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D-Machine learning for quantum chemistry
prediction of solution-phase molecular properties
at the ground and excited states†

Xu Chen, Pinyuan Li, Eugen Hruska and Fang Liu *

Due to the limitation of solvent models, quantum chemistry calculation of solution-phase molecular

properties often deviates from experimental measurements. Recently, D-machine learning (D-ML) was

shown to be a promising approach to correcting errors in the quantum chemistry calculation of solvated

molecules. However, this approach’s applicability to different molecular properties and its performance

in various cases are still unknown. In this work, we tested the performance of D-ML in correcting redox

potential and absorption energy calculations using four types of input descriptors and various ML

methods. We sought to understand the dependence of D-ML performance on the property to predict

the quantum chemistry method, the data set distribution/size, the type of input feature, and the feature

selection techniques. We found that D-ML can effectively correct the errors in redox potentials

calculated using density functional theory (DFT) and absorption energies calculated by time-dependent

DFT. For both properties, the D-ML-corrected results showed less sensitivity to the DFT functional

choice than the raw results. The optimal input descriptor depends on the property, regardless of the

specific ML method used. The solvent–solute descriptor (SS) is the best for redox potential, whereas the

combined molecular fingerprint (cFP) is the best for absorption energy. A detailed analysis of the feature

space and the physical foundation of different descriptors well explained these observations. Feature

selection did not further improve the D-ML performance. Finally, we analyzed the limitation of our D-ML

solvent effect approach in data sets with molecules of varying degrees of electronic structure errors.

1 Introduction

The accurate and rapid prediction of chemical properties in the
solution phase, where a large portion of real-life chemistry
happens, is an essential step toward rational compound design
and discovery.1–4 Although quantum mechanical (QM) meth-
ods combined with implicit and explicit solvent models have
made significant progress to model solvated molecules,5–7 it is
still challenging to make accurate predictions. In implicit
solvent approaches, solvent molecules are treated implicitly
as a polarizable continuum, and the solvation free energy is
evaluated as the electrostatic interaction between the solute
and the continuum plus some cavitation energy contribution.
Such models are efficient but not accurate enough compared to
experimental results. In contrast, explicit solvent models can
produce more accurate results by treating the solvent explicitly

and performing ensemble averages on solvation configurations
sampled by molecular dynamics or Monte Carlo simulations.
However, the higher computational costs related to configu-
ration sampling8 and force field parameterization9 make it
harder to be used for high-throughput prediction.

In the last few years, machine learning (ML) has emerged as
an invaluable tool to improve the efficiency and accuracy of
molecular property prediction in the solution phase. ML can
directly map a molecule structure to its property, leading to the
rapid prediction of molecular properties at almost no computa-
tional costs compared to QM calculations. It has been used to
predict the aqueous properties such as solvation free energy,10–12

photophysical properties,13,14 pKa,15 etc. However, such ML models
rely on the availability of large, high quality training sets of
molecular properties in the solution phase, which are scarce
compared to the many gas-phase molecular datasets available.
The prediction is expected to have decent accuracy for molecules
inside chemical space spanned by the training set molecules. For
molecules with distinct chemistry from the training set, QM
calculations are still needed.

A different approach to utilizing ML is to train models to
improve the QM calculation accuracy. Such an idea, usually
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referred to as delta machine learning (D-ML), was originally
introduced by Ramakrishnan et al.16 to improve the accuracy
of gas-phase electronic structure calculations. For electronic
structure calculations, most of the related physics has already
been accounted in the low-level methods, such as density
functional theory (DFT), but the correlation energy can only
be accurately obtained from the computationally demanding
high-level methods. Hence, by training a D-ML model to predict
the electronic energy difference between the low-level and high-
level methods, one can reach chemical accuracy at a low cost.
Since the remaining deviations from reference results are typically
smaller and possibly smoother, D-ML models have demonstrated
unprecedented chemical accuracy and transferability.16 D-ML is
recently generalized to QM calculations in the solution phase by
different research groups, where the models were trained to
predict the difference between the implicit solvent model calcu-
lated and experimentally measured properties in the solution
phase. For example, Weinreich et al. built a D-ML model to
predict solvation free energy and achieved an accuracy on par
with state-of-the art physics-based approaches on the FreeSov
dataset.11 Our recent work applying D-ML to reduce errors relative
to experimental results in redox potential calculations has also
exhibited improved accuracy compared to previously reported
calculations without ML correction.17

Despite our previous successful application of D-ML in redox
potential prediction, many fundamental questions remain to
be answered. (1) Can this approach be generalized to improve
excited-state molecular property prediction? (2) For other prop-
erties, how sensitive are the D-ML models to DFT functionals
and ML method choice? (3) Which input descriptors are most
suitable for the D-ML solution-phase property? (4) Does the
optimal choice of descriptors depend on the property of inter-
est, dataset size, or other facts about the dataset? (5) What are
the limitations of this D-ML solvent effect approach? In this
work, we aim to answer these questions by comparing D-ML
models built based on four types of molecular descriptors. We
will analyze the performance of the D-ML models for predicting
a ground-state property, redox potential, and an excited-state
property, UV/vis absorption energy. Detailed discussions will be
made to answer the questions above.

