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Synthesis and characterization of activated carbon
from sugar beet residue for the adsorption of
hexavalent chromium in aqueous solutions

Jiaming Zhao,? Lihua Yu,® Feng Zhou,® Huixia Ma,? Kongyan Yang?
and Guang Wu (2 *2

A series of micro—mesoporous activated carbons (ACs) were prepared from sugar beet residue by a two-
step method including KOH chemical activation and were used for Cr(v) removal from aqueous
solutions. Several characterization techniques, including SEM, TEM, N, adsorption, XRD, FTIR, and Raman
spectroscopy, were used to determine the chemical and physical characteristics of the ACs, and the
adsorption properties of the ACs were tested. The results indicated that the high specific surface area of
the ACs reached 2002.9 m? g™, and the micropore surface area accounts for 85% of the total area. The
optimal conditions for achieving the maximum Cr(vi) adsorption capacity of 163.7 mg g~* by the ACs
were activation with a KOH/carbon ratio of 3.0, an initial Cr(v) concentration of 400 mg L™, an
adsorbent dose of 2.0 g L™ and pH of 4.5. Therefore, the ACs exhibit excellent adsorption performance
for removing Cr(vi) from aqueous solutions. According to an investigation of the adsorption process, the
adsorption isotherm is most consistent with the Langmuir isotherm model, and the adsorption kinetics
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Introduction

Chromium is a common metal pollutant mainly originating
from industrial wastewater from electroplating, metallurgy,
tanning, printing and dyeing processes.! In general, the stable
oxidation states of chromium are mainly Cr(vi) and Cr(ur).” Cr(i)
is an essential trace element for humans. However, Cr(vi) is
highly toxic and can lead to serious illness, dermatitis, and
kidney and liver cancer, for example.®* The discharge limits of
Cr(vi) for drinking water and inland surface water are
0.05 mg L " and 0.1 mg L™, respectively.* Hence, the removal of
Cr(v) from contaminated water is important for protecting the
environment and human health.

The various conventional technologies for removing Cr(vi)
from contaminated water include membrane processes,® ion
exchange,® extraction,” chemical precipitation,® coagulation
reduction,’ and adsorption.'”* However, the disadvantages of
most of these technologies are the high cost of equipment,
massive consumption of energy and use of expensive chemicals.
In addition, these traditional technologies are not suitable for
removing toxic metals, which may cause secondary pollution.
Among these methods, the activated carbon (AC) adsorption
technique is the most extensively utilized method due to its
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were well described by the pseudo-second-order model.

excellent adsorption capacity, extended surface area, low cost,
relatively easy regeneration and excellent physical and chemical
properties.

Currently, agricultural wastes and biomass, such as shad-
dock peels,** chestnut oak shells,** coconut shell,* corncob,*
sunflower seed husk,'® and peanut shell,"” are very important
and economic raw materials for preparing AC. Sugar beet
planting and the sugar industry play a very important role in
northeast China. Beet residue, which is the by-product of sugar
production, is mostly composed of cellulose, pentosan and
lignin.**** In the countryside of Heilongjiang Province, China,
a large amount of beet residue with low commercial value is
produced every year and is mostly used as poultry feed, resulting
in waste. The transformation of beet residue into products with
economic value has good prospects because it utilizes agricultural
waste as a resource. It is feasible to prepare biomass-based AC
from beet residue as an adsorbent. Some researchers prepared
activated carbon using beet residue as the raw material with
different activators, such as phosphoric acid,”®** concentrated
sulfuric acid,” and ZnCl,,»* and investigated its adsorption
performance. However, no studies of the synthesis of AC from beet
residue using KOH as the activator have been reported.

In this paper, a series of ACs were prepared using beet
residue as the starting material and KOH as the activator. The
resulting material has a high specific surface area and abundant
pore structure. The effects of the activation temperature and the
ratio of KOH to beet residue on the properties of the AC were
studied. The ACs were used to remove Cr(vi) from aqueous
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solutions, and the adsorption kinetics and isotherms were also
studied.

Materials and methods
Materials

Beet residue was obtained from the sugar refinery in Hei-
longjiang, China. The beet residue was crushed and dried at
110 °C for 48 h. The treated material was sieved, and particles in
the size range of 0.3-0.8 mm were selected for the experiments.

