rate-determining.

The transition state geometries were fully optimized and
confirmed by frequency calculations. Reaction pathways for
O-dealkylation were calculated for both CYP255A and
CYP199A4, while aromatic hydroxylation was also explored for
CYP199A4. The full set of DFT results are provided in the (ESI†).
Fig. 4 shows the calculated free energy landscape and rate-
determining transition states for aromatic hydroxylation and
O-demethylation of p-anisic acid activation by CYP199A4. For
both pathways, the initial transition state, TS1 or TS2, is rate-
determining, while subsequent barriers are small and lead to a
highly exothermic pathway to form products. The wildtype
hydrogen atom abstraction barriers are DG = 23.4 kcal mol�1

on the doublet spin surface and DG = 25.0 kcal mol�1 on the
quartet spin state. By contrast, the aromatic pathway has free
energies of activation of DG = 27.5 kcal mol�1 on the low-spin
and DG = 25.2 kcal mol�1 in the high-spin for the wildtype
structure. A difference in free energy between the lowest free
energy barrier for aliphatic hydrogen atom abstraction and
electrophilic addition transition state is DG = 1.8 kcal mol�1.
Using transition state theory, this free energy difference would
correspond to a product ratio of 95 : 5 for O-demethylation
versus aromatic hydroxylation. Indeed, experimental work
detected products originating from O-demethylation only.5

Geometrically, the 4,2TS1WT structures are relatively central
with similar C–H and O–H distances. They also are character-
ized with a large imaginary frequency (of i1323 cm�1 for 4TS1WT

and i1834 cm�1 for 2TS1WT) representative of a hydrogen atom
transfer that will incur a significant amount of quantum
chemical tunnelling.36 Structurally, the Fe�O and Fe�S dis-
tances in the transition state structures in Fig. 4 match those in

Fig. 3 for CYP255A. Electronically the two models give the same
electron transfer pathways that lead to Fe–O elongation due to
more antibonding character along this bond. The hydrogen atom
abstraction barriers for CYP199A4 are very central with C–H and
O–H distances of 1.288 (1.331) and 1.260 (1.241) Å in the doublet
(quartet) spin state, respectively. These distances match previous
calculations on hydrogen atom abstraction transition states
reported for CYP450 reaction mechanisms.30,37

The aromatic hydroxylation transition states have a long C–
O bond of 1.837 Å for both spin states and also lead to Fe–O
elongation. These structures match aromatic hydroxylation
transition states reported previously.35,38

Unsupervised learning for selecting the best CYP199A4 mutant

Thereafter, we searched for mutants that affect the regioselec-
tivity of the reaction. Close inspection of the wildtype
CYP199A4 crystal structure and its MD trajectory has led us
to note the importance of the side chains of specific amino acid
residues in the substrate-binding pocket. Intermolecular salt-
bridges and/or hydrogen bonding interactions between sub-
strate and protein inside the substrate binding pocket lock the
substrate into a specific orientation that guides catalysis. Thus,
mutating such residues and moving the position of these salt-
bridges would alter the catalysis and lead to different product
distributions. We carried out a machine learning approach
combined with MD simulations to obtain a matrix of key
mutant outcomes, as shown in Fig. 5. A set of eight CYP199A4
mutants (ESI,† Table S1 and Fig. S4) was submitted to 1 ms MD
simulations under NPT conditions. The trajectory of each
system was divided into separate windows of 100 ns, and each
window, alongside with wildtype trajectories, became a data-
point of a dataset with each column/feature referring to specific
geometrical or energetic descriptors of that trajectory bin (ESI,†
Fig. S6, S14–S28). Our initial dataset features focused on (a) the

Fig. 4 UB3LYP calculated pathways for aromatic hydroxylation (from RC to the left) and methoxy group hydroxylation (from RC to the right) for
CYP199A4 wildtype model. Free energies (DG in kcal mol�1) are with energies at BS2 level of theory and with ZPE, thermal and entropic corrections
included at 298 K. Also shown are optimized geometries of the rate-determining transition states with distances in Å.
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Euclidean distances between the distal oxo ligand and atoms C3,
C7, and C8 of the substrate, as well as the Euclidean distance
between the latter and all four porphyrin nitrogen atoms; (b) the
substrate RMSD; (c) the root-mean-square-structural-fluctuation
(RMSF) of the active site residues, in combination with the
Coulomb and van der Waals interactions between the substrate
and these residues; (d) the angle Fe–O3SUB–C1SUB; and (e) dihedral
SAXIAL–Fe–ODISTAL–C4SUB. All features were decorrelated by means
of principal component analysis (PCA),39 and a new dataset
containing only the principal components that explained a rele-
vant share of variance (higher than 0.01) was created (ESI,†
Fig. S29). Then, the best clustering of this new dataset was
explored based on the Calinski–Harabasz index, the inertia, the
silhouette coefficient, and the Davies–Bouldin index,40 which all
converged to the same result (ESI,† Fig. S30).