2 Computational methods
2.1 Organization of data set

ML model training was carried out on two datasets of ground-
and excited-state molecular properties in the solution phase.
The ROP31318 data set was employed to test the performance of
D-ML models for a representative ground-state property, redox
potential. It is composed of 313 experimental redox potential
records of organic and organometallic redox couples in four
different solvents, including acetonitrile (MeCN, e = 35.69),
water (e = 78.36), dichloromethane (e = 8.93) and dimethylfor-
mamide (DMF, e = 37.22). The computational redox potentials
were calculated in our previous work17 using the Nernst
equation:

E� ¼ �DG
�
sol

neF
� E� REFð Þ (1)

Here, DG
�
sol is the free energy change of the reduced or oxidized

process under standard conditions. ne is the number of electrons
transferred in the process, which is 1 in our dataset. F is the
Faraday constant. E1(REF) is the absolute potential of the
ferrocene/ferrocenium (Fc+/Fc) redox couple, which is used as
the internal reference for this dataset to reduce experimental19,20

and computational errors.21,22 DG
�
sol was estimated as:

DG
�
sol ¼ EPCMðredÞ � EPCMðoxÞ (2)

where EPCM(red) and EPCM(ox) are the single-point energy of
the reduced and oxidized species from PCM calculations, respec-
tively, including electronic energy and solvation energy. The
thermodynamic correction terms were omitted here because of
their limited contributions to accuracy and the high computa-
tional cost of frequency analysis.17 Due to the larger errors in the
calculation of the organometallic system, the ROP313 data set was
divided into an organic (OROP) subset and an organometallic
(OMROP) subset with 193 and 120 individual redox couples,
respectively.18

The refined optical absorption spectra (ROAS) data set was
employed to test the performance of D-ML models for a
representative excited-state property and the peak of solution-
phase UV/vis absorption spectra is observed. The ROAS data set is
a subset of the optical absorption spectra (OAS) data set,23 which
contains 1447 individual molecules extracted from the auto-
generated absorption energy database.23 We performed time-
dependent density functional theory (TDDFT) calculations in the
implicit solvent on the OAS data set to obtain the computational
absorption energies. To ensure the quality of the D-ML model
training, we carefully refined the OAS data set by excluding
records with high uncertainties. The excluded records include
15 single atom structures with a disproportionately large differ-
ence between experimental and computational results, 28 incor-
rect molecular information, 4 molecules with TDDFT convergence
problems, 4 molecules without available experimental data and 1
molecule containing 5th row transition metals (list available in
Figshare).24 After cleaning the dataset, we obtained 1395
valid unique records in nine solvents. This refined dataset pos-
sesses molecules with the number of atoms ranging from 2 to 242
and total electrons ranging from 18 to 922 (Table 1). The types
of molecules include simple inorganic compounds (such as
sodium methoxide), organic compounds, and organometallic
compounds.

2.2 DFT calculation methods

TeraChem quantum chemistry software25 was used to perform
all geometry optimizations and single-point energy calculations.
Solution-phase geometry optimizations were carried out using a
TRIC optimizer26 with the default tolerance of 4.5 � 10�4 hartree
per bohr for the maximum gradient and 1 � 10�6 hartree for
the change in self-consistent field (SCF) energy between steps.
We used the conductor-like polarizable continuum model
(C-PCM), implemented in TeraChem,5,27 for all solution-phase
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calculations. The solute cavity was built using default Bondi’s
van der Waals radii28 for available nonmetal elements in
TeraChem, standard van der Waals radii from the literature29

for metals, both scaled by a factor of 1.2 and a default PCM cavity
density (17–110 points per atom).

For the geometry optimization calculations of redox potential,
we used an optimal functional/basis set combination shown in our
previous paper,17 including the B3LYP functional with the DFT-D3
empirical dispersion correction, combined with LANL2DZ30 effec-
tive core potentials for the transition metals, I, or Br and the 6-31G*
basis for the remaining. To test the sensitivity of different
ML models for various DFT functionals, we used the B3LYP
optimized geometries but a series of range-corrected hybrid
(oB97,31 oB97X,31 oPBEh,32 CAM-B3LYP)33 and hybrid (B3LYP,34

PBE0)35 functionals with D3 van der Waals corrections36 to calcu-
late single-point energies to obtain redox potentials. The standard
range-separation parameters, o = 0.2 bohr�1 and o = 0.3 bohr�1,
were used for oPBEh and CAM-B3LYP functionals, respectively.

For absorption energy calculations in the solution phase, we
performed time-dependent density functional theory (TDDFT)
calculation with Tamm-Dancoff approximation (TDA),37 with
non-equilibrium solvation treated with the linear response polar-
izable continuum model (LR-PCM).38 For each molecule, the
solute geometry was first optimized at the ground state with
DFT, followed by LR-PCM TDA calculation with the respective
DFT functional to obtain the excitation energies and oscillator
strengths of the ten lowest singlet excited states. A closed shell
Kohn–Sham reference is always used because all molecules in the
ROAS dataset have singlet ground states. A broadened spectrum
was then generated by convoluting the stick spectra with a
Gaussian function of a full width at half maximum (FWHM) of
0.25 eV. The peak absorption energy of the convoluted spectrum
was read out to be compared with the experimental spectrum
peak. To test the sensitivity of ML models, the calculations were
also repeated for a set of exchange-correlation (XC) functionals
(B3LYP, PBE0, oB97, oB97X, oPBEh with o = 0.2 bohr�1, CAM-
B3LYP with o = 0.3 bohr�1), with the basis set kept the same as
used in redox potential calculations. For each ROAS record, the
solvent static dielectric constant, e, and the ‘‘fast’’ or optical
dielectric constant, eN, were obtained from the literature,39 with
eN calculated as the square of the solvent’s refractive index.