Preparation of the ACs

The ACs were prepared by a two-step procedure. First, the
treated beet residue was placed in a ceramic crucible and
carbonized in an N,-filled muffle tube furnace at 600 °C for 1 h
after heating at a rate of 5 °C min~". Second, the carbonized
materials were chemically activated by mixing with KOH (AR,
Sigma-Aldrich) in KOH/carbonized material ratios of 1: 1,2 : 1,
3:1and4 :1and then calcining at 700 °C under nitrogen gas at
a 100 mL min ' flow rate for 1.5 h. The prepared ACs were
washed with a 0.1 M HCI solution until the pH reached 7. The
ACs were dried at 100 °C overnight. The ACs were denoted AC-x-
700, where x is the KOH/carbonized material ratio.

To determine the effect of the calcination temperature on the
adsorption properties of the ACs, a series of ACs were prepared
at different calcination temperatures. These ACs were denoted
AC-3.0-y, where y is the calcination temperature.

Characterization

The surface morphologies and microstructures of the ACs were
observed by scanning electron microscopy (SEM) and trans-
mission electron microscopy (TEM) with Leo 1430 and Tecnai
G220 S-Twin instruments. The crystal structures of the ACs were
determined by a powder X-ray diffractometer (XRD, D§ ADVANCE
of Bruker). The specific surface areas and pore volumes of the ACs
were measured at —196 °C using a Quantachrome AUTOSORB-1-
MP porous materials analyser. The specific surface area (Sggr)
was calculated by the Brunauer-Emmett-Teller (BET) method. The
t-plot method was employed to calculate the micropore volumes
(Vipio) and micropore surface areas (Smicro)- The Barrett-Joyner-
Halenda (BJH) method was used to evaluate the mesopore volume
(Vgm)- The functional groups on the surfaces of the beet residue
and ACs was analysed by a FTIR spectrometer (Vertex 70, Bruker).
The Raman spectra were recorded by a Jobin Yvon HR 800 micro-
Raman spectrometer with a 458 nm laser in the wavelength range

of 1000 to 2000 cm ™.

Adsorption experiments

To prepare Cr(vi) solutions with different predetermined
concentrations, K,Cr,0; (AR, Sigma-Aldrich) was dissolved in
deionized water. 0.1 g ACs were mixed with a 50 mL Cr(vi)
solution with different concentration (50, 100, 200, 300 and
400 mg L"), The initial pH of the Cr(vi) solution was regulated
to 4.5 using HCl and NaOH (1 mol L") solutions, and then the
mixture was constantly stirred at 25 °C. The supernatant was
obtained by filtration at preset time intervals until adsorption
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equilibrium was achieved, and the Cr(vi) content of the samples
was measured.
The residual Cr(vi) concentrations were measured by a UV/VIS
spectrophotometer (PE, Lambda12) at a wavelength of 540 nm.
The removal efficiency (R., %), adsorption capacity (g, mg
g™ ') and equilibrium adsorption capacity (q., mg g ') were
calculated as follows:

Ro= =S 00w (1)
(@)
Co— C)V
w= 102G @
m
(G-
qe = m — (3)

Co (mg L"), Ce (mg L") and C; (mg L") are the concentrations
of Cr(vi) initially, at equilibrium and at time ¢, respectively. V (L)
is the Cr(vi) solution volume, and m (g) is the mass of the
adsorbent used.

Adsorption isotherms and kinetic models

An adsorption isotherm is used to represent the distribution of
Cr(vi) in the liquid phase and solid phases in the equilibrium
state.”” Thus, three common isotherm models, namely, the
Freundlich (eqn (4)), Langmuir (eqn (5)) and Temkin (eqn (6)
and (7)) models were used to analyse the adsorption equilib-
rium of Cr(vi) on the ACs. The equilibrium parameters were
derived from adsorption experiments using AC-3.0-700 as the
adsorbent with various Cr(vi) concentrations at 25 °C, an
adsorbent dose of 2.0 g L™ " and pH of 4.5.
The equations are given as follows:

ge = KeC" (4)
b= ﬁ%%c ®
4. = BIn(K1C) (6)
5= "L o)

Here, ¢, (mg g~ ") is the maximum adsorption capacity, and Kg
(L mg™"), K;, and Ky are the Freundlich, Langmuir and Temkin
constants, respectively. B is the heat of adsorption constant in
the Temkin model. Gas constant (R) is 8.314 Jmol ' K ' and T
(K) is the absolute temperature.>*>’

The dynamics of the Cr(vi) adsorption process were investi-
gated using three kinetic models, i.e., the pseudo-first-order
model (eqn (8)), pseudo-second-order model (eqn (9)) and
Weber-Morris intraparticle diffusion (eqn (10)).