Thus, the inertia measures how compact the clusters are and
its metric is calculated from the sum of the squared distances

between each datapoint and its nearest cluster centre. There-
after, the best value of the inertia metric is assessed by the
elbow method, which indicates the number of clusters at which
it starts to level off.40a The Calinski–Harabasz index was also
used and evaluates the ratio of between-cluster dispersion and
within-cluster dispersion. It is calculated as the ratio of the sum
of between-cluster dispersion and within-cluster dispersion –
higher values indicate better-defined clusters.40b We also
looked into the silhouette coefficient, which measures how
similar a datapoint is to its own cluster compared to other
clusters. The silhouette coefficient has a value that ranges from
�1 to 1, whereby a high silhouette score indicates that the
datapoint is well matched to its own cluster and poorly
matched to neighbouring clusters.40c Lastly, the Davies–Boul-
din index was calculated and measures the average similarity
between each cluster and its most similar cluster by taking into
account both the within-cluster and between-cluster distances.
In particular, lower values indicate better clustering, and a
value of 0 indicates perfect clustering.40d Finally, the K-means
algorithm as implemented in Scikit-learn package was used to
group all datapoints into three clusters (Fig. 5(a)).41

The best mutant was chosen based on Jaccard Similarity
scores,42 by comparing each CYP199A4 variation (wildtype and
mutants). The reason for this is that variations clustered
together tend to behave similarly and lead to similar products
distributions. The aim of this machine learning strategy was to
find a mutant that does not cluster with any wildtype datapoint,
and, therefore, gives a unique structure with a potentially
unique product distribution. To this end, we searched for
mutants whose data show no resemblance to wildtype, and,
based on the grid shown in Fig. 5(b), mutants C and D were
identified as the most suitable structures. While variant D
contains mutation Arg92Leu/Leu396Arg, the C variant has
mutation Ser244Ala/Ala248Thr. As such, in variant D the posi-
tion of the active site Arg residue is moved in the protein and,
as this side chain forms a salt-bridge with the carboxylate group
of the substrate, it may position the substrate differently in the
active site and thereby produce alternative products. The dou-
ble mutation in D does not change the lipophilicity of the active
site and just moves an Ala and Arg residue within the binding
pocket. On the other hand, in mutant C the Ala residue is
moved, but the Ser residue is replaced by Thr which may have
an impact on the protein lipophilicity of the substrate binding
pocket.43 To further test the effect of the mutations we applied
the evolutionary scale model44 and compared the structures of
wildtype with the eight mutants, see Fig. S31 (ESI†). In general,
the differences are minor and not expected to give major
changes in structure and activity. By contrast, in mutant C a
hydroxyl group in the active site is moved and its effect may be
more subtle on catalysis. Therefore, we reasoned that mutant D
has the largest potential to cause changes in catalysis and
selectivity in the enzyme and we decided to proceed with
mutant D only. Moreover, the MD simulation for mutant D
shows the highest dissimilarity to all other variations (Fig. 5(b)),
and, hence, has the higher potential for unique product
distributions.

Fig. 5 CYP199A4 mutant clustering and selection: (a) a t-SNE plot that
illustrates how all datapoints of the PCA-transformed dataset are grouped
in three distinct clusters; (b) a heatmap derived from the similarity matrix
based on the pairwise Jaccard similarity between all CYP199A4 variations,
according to the cluster labels of each datapoint – values range from
0.00 (completely different) to 1.00 (completely identical).
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Computationally predicted mutants and their reactivity

Next, we performed calculations on the mutant and highlight
the difference of the transition state structure with particular
emphasis on the position of the Arg residue in the substrate
binding pocket that forms a salt bridge with the substrate
carboxylate. We calculated the aromatic hydroxylation of the
C3-position (via TS2MUTD) and hydrogen atom abstraction from
the methoxy group (via TS1MUTD), see Fig. 6. Both pathways are
followed by either barrierless rebound or small proton shuttle
barriers and give products with high exothermicity. As such
the TS1MUTD and TS2MUTD transition states are the rate-
determining steps for aliphatic and aromatic hydroxylation.
The optimized hydrogen atom abstraction transition states are
shown in Fig. 6. They have a product-type geometry with short
O–H and long C–H distances. To be specific, the O–H distances
are only 1.160 and 1.157 Å, whereas a typical O–H distance in an
iron-hydroxo complex is 1.0 Å. The C–H distances have elon-
gated to 1.371 Å (doublet) and 1.385 Å (quartet) in the transition
state structures.