2.3 Machine learning models

We investigated the performance of ML models to correct
errors in redox potential and absorption energy calculations.

We tested four types of molecular descriptors as input features
and the calculation errors as the output. Different types of ML
models were trained with scikit-learn,40 including linear (lin)
regression, random forest (RF) regression, gradient boost (GB)
regression, kernel ridge regression (KRR), and artificial neural
network (ANN). The input features were first normalized to have
zero mean and unit variance. The data set was then randomly
split into a training set (80%) and a test set (20%). The hyper-
parameters for all models were tuned using Hyperopt41 by 5-fold
cross-validation on the training set (Table S1, ESI†), i.e., 64% of
overall data as the sub-training set and 16% of overall data as the
validation set. With the optimized hyperparameters, the model’s
performance was then evaluated by retraining the whole training
set while predicting the test set. The mean absolute error (MAE)
was used to gauge all the performance.

2.4 Multi-reference character analysis

We performed the multi-reference (MR) diagnostic on the OMROP
data set by using the open-source toolkit, MultirefPredict.42

Specifically, rND diagnostics,43,44 the ratio of the static correlation
to the total correlation (i.e., static and dynamical correlation), has
been applied to reflect MR character of a molecule. Both static
and dynamical correlation can be efficiently obtained from finite-
temperature DFT (FT-DFT)45 calculations. All the DFT calculations
that employed the PBE46 functional with the basis set remained
the same as used in redox potential calculations. The FT-DFT
calculations employed the recommended47 temperature for PBE
(5000 K) with Fermi–Dirac smearing.

3 Feature construction

In order to correct the errors in solution-phase property calcu-
lations, the information encoded in the error source needs to
be converted into an appropriate number of input features.
Unlike gas-phase property predictions, where errors can only
come from the electronic structure methods and experimental
measurements,48 solvent models can also potentially contri-
bute to errors in solution-phase property predictions. Due to
the limited size of our data set, we focused on the classes of
features meeting the criteria of (1) providing expressive infor-
mation for both the solute and the solvent and (2) satisfying
requirements of low dimensionality and low cost of
acquiring.49 Specifically, we tested the following four types of
descriptors for solvated molecules (Fig. 1):

Table 1 Characteristics of each data set: metal identity, molecular net charge, spin multiplicity, molecular size in a number of atoms, and the number of
solvents

Redox potential (313) Absorption energy

OROP (193) OMROP (120) ROAS (1395)

Metal None Ni, Mn, Co, Cr, Rh, Ru, Ti, Os, Fe, Ir In, Ag, Ti, Se, Fe, Ru, Cd, Zn, Mg
Charge �2 to 2 �3 to 3 0
Spin 1 and 2 1 to 6 1
Size 5 to 82 13 to 79 2 to 242
Solvent type 2 4 9
Notation E1 Eabs
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3.1 Physics-inspired solute and solvent descriptors

The solute and solvent (SS) descriptor is a physically inspired
descriptor for solvent–solute interactions in molecular systems.
It was first introduced in our work for correcting the errors in
redox potential calculation17 and will also be used to correct the
errors in calculated solution-phase UV/vis absorption energy in
this work. The solute net charge, dipole moment, spin multi-
plicity, and nuclear repulsion energy of the molecule are
included to describe the solute molecule. The solvent is
described by the implicit solvation cavity surface area and
volume, PCM solvation energy, and the dielectric constant.

3.2 Energy component descriptors

The components of the solvent–solute interaction energy in the
PCM were used by Alibakhshi et al.12 as input features of ML
models to predict the solvation free energy in the ML PCM
model. We extracted 10 energy components (EC) from the
original 15 well-defined PCM energy components to avoid
overlapping with the SS descriptor (calculation details in Text
S1 and Table S2, ESI†). These 10 features encode various types
of interactions in quantum chemistry calculations of a solute
molecule in a PCM field, including the total energy of an
unpolarized solute without a PCM field and with a polarized
or unpolarized PCM field, the total energy of a polarized solute
with and without a PCM field, the interaction energy of the
unpolarized solute and polarized solvent, the solute polariza-
tion energy, the total potential energy, the total kinetic energy,
and the solvation free energy. In our interpretation, some EC
features are linearly dependent, e.g., the polarization energy is
equal to the difference between the total energy of a polarized
solute without a PCM field and an unpolarized solute without
a PCM field. As a result, the 10 energy components can be
further reduced to 6 components by removing the redundant

descriptors without affecting the ML performance (Table S3,
ESI†). However, all EC models in this work were trained with
the 10 features to be consistent with the original EC definition
by Alibakhshi et al.12