In(g. — @)t =1n q. — kyt (8)
t 1 t

- 4 9

g kg qe ©)

g = kgt + C (10)
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Here, k; (h™') and &, (g mg " h™') are the pseudo-first- and
pseudo-second-order model rate constants, respectively; kg (mg
g ' min~"/?) is the intraparticle diffusion rate constant; and C (mg
¢~ 1) is the model constant for the boundary layer thickness.?*°

Results and discussion

Characterization of the ACs

Morphology of the ACs. SEM and TEM images of the
morphologies of the beet residue and ACs are shown in Fig. 1 and 2.
The beet residue has an irregular bulk shape and relatively smooth
surface without an obvious pore structure, whereas the activated
and carbonized AC samples are obviously dehydrated and granu-
lated and have an abundant pore structure derived from the
accumulation of flake-like carbon. The SEM image shows that the
size of a single particle is about 150-200 nm. The TEM images
further confirm that the AC samples have an excellent pore struc-
ture, and they clearly show the abundant micropores in the ACs.

N, adsorption-desorption analysis

The specific surface areas and pore structures of the ACs were
generally measured by N, adsorption-desorption, and the
spectra and corresponding textural parameters are shown in
Fig. 3 and Table 1. According to the IUPAC classification, the
measured ACs exhibited a type I nitrogen adsorption-desorp-
tion isotherm due to its rich microporous structure.® Table 1
gives the details of the textural characteristics of the ACs. The
BET surface area increased gradually with increasing KOH
amount. The highest BET surface area and the total pore

¥

U 184
“Lale

Fig.1 SEMimages of the beet residue (a), AC-1.0-700 (b), AC-2.0-700
(c), AC-3.0-700 (d) and AC-4.0-700 (e).
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Fig.2 TEMimages of (a) AC-1.0-700, (b) AC-2.0-700, (c) AC-3.0-700
and (d) AC-4.0-700.

volume (Vi) of the beet residue-derived carbons reached 2002.9
m? g and 0.86 cm® g '. For the AC-3.0-700 sample, the
microporous specific surface accounts for 85% of the total
specific surface, confirming the well-developed microporous
structure,* which could provide abundant adsorption sites.*?

XRD

The crystallization degrees of the beet residue and ACs were
evaluated by XRD analysis. As shown in Fig. 4, the two typical
diffraction peaks of the ACs appear at 26 = 24° and 20 = 42° and
correspond to the (002) and (100) surface planes, respectively.
These strong diffraction peaks indicate that the ACs contain
many graphitic crystals, whereas a weak peak would indicate
that the ACs only exhibit partial graphitization characteristics
and contain very few graphitic crystals.*® As the KOH ratio of the
AC samples increases, the peak intensity decreases, and the
graphitization degree also decreases. This phenomenon is
consistent with the Raman spectral analysis.

FT-IR spectroscopy

Fig. 5 shows the FTIR spectra of the beet residue and AC
samples. The peak at 3425 cm™" is related to the stretching

550
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o
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Fig. 3 N, adsorption and desorption isotherms of the AC samples.
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Table 1 The porous structure properties of AC samples

Samples Sger (M> g™ 1) Smicro (M? g7 Y) Vr (em® g7 ) Veplot (em® g™ Vara (em® g™ Dp (nm)
AC-1.0-700 515.4 417.7 0.28 0.17 0.10 7.07
AC-2.0-700 588.4 488.7 0.30 0.20 0.10 6.91
AC-3.0-700 2002.9 1700.7 0.86 0.67 0.13 3.16
AC-4.0-700 1774.6 1077.9 0.87 0.43 0.30 3.33

vibration of -OH due to the lignin, cellulose and hemicellulose
in the beet residue, which contain carboxyls, phenols and
alcohols,** and it decreases gradually with increasing amount of
KOH. This trend showed that -OH on the surface of the beet
residue was reduced after carbonization. The beet residue
exhibits a distinct absorption peak at 2920 cm '.** The
absorption peak represented the telescopic vibration of C-H.
However, the peak intensity of the ACs gradually decreases, and
the peak almost disappears. The results showed that cellulose
was gradually decomposed after carbonization, which promotes
the formation of the pore structure. The observed peaks at
1751 cm™ " are attributed to the C=0 band of carbonyl groups.*®
The peak intensity of the ACs is weaker than that of the beet
residue, due to the degradation of hemicellulose during
carbonization. The band at 1568 cm ™' represents the C=C
stretching vibration of lignin. The band at 1439 cm™ " can be

e AC-4.0-700|

-3.0-700
=2.0-700
AC-7.0-700

~—Begt residues|
T - T T T
10 20 30 40 50 60
2 Theta / Degree

Intensity / a.u.

Fig. 4 XRD patterns of the beet residue and AC samples.