As can be seen from Fig. 6 the mutant exhibits high aromatic
hydroxylation barriers (TS2MUTD), well over DG 4 40 kcal mol�1,
while the hydrogen atom abstraction barriers (TS1MUTD) are DG =
27.2 kcal mol�1 for both spin states, which will render hydroxyla-
tion unlikely to proceed at room temperature conditions. Also, a
Boltzmann distribution over the barrier heights for the mutant
reaction predicts 499% O-demethylation and little aromatic
hydroxylation. Our results, therefore, show that mutant D indeed
reacts with p-anisic acid to give highly selective O-demethylation
reactions and should do this reaction with even higher selectivity
than wildtype. However, as the experimental work on wildtype

gives mostly O-demethylation products, the machine learning
process itself did not lead to a major shift in the product
distributions. Nevertheless, the results clearly show that sub-
strate is positioned tightly with its aromatic C–H bonds point-
ing away from the heme at large distances. As such it is better
positioned for selective hydroxylation of the methoxy group and
may be more suitable for industrial applications than wildtype
protein. In particular, our variant favours the production of
4-hydroxybenzoate appreciably, and no other product should be
expected from CYP199A4-mediated catalysis.

An analysis of the optimized geometries highlights the
differences with wildtype structures. In particular, the struc-
tural differences between mutant D and WT CYP199A4 induces
a substrate ‘‘tilting’’ in the active site of the former. Thus, the
substrate in mutant D is positioned more upright, while in the
wildtype is more sideways positioned (cf. Fig. 4 and 6). The
strong polar interaction between the active site Arg residue and
the carboxylate of the substrate moves the substrate in a
different orientation. Interestingly, the distance analysis of
the MD trajectory for the mutant as compared to wildtype gave
the C3-atom of substrate closer to Cpd I than the methoxy C–H
group, and therefore implicated favourable aromatic hydroxyla-
tion for the mutant. Consequently, although the MD trajectory
predicts dominant aromatic hydroxylation over O-demethylation
for mutant D, this is contradicted by high level quantum chemical
calculations that show that the aromatic hydroxylation channel
incurs high energy barriers. Consequently, MD simulations alone
may give incomplete suggestions on product distributions and
reaction channels. A similar conclusion was obtained when we
ran extensive MD simulations on caffeine binding to CYP1A1

Fig. 6 UB3LYP calculated pathways for aromatic hydroxylation (from RC to the left) and methoxy group hydroxylation (from RC to the right) for
CYP199A4 Mutant D. Free energies (DG in kcal mol�1) are with energies at BS2 level of theory and with ZPE, thermal and entropic corrections included at
298 K. Also shown are optimized geometries of the rate-determining transition states with distances in Å.
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enzymes, where the distance distributions obtained from long
MD simulations predicted the wrong product distributions as
compared to experiment.22 DFT cluster calculations, however,
gave the correct product distributions despite the fact the
starting distance for the favourable channel were longer than
for the lesser favourable channel.

This ‘‘tilting’’ of the substrate likely stems from the reposi-
tioning of Arg76, which creates a strong salt-bridge with the
carboxylate group of the substrate. Leu380, in its turn, is likely to
interact with the methoxy group. Empirical observations like
these helped choose the mutations that were explored in this
work. Moreover, our DFT results on mutant D show that
engineering CYP199A4 will change the ideal substrate-binding
orientation and can lead to a more selective reaction process
and the complete elimination of aromatic hydroxylation by-
products in the process. Furthermore, the barriers and struc-
tures obtained for O-deethylation of guaethol by CYP255A CpdI
are comparable to those obtained in previous studies that
involved this enzyme and other lignin fragments.4 Clearly, the
second coordination sphere in the substrate binding pocket
hamper the aromatic hydroxylation pathway and prevent ideal
approach of the substrate to CpdI. These results provide further
insight into how lignin monomers are transformed into valu-
able chemicals through P450 catalysis.

Conclusions

In summary, the machine learning-aided strategy presented
here for CYP199A4 mutant selection is a unique way to select
the desired species amongst many variations: if one has a
reference, either a positive or negative control, and a means
to calculate the similarity between all variations and this
reference – in our case, the molecular dynamics behaviour-,
then it should be simple to find the species which is closest
(or farthest) from the reference. In our specific case, we believe
that future enzyme-engineering strategies can greatly benefit
from this methodology if there is access to mutant molecular
dynamics data or any other type of data that represents the
behaviour of interest. In a case-to-case scenario, it is safe to
assume that the critical stage of such protocol is the choice of
collective variables that will describe the event of interest.
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