3.3 Coulomb matrix

Coulomb matrix (CM) is a class of widely used molecular
geometric features leading to well-performing models of mole-
cular properties.50–52 The matrix elements of CM are given by

Mij ¼
0:5Z2:4

i ; if i ¼ j

ZiZj

ri � rj
�� ��; if iaj

8><
>:

(3)

where Zi and ri are the nuclear charges and Cartesian coordinates
position of the ith atom. The off-diagonal elements represent the
Coulomb repulsion between nuclei i and j, and the diagonal
elements have been fitted to atomic energy as to nuclear charge.
Although the CM is invariant to rotations and translations, it is
not invariant to atomic reordering. Several approaches were
proposed to address its dependence on atomic indexing, such
as ordering the coulomb matrix by the magnitude of norms of the
rows, generating randomly sorted Coulomb matrices, and using
the eigenspectrum representation (the sorted eigenvalues of the
CM).50,51 The eigenspectrum representation of the CM was
employed in our case because the dimensionality of the feature
will reduce to just d (the number of atoms in the molecules), and
thus will alleviate the risk of overfitting53 in our training set. The
molecular coordinates were optimized under the PCM field to
include both solute and solvent information.

3.4 Molecular fingerprints

Molecular fingerprints were initially designed for substructure
searching in chemical databases and were later used for

Fig. 1 Diagram of four types of descriptors for solvated molecules.
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analysis tasks, such as similarity searching in virtual screening.54,55

Modern implementations [e.g., extended-connectivity fingerprints
(ECFPs)] designed to encode molecular features relevant to mole-
cular activity have recently been proven well-suited as input features
for ML models.14,56 Here, we proposed a combined fingerprint
descriptor (cFP) that describes the solute with Morgan fingerprint57

(also known as ECFP4) and the solvent with ET(30)58 along with
four other empirical scales (dipolarity, polarizability, acidity, and
basicity).59 The Morgan fingerprint (FP), as one of the best-
performing fingerprints among small molecules, can perceive the
circular substructure around each atom in a solute molecule.
Considering the size of our data sets, the Morgan fingerprint used
in cFP was generated by RDKit60 of 128, 64, and 1024 bits for OROP,
OMROP, and ROAS, respectively.

When training D-ML models, the raw QM calculated molecular
property is always added to each of the aforementioned molecular
descriptors to form the input feature. The reason is that the raw
QM calculated result is the crude estimator of the property (CEP),
which has been shown to be a crucial input feature in ML
chemistry studies with small training sets.61 The raw QM calcu-
lated result also has a high feature importance score in our
previous study.17 The ML performance without adding the CEP
has also been noted (Tables S4–S6, ESI†). Our results reveal that
the lowest MAE of the D-ML models, considering all descriptors
and ML model combinations, increased by 228% and 34% for
predictions on OROP and ROAS datasets, respectively. Addition-
ally, when the raw QM result input was removed, these models
exhibited limited predictive ability on OMROP data.

4 Result and discussion

In the following sections, we will analyze the performance of
the four types of molecular descriptors on both redox potential
and absorption energy corrections. Specifically, we intend to
answer the following questions:

1. Which types of descriptors have the best performance for
D-ML models to correct errors in quantum chemistry calcula-
tion of solution-phase molecular properties?

2. Does the optimal choice of descriptors depend on the
predicted molecular property, dataset size, or other factors
about the dataset?

3. How sensitive are the D-ML models to DFT functionals
and ML method choice?

4. What are the limitations of this D-ML solvent effects
approach?

4.1 D-ML for redox potential

Recent work in our group17 has shown that the SS descriptor
can efficiently encode solvent–solute information to correct the
redox potential calculation errors, which are believed to be
mainly caused by C-PCM’s imbalanced treatment of differently
charged species. In that work, the PBE0-D3 functional com-
bined with corrections of KRR and RF can generate the best
correction results for OROP and OMROP sets, respectively.
Herein, we seek to understand whether other types of descrip-
tors (CM, EC, and cFP) can outperform SS for the D-ML redox
potential. As the first step, we kept our previous choice of the
optimal DFT functional (PBE0-D3) and optimal ML methods
(KRR for OROP and RF for OMROP) and compared the D-ML
performance of the four descriptors. As shown in Fig. 2, all four
types of descriptors can greatly reduce the errors, reducing the
MAE from 0.263 V to less than 0.200 V for OROP, and from
0.817 V to less than 0.577 for OMROP. For OROP corrected with
KRR, the MAE of CM (0.163 V) is only marginally better than the
other three descriptors by up to 0.04 V.

Similarly, for OMROP corrected with RF, the best-performing
SS descriptor is only slightly better than the others in MAE by
0.04–0.12 V. Since the D-ML performance depends on the choice
of the descriptor (how efficiently the local environments can be
encoded) and the ML framework (the functional flexibility in
mapping descriptors to outputs), we then varied the ML methods
to investigate the impacts. We compared the descriptors by their
performance when combined with the respective optimal ML
method. We also compared the variations of performance
caused by different ML methods. SS has the best performance
when combined with RF, for both OROP (MAE: 0.161 V) and

Fig. 2 Test set MAE of the D-ML corrected redox potential (calculated with PBE0-D3 functional) for (left) OROP and (right) OMROP datasets. The D-ML
models were trained with different combinations of descriptors and ML models.
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OMROP (MAE: 0.460 V). Furthermore, SS has the most stable
performance, as its worst-case scenario is always better than that
of the other descriptors. In summary, SS has the best perfor-
mance for the D-ML redox potential on the tested data sets,
although the performance difference among different descrip-
tors is not significant.