Transmittance / a.u.
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2084
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Wavenumber / cm™

2880

Fig. 5 FTIR spectra of the beet residue and AC samples.
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attributed to C-H bending vibrations in CH, or CH; groups.*”
The band at approximately 1267 cm ™" is the C-O stretching in
carboxylic groups or the C-O-C stretching vibration.*® The
absorption peak of the -C=0 stretching vibration in cellulose
and hemicellulose appears at 1053 cm™".*° The absorption peak
strength of the ACs decreased, revealing that cellulose and
hemicellulose could be sufficiently decomposed with increasing
KOH and carbonization.

Raman spectroscopy

Fig. 6 presents the Raman spectra of the ACs. All the samples
exhibited two obvious intrinsic peaks at approximately
1580 cm ™' and 1350 cm ™, corresponding to the G and D bands,
respectively. The intensity ratio between the D and G bands (Ip/
Ig) is generally used to indicate the degree of graphitization of
carbon. The I/I ratio is directly proportional to the degree of
disorder in the carbon structure. The lower the I,/ ratio is, the
higher the degree of graphitization is.** The graphitization
degree decreased gradually with increasing KOH amount. The
Ip/Ig ratios of AC-1.0-700, AC-2.0-700, AC-3.0-700 and AC-4.0-700
are 0.89, 0.91, 0.95 and 0.97, respectively. These results can be
attributed to the etching effect of activation on the structure,
resulting in structural defects and increased carbon disorder.

1

Adsorption performance

Effect of the KOH/carbon ratio. Fig. 7 shows the adsorption
capacities of AC samples prepared with different KOH/carbon
ratios. As shown in the figure, as the KOH/carbon ratio
increases from 1.0 to 4.0 at an the C, value of 200 mg L™, the
Cr(vi) adsorption capacities of the ACs increase significantly
from 75.79 mg L' to 93.07 mg L™ ", which is directly related to

D band G band
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Fig. 6 Raman spectra of the AC samples.
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Fig. 7 Adsorption capacities of the ACs with various KOH/carbon
ratios.

the BET specific surface area. It is reasonable that the large
specific surface area improves the adsorption performance.
However, the high proportion of activating agent leads to
a reduced yield of activated carbon. Therefore, AC-3.0-700 was
chosen for the following experiment.

Effect of the activation temperature. Fig. 8 shows the Cr(vi)
adsorption capacities of the ACs at different activation
temperatures. The results show that high temperatures are
conducive to the diffusion of KOH into the precursor and the
subsequent formation of abundant porosity. This is consistent
with the research results of other scholars.” However, the
adsorption capacity of AC-3.0-800 decreased when the activa-
tion temperature increased to 800 °C. The excessive activation
temperature causes the expansion of the micropores and
subsequent formation of mesopores and macropores,** result-
ing in a slight decrease in the BET surface area. The maximum
adsorption capacity of the ACs for Cr(vi) reached 94.0 mg g™ " at
a KOH/carbon ratio of 3.0, activation temperature of 700 °C and
the C, value of 200 mg L™".

Effect of initial Cr(vi) concentration. As shown in Fig. 9, to
further investigate the adsorption capacity of AC-3.0-700, the
Cr(vi) adsorption of AC-3.0-700 was measured at varying initial

100

80

D
o
I

Adsorption capacity / mg/g

—=— AC-3.0-600
—e— AC-3.0-700
0 —— AC-3.0-800

0 10 20 30 40 50
Time /h

Fig. 8 Adsorption capacities of ACs with various activation
temperatures.
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Fig. 9 Effects of contact time and initial concentration on the
adsorption capacity of Cr(vi) on AC-3.0-700.

concentrations. The Cr(vi) adsorption capacity of AC-3.0-700
increases rapidly in the beginning (0-2 h) and then increases
gradually with time until adsorption equilibrium is achieved.
The existence of many available active adsorption sites on
the activated carbon is the reason for the high adsorption rate at
the beginning of adsorption. Over time, the available active
adsorption sites were gradually occupied, which leads to
a decrease in the adsorption rate. As shown in Fig. 9, increasing
the C, value from 50 mg L ™" to 400 mg L™ " led to a linear
increase in the Cr(vi) adsorption capacity of the prepared AC-
3.0-700 from 24.9 mg L™ to 163.7 mg L', indicating that the
surface of the activated carbon had abundant micropores and
mesopores due to the KOH activation and carbonization treat-
ment, and it exhibited an excellent adsorption performance.
This adsorption capacity of the ACs is generally higher than the
results reported in the current literature, such as corn stalks-
derived AC adsorption capacity of 89.8 mg g~ ',* olive bagasse
ACs of 126.67 mg g~ ",* longan seed ACs of 35.02 mg g~ ',** bagasse
ACs of 80.8 mg g~ ' and eucalyptus sawdust ACs of 45.88 mg
g ¥ etc. In addition, the removal rate (R.) of Cr(vi) decreased from
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- o ,///
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Fig. 10 Kinetic curves of pseudo-first order (a), pseudo-second order
(b) and Weber—Morris models (c) of AC-3.0-700.
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Table 2 Adsorption kinetic parameters for Cr(vi) removal by AC-3.0-700