4.2 D-ML for absorption energy

Although the SS descriptor has shown the overall best perfor-
mance in correcting the calculated redox potential, it remains
unknown whether it is also the best descriptor for D-ML of other
chemical properties. To answer this question, we applied the
same D-ML strategy to correct the calculated absorption energies
of the ROAS dataset and compare the performance of the four
types of descriptors. Traditionally, the calculated absorption
energies of a dataset are corrected by first categorizing the
dataset into a few groups, such as according to their chromo-
phoric unit62 or ground-state electronic configurations,63 and
then using linear regression for the respective groups. Although
such a method can provide relatively accurate results on an
organic dye dataset with less than a hundred data points,62,63 it
may be less effective for larger and more diverse data sets.

Here, we investigated the D-ML performance on ROAS, a diverse
set with ca. 1400 organic dyes. As the starting point, we fixed the XC
functional used in the TD-DFT/TDA calculations of absorption
energies and investigated the D-ML performance of different
descriptors in combination with different ML methods. Here, the
PBE0 functional was used due to its decent estimation for organic’s
electronic transition energies at low cost.62 Discussions about other
XC functionals (e.g., range-corrected hybrids) will be covered in
Section 4.3. As shown in Fig. 3, the raw calculated absorption
energies of the ROAS dataset have a systematic overestimation and
many big-error outliers. The D-ML results (cFP descriptor combined
with GB) distribute more evenly on both sides of the diagonal of the
parity plot. Both the systematic and the outlier errors are greatly
alleviated, resulting in significantly reduced MAE. All D-ML models
can significantly reduce the MAE by more than 34%, regardless of
the descriptors or ML methods (Tables S7–S10, ESI†). In contrast to
the D-ML redox potential results, we can see a significant perfor-
mance dependence on the descriptor choice. The cFP descriptor
has its best-case performance (combined with GB, MAE: 0.318 eV)
significantly better than others (MAE: 0.437–0.501 eV), and even its
worst-case performance (combined with the linear model, MAE:
0.463 eV) is still close to or better than CM and EC’s best-case
performance (Table 2).

4.3 Sensitivity of D-ML to DFT functional choices

This section discusses the sensitivity of D-ML performance on
computational data sets calculated with various XC functionals.
The choice of XC functionals is known to strongly influence the
accuracy of redox potential and absorption energy calculations in
the implicit solvent.62,64 As a result, the optimal range-correction
parameter of long-range corrected XC functionals needs to be
tuned case by case, making it hard to accurately predict a large
and diverse dataset using a single fixed XC functional. In our
previous work,17 we already saw the large variation in MAE for the

redox potential calculations by different functionals (0.263–
0.618 V for OROP, 0.817–1.573 V for OMROP) and that D-ML
corrected results (SS descriptor combined with KRR) had signifi-
cantly less sensitivity to XC functional choice. Here, we further
tested: (1) whether D-ML also reduces the functional sensitivity in
DFT calculations of other properties, such as the absorption
energy and (2) whether D-ML using other descriptors also reduces
the sensitivity to functional choice.

Our result shows that the performance of different func-
tionals in predicting redox potentials varied significantly (Fig. 4
left). For the OROP dataset, the PBE0-D3 functional achieved
the lowest MAE of 0.263 V, while the oB97-D3 functional
had the highest MAE of 0.618 V, resulting in a difference of
0.355 V (Tables S11–S14, ESI†). For the OMROP dataset, the
best-performing PBE0-D3 functional had an MAE of 0.817 V,
while the oPBEh-D3 functional had the highest MAE of 1.573 V,
resulting in a difference of 0.756 V (Tables S15–S18, ESI†).

Fig. 3 (top) Parity plots of the PBE0 calculated vs. experimental Eabs. Top
left: Raw data from TD-DFT/TDA calculations. Top right: D-ML corrected
data obtained with the best-performing cFP descriptor combined with the
GB model. As indicated by the color bar on the right, data points are
colored by kernel density estimation (KDE) density values. (bottom) Histo-
grams of errors of the Eabs before (bottom left) and after D-ML correction
(bottom right).

Table 2 PBE0 functional test set prediction errors (MAE/eV) for Eabs using
different combinations of descriptors and ML models compared to raw
calculated results

MAE
(eV) Raw Linear KRR GB RF ANN

Best
reduction (%)

SS 0.844 0.586 0.460 0.460 0.437 0.518 48.2
CM 0.596 0.458 0.477 0.462 0.570 45.7
EC 0.604 0.521 0.501 0.510 0.527 40.6
cFP 0.463 0.394 0.318 0.330 0.442 62.3
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For the absorption energy calculation, the MAE of the best-
performing B3LYP (0.787 eV) differs from the worst oPBEh
(1.119 eV) by 0.332 eV (Tables S7–S10, ESI†). In contrast,
utilizing ML models to correct the calculations is less sensitive
to DFT functional choice regardless of the descriptors used for
both redox potential and absorption energy predictions (Fig. 4
right). All the ML models can greatly reduce the MAE, and the
accuracy of the ML corrected result is not directly related to the
original MAE. Instead, the improvement is affected by the data
distribution, ML models, and descriptors. For example,
although the MAE of absorption energy calculated by B3LYP
is the best among all functionals, it becomes the worst in many
cases after ML corrections.

In general, RF and GB are the most suitable ML models for
all DFT functionals and descriptor choices, with a few exceptions
when using CM and cFP as descriptors. Based on the overall
performance using various ML models, the best descriptor for
redox potential prediction is SS (OROP: oB97-D3 combined with
GB, MAE: 0.131 V; OMROP: oB97-D3 combined with GB, MAE:
0.381), whereas the best descriptor for absorption energy is cFP
(oPBEh combined with GB, MAE: 0.306 eV). Although the DFT
functional choice has less impact after ML correction, oB97,
oPBEh, and PBE0 are overall the best after ML corrections across
all the data sets. Therefore, oB97 calculated results were used in
later sections’ analysis if not specified.

4.4 Interpretation of the impact of descriptors on D-ML
performance

We first applied principal component analysis (PCA) to under-
stand how well the datasets are represented in the feature space
spanned by different descriptors. (Fig. 5). In general, the feature
space with more evenly distributed data points and apparent
clustering of DE1 (or DEabs) has greater ML predictability. For
the OROP data set, SS and EC are more predictive than CM,
where data points are not well separated. Although cFP

projection has well-separated data points and a gradually
varying DE1 along the PC1 direction, it has a relatively bad
D-ML performance. It is likely due to the low ratio (35%) of the
feature space variance encoded in the first two components of
cFP, in contrast to SS, CM, and EC, where the majority of
feature space variation (over 92%) can be encoded into PC1 and
PC2. For the OMROP data set, EC and cFP both present a string-
like distribution with little separation of data along one of the
principal components, leading to a worse performance com-
pared to the SS descriptor. As for ROAS, although cFP still has
the string-like distribution as in OMROP, the strings are more
evenly distributed in the PC1 direction, and the DEabs can be
well distinguished along the PC2 direction. These observations
in PCA can partially explain the varying of performance for
different descriptors in different data sets.

We then sought the physical explanation for the perfor-
mance variation of different descriptors when applied to dif-
ferent datasets. The reason for SS’s better performance in
correcting errors in redox potential than absorption energy is
likely to be the different molecule characters in the two data
sets. The ROAS data set contains only neutral spin-singlet
species. As a result, the charge and spin feature in SS will be
ineffective for ROAS. The all-neutral species will also lead to a
significantly narrower range of solvation energy distribution
(Fig. 6) because the C-PCM solvation energy magnitude depends
on the net charge of the solute. Therefore, it is even harder for an
ML model to map SS to the target absorption energy. Similarly,
we can explain the poorer performance of EC descriptors when
applied to correcting excitation energies of ROAS data sets. The
energy components of EC are extracted from the ground-state
equilibrium solvent calculations and thus lack the direct descrip-
tion of the non-equilibrium solvation process upon excitation. In
addition, neither SS nor EC provides as much molecular struc-
ture information as cFP, which can also be critical for encoding
excited-state properties.14

Fig. 4 Comparison of MAE for redox potential (left) and absorption energy (right) correction before and after D-ML for various descriptors and DFT
functionals. For each functional using each type of descriptor, the best-performing ML method’s results are reported. OROP (top left) and OMROP
(bottom left) data sets were used to test redox potential prediction (in V), whereas the ROAS dataset was used for absorption energy prediction (in eV).
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4.5 Impacts of feature selection

In previous sections, we have seen the limitations of the four
types of descriptors for correcting different properties for our
D-ML solvent effects approach. This inspires the fine-tuning
of the feature set to improve the D-ML performance further.
It is known that performing feature selection can decrease the
training complexity and time for nonlinear models and
increase the model stability, transferability, and out-of-sample
performance for linear models.65 Based on the characters of our
three benchmark datasets and the molecular property to pre-
dict, we tested three different feature selection strategies as
elaborated below.

First, for the D-ML redox potential on the OROP and OMROP
set, SS descriptors have already shown decent performance
(Section 4.1). Hence, we sought to further improve the perfor-
mance by using a hybrid feature set combining SS with different
types of descriptors. The random forest-ranked recursive feature
addition (RF-RFA)65 was used to select features from SS and EC
descriptors. CM and cFP were not included in RF-RFA because
they both encode the geometric information of a whole molecule
and are not physically very meaningful to be partially selected as
features in an additive manner. To perform RF-RFA, we first
combined the SS and EC descriptors and ranked them with the
RF feature importance scores. The raw calculated redox potential
was set as the initial feature due to its highest importance
score, whereas other SS and EC descriptors were added at a
time based on ranking. During each feature addition cycle, the
ML model was retrained with hyper-parameter tuning, with the

Fig. 5 Projection of OROP, OMROP, and ROAS data sets (from the first to the third row of panels) onto the first two principal components for the SS,
CM, EC, cFP descriptors. The PCA plots are colored by the ob97(-D3) calculation error with respect to the experimental results.