Concentration (mg L")
Kinetics/concentration 50 100 200 300 400
Ge,exp 24.93 46.91 94.03 122.94 163.68
Pseudo-first order
e,cal 3.84 6.14 10.50 7.62 27.86
ky 0.10918 0.04951 0.05776 0.10774 0.04958
R? 0.98283 0.76039 0.97992 0.93996 0.74521
Pseudo-second order
e cal 25.19 47.26 94.79 123.46 165.56
k, 0.07210 0.02919 0.01795 0.03882 0.00602
R? 0.99989 0.99946 0.99972 0.99999 0.99897
Weber-Morris
C 21.63523 39.35885 82.41067 115.79862 130.59249
kia 0.5386 1.15705 1.7455 1.2081 4.94184

99.7% to 81.8%, because as the C, value increases, the Cr(vi)/AC
ratio increased, leading to the competition for active sites and
the attainment of the saturation state.*

0.5
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Fig. 11 Langmuir (a), Freundlich (b), and Temkin (c) Isotherms of AC-
3.0-700.

Table 3 Isotherm parameters of AC-3.0-700

Isotherm model Parameter

Langmuir model R 0.91718
K, (Lmg ™) 0.01076
qm (mg g™ 166.667

Freundlich model R* 0.89115
Ky (mg g7 (L mg™")~"") 39.54
1/n 0.29402

Temkin model R 0.72671
Kr(Lg™) 10.721
B 20.10322

8030 | RSC Adv, 2021, 11, 8025-8032

Kinetic studies

The kinetics were studied to investigate the physical and
chemical characteristics of the adsorption processes. In this
study, the experimental data were analysed with the pseudo-
first-order, pseudo-second-order and Weber-Morris models.
The fitted curves are shown in Fig. 10. The fitting parameters
were listed in Table 2. The results indicate that the adsorption
process of Cr(vi) by AC-3.0-700 can be described properly by the
pseudo-second-order model, because the R* value is the highest
and the calculated adsorption capacity (ge ca) is comparatively
similar to the practical experimental adsorption capacity
(ge,exp)- Therefore, the adsorption of Cr(vi) by the AC-3.0-700
adsorbent is predominantly controlled by chemisorption.?

Adsorption isotherm

Under equilibrium conditions, adsorption isotherms can be
used to better understand the distribution of the adsorbate
between the aqueous and solid phases.* Therefore, the type of
adsorption of Cr(vi) on the AC was studied using the Langmuir,
Freundlich and Temkin isotherm models. The fitting curves
and related parameters are shown in Fig. 11 and Table 3. The
results indicate that the adsorption isotherm is most consistent
with the Langmuir isotherm model, and the maximum
adsorption capacity (166.667 mg g~ ') calculated by the Lang-
muir isotherm model is similar to the experimental maximum
adsorption capacity (163.7 mg g *). This result implies that the
adsorption of Cr(vi) by AC-3.0-700 from aqueous solutions is
monolayer adsorption, Cr(vi) has a uniform distribution, and no
transmigration occurs on the activated carbon surface.*®

Conclusions

Activated carbon with a large BET surface area and abundant
pore structure was prepared by a two-step KOH activation
method, and the agricultural waste beet residue was used as the
raw material. The characterization tests indicate that well-
developed micropores can be formed, and the BET surface

© 2021 The Author(s). Published by the Royal Society of Chemistry
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area and total pore volume of the beet residue-derived AC
reached maxima of 2002.9 m*> g~' and 0.86 cm® g™ " at a beet
residue/KOH ratio of 3.0 and calcination temperature of 700 °C.
The beet residue-derived ACs exhibited a remarkable removal
ability for Cr(vi) with a maximum adsorption capacity of
163.7 mg g ' at 25 °C. The adsorption isotherms are most
consistent with the Langmuir isotherm model, and the
adsorption kinetics were well represented by the pseudo-
second-order model. The results indicate that the adsorption
process of Cr(vi) was based on monolayer physical adsorption.
In conclusion, beet residue could be considered to be an effi-
cient biomass material for preparing activated carbon with
excellent applications for the treatment of wastewater.
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