Fig. 6 C-PCM solvation energy (in eV) distribution for OROP, OMROP
and ROAS.
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performance evaluated by a 5-fold cross-validation score (CVS).
The RF-RFA was stopped when no improvement in the validation
score (MAE) was observed (Tables S19 and S20, ESI†). Only the
ANN model trained on OROP got a significantly smaller MAE of
0.155 V after feature selection, compared to the original MAE of
0.253 V. All other ML models did not benefit much from the
feature selection process.

Second, for the D-ML absorption energy, cFP, the descriptor
composed of Morgan FP plus some additional features for the
solvent, has the best performance. Here, we focus on optimizing
the length of Morgan FP used in cFP. Since the previously
reported optimal Morgan FP length varies based on the training
sets,56,66,67 our model using 1024 bits of Morgan FP may not
reach its best performance. Considering our dataset size (1395),
we restricted the range of Morgan FP length to no more than
1024 bits to avoid overfitting caused by the high dimension of
the descriptor. We compared the performance of cFP composed
of Morgan FP of different lengths generated in two approaches.
In the first approach, we used RDKit to generate Morgan FP of
1024, 512, 256, and 128 bits. In the second approach, we
generated a long Morgan FP with 3072 bits, whose dimension
is then reduced to 1024, 512, 256, and 128 bits using the
univariate feature selection method, ‘‘SelectKBest’’, in scikit-
learn.68 We found that for the same length of bits, the cFP
generated with the second approach (dimension reduction) has
worse performance than the cFP generated by the first approach
(direct generation) (Tables S21 and S22, ESI†). For the directly
generated cFP, the best-performing one has 1024 bits, which
happened to be the length we initially selected.

Third, we further tested whether the performance of the
D-ML absorption energy can be further improved by adding SS or
EC features to cFP. This strategy still did not present a signifi-
cantly better outcome. A detailed description of this method and
results can be found in the ESI† Text S2 and Table S23.

All the final performances after feature selection were evaluated
by training on the full training set (80% of the whole data set) and
testing on the set-aside test set (20%). The above results indicate
that additional feature engineering is not necessary in our cases.
One possible reason is that the chemical information encoded by
different descriptors may be similar. Besides, the inherent regular-
ization methods (e.g., the L2 regularization in KRR) may have
already prevented the model from overfitting.

4.6 Dependence of D-ML performance on data set size

We then looked into the potential dependence of different
descriptors’ D-ML performance on training set size, which
helps us understand the applicability of different descriptors
for differently sized datasets. The training set size dependence
was tested on all three data sets (OROP, OMROP, and ROAS).
For each data set, 20% data were set aside as the test set and the
rest data (80%) as the training set. A series of sub-training sets
were then formed by extracting different portions of data from
the training set (20–100% training, or 16–80% total). RF models
were then trained based on these sub-training sets using
various descriptors as input features (Fig. 7) but were always
tested on the same test set (20% total).

As the sub-training set size increases, the D-ML performance
improves for almost all models, regardless of the targeting
property (redox potential or absorption energy) or the descrip-
tors used. However, for models trained on OMROP, the
improvement slows down significantly after the sub-training
set size reaches 40% (or 32% total). This phenomenon is
especially prominent for the EC descriptors, where the curve
reaches a plateau for sub-training set size 440%. A similar
issue is seen for the ROAS data set, where the EC slope is much
flatter than other descriptors. One possible explanation for
these results is that the EC descriptor may not be sufficiently
expressive for accurately predicting calculation errors in
OMROP and ROAS datasets. As a result, the model may have
reached its capacity quickly and experienced underfitting,
where it fails to capture the underlying patterns in the data.
Increasing the training data further may not lead to significant
improvement in the D-ML performance.

For each data set, the relative performance of different input
descriptors can change as the training set size increases. For
the D-ML redox potential (OROP and OMROP sets), CM or EC
has the best performance when trained with fewer data
(o40%), but SS outperforms all others when more training
data become available (Z40%). However, such a change of

Fig. 7 Change of MAE with the increase of training set portion for
different descriptors and data sets (top: OROP, middle: OMROP, bottom:
ROAS) using oB97 for DFT or TDDFT calculation and RF for D-ML. For each
data point on the plot with sub-training set size X%, the sub-training
set was formed by randomly selecting X% data from the full training set
(80% total) and was trained and predicted on the fixed set-aside test set
(20% total). For each data point, the random selection of the sub-training
set was repeated ten times. Each color dot shows the average perfor-
mance (MAE) of the ten tests, with the error bar indicating the highest and
lowest MAE.
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relative performance is not seen for D-ML absorption energy
(ROAS), where the cFP descriptor always has the best perfor-
mance regardless of the training set size.

4.7 Limitations of the D-ML solvent effects approach

The error in calculated solution-phase properties compared to
experimental results is mainly attributed to the inaccuracy of
solvent models and the approximate electronic structure methods.
Although the errors of solvent models can potentially be fixed
by D-ML with solvent–solute interaction descriptors as input
features, the electronic structure errors are harder to be
encoded by our descriptors. Such a drawback is expected to
be more prominent when the electronic structure error dom-
inates, such as in transition-metal-containing systems69,70 or
electronically excited molecules.

For transition metal complexes, the prevalent degenerate
orbitals (d or f orbitals) lead to a significant multireference
character of their electronic structure, which cannot be accurately
described by Kohn–Sham DFT.71 The strength of multireference
character varies in different transition metal complexes. We
hypothesize that our D-ML approach may have worse performance
in molecules with significant multireference characters, where
electronic structure errors dominate over solvent model errors.
To test our hypothesis, we carried out the MR character analysis72

on the OMROP data set, trying to correlate the D-ML performance
with the MR diagnostic values. The specific MR diagnostic used is
the rND diagnostics, as described in Section 2.4. We used the ratio

between the calculation error after (eML) and before (eraw) D-ML
correction to quantify the D-ML performance (Fig. 8). Hence, 0 o
eML/eraw o 1 indicates an improved result after D-ML; �1 o eML/
eraw o0 indicates a slight overcorrection, but the absolute error is
still reduced; eML/eraw 4 1 indicates a worse result; and eML/eraw o
�1 indicates a severely overcorrected result. To our surprise, the
overall D-ML performance is better for molecules with more MR
character (rND 4 0.3), because the D-ML models significantly
overcorrect the E1 error in some lower-MR-character molecules.
A possible reason is that our D-ML approach empirically corrects
all errors in the calculated results relative to experiments, includ-
ing both electronic structure and solvation errors. The OMROP
data set has more molecules (67%) with high MR-character, so the
trained D-ML models bias towards appropriately correcting high-
MR systems but overcorrecting the low-MR molecules. A potential
solution to this problem is to develop separate D-ML models for
correcting electronic structure errors and solvent model errors.
However, this is beyond the scope of this work and will be
investigated in the future.

5 Conclusions

This work exploits the D-ML solvent effect approach to reduce
the errors in DFT-calculated solution-phase molecular proper-
ties compared to experimental measurements. We sought to
understand the dependence of D-ML performance on the type
of molecular property to predict the ground or excited-state, the
type of input descriptor (SS, CM, EC, and cFP), data set
distribution, data set size, and feature selection.

For the prediction of the ground-state redox potential of
organic compounds (OROP data set), the SS, EC, and CM
descriptors demonstrated a better performance than cFP. For
the OMROP data set composed of organometallic compounds,
the SS descriptor was the best descriptor. The transferability
of the D-ML approach to excited-state properties was then
tested on the ROAS data set of solution-phase UV/vis absorption
spectra, for which the cFP descriptor had the best predictivity.
D-ML always reduces the sensitivity of calculated properties
to DFT functional choice, no matter which descriptor or ML
model was used. We then analyzed why the optimal descriptor
depends on the type of property to predict and data distribution.
PCA analysis showed that the distribution of data in different
feature spaces impacted the D-ML performance. Additionally,
we analyzed based on the physical foundation of various descrip-
tors. The SS descriptor is expected to have better performance
for data sets with diverse net charges, whereas cFP is expected to
be better at distinguishing neutral molecules. The EC descriptor
is obtained from ground state molecules in equilibrium solva-
tion and cannot give satisfactory predictions for absorption
energy, which depends on excited states in non-equilibrium
solvation.

We also investigated the dependence of D-ML performance
on the data set size. As the training set size increased, over-
fitting happened for a few cases where the chosen descriptor
could not encode the variation in the data well. Typical

Fig. 8 Dependence of D-ML performance on the multireference (MR)
character of the molecules. D-ML performance is measured by the ratio,
eML/eraw, for the errors before and after D-ML. The clustered bar charts
show the normalized distribution (left) and direct count (right) of mole-
cules with eML/eraw in different ranges. (�Nif�1]: red, (�1,0]: green, (0,1]:
orange, (1, N): blue. In each panel, the statistics was obtained separately
for molecules with low MR characters (rND o 0.3) and high MR characters
(rND Z 0.3), where rND was calculated using the PBE functional at 5000 K.
Each row of panels is the result of one type of descriptor (SS, CM, EC, or
cFP from top to bottom).
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examples are the D-ML models using the EC descriptor on
OMROP and ROAS data sets.

Furthermore, we sought to optimize the feature set using
different feature-engineering strategies, including RF-RFA
and SelectKBest. None of them resulted in a better D-ML
performance (in terms of MAE) than directly using the best-
performing feature set.

Finally, we analyzed the limitation of our D-ML solvent effect
approach. Although developed to correct errors caused by the
inaccuracy of solvent models, our D-ML models empirically
corrected all types of errors in the calculated properties, including
electronic structure errors. For a diverse data set like OMROP, our
D-ML approach may be biased towards correcting electronic
structure-related errors in molecules with significant multirefer-
ence character and therefore overcorrecting other molecules. This
motivates future developments of a multiple-step D-ML approach
that corrects electronic structure errors and solvent effect-related
errors separately.
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55 V. Venkatraman, V. I. Pérez-Nueno, L. Mavridis and
D. W. Ritchie, J. Chem. Inf. Model., 2010, 50, 2079–2093.

56 F. Sandfort, F. Strieth-Kalthoff, M. Kühnemund, C. Beecks
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