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Broader context

Investigating the BECCS resource nexus:
delivering sustainable negative emissions

Mathilde Fajardy,® Solene Chiquier®® and Niall Mac Dowell {2 *2°

Bioenergy with carbon capture and storage (BECCS), and other negative emissions technologies (NETs),
are integral to all scenarios consistent with meeting global climate ambitions. BECCS's ability to
promptly remove CO, from the atmosphere in a resource efficient manner, whilst being a net energy
generator to the global economy, remains controversial. Given the large range of potential outcomes, it
is crucial to understand how, if at all, this technology can be deployed in a way which minimises its
impact on natural resources and ecosystems, while maximising both carbon removal and power
generation. In this study, we present a series of thought experiments, using the Modelling and
Optimisation of Negative Emissions Technologies (MONET) framework, to provide insight into the
combinations of biomass feedstock, origin, land type, and transport route, to meet a given CO, removal
target. The optimal structure of an international BECCS supply chain was found to vary both
quantitatively and qualitatively as the focus shifted from conserving water, land or biomass, to
maximising energy generated, with the water use in particular increasing threefold in the land and
biomass use minimisation scenario, as compared to the water minimisation scenario. In meeting
regional targets, imported biomass was consistently chosen over indigenous biomass in the land and
water minimisation scenarios, confirming the dominance of factors such as yield, electricity grid carbon
intensity, and precipitation, over transport distance. A pareto-front analysis was performed and, in
addition to highlighting the strong trade-offs between BECCS resource efficiency objectives, indicated
the potential for tipping points. An analysis of the sensitivity to the availability of marginal land and
agricultural residues showed that (1) the availability of agricultural residues had a great impact on BECCS
land, and that (2) water use and land use change, two critical sustainability indicators for BECCS, were
negatively correlated. Finally, we showed that maximising energy production increased water use and
land use fivefold, and land use change by two orders of magnitude. It is therefore likely that an exclusive
focus on energy generation and CO, removal can result in negative consequences for the broader
environment. In spite of these strong trade-offs however, it was found that BECCS could meet its
electricity production objective without compromising estimated safe land use boundaries. Provided that
the right choices are made along BECCS value chain, BECCS can be deployed in a way that both
satisfies its resource efficiency and technical performance objectives.

While the European Academies Science Advisory Council (EASAC) reaffirmed the importance of NETs for climate mitigation in their latest report, none of the
six technologies investigated, from biological methods such as afforestation and ocean fertilisation, to technical methods such as BECCS and Direct Air
Capture, emerge as a panacea for achieving carbon dioxide removal at the gigatone scale. With a potentially positive CO, balance, and negative impacts on

ecosystems and biodiversity, BECCS performance, in particular, remains a controversial topic. However, with CCS demonstration projects under way, and
existing biomass supply chains and facilities, BECCS presents two key advantages. Firstly, from a technology stand point, BECCS is relatively easily deployable
and scalable. Secondly, BECCS uniquely provides two services to society: carbon dioxide removal and energy production. Therefore, understanding (a) how to
deploy BECCS in a truly sustainable way, and (b) the trade-offs between BECCS key performance indicators (KPIs) in the context of BECCS optimal value chains,
is therefore vital to unlocking BECCS deployment at the gigatone scale.

@ Centre for Environmental Policy, Imperial College London, Exhibition Road, London, SW7 1NA, UK
b Centre for Process Systems Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. E-mail: niall@imperial.ac.uk; Tel: +44 (0)20 7594 9298

3408 | Energy Environ. Sci., 2018, 11, 3408-3430

This journal is © The Royal Society of Chemistry 2018


http://orcid.org/0000-0002-0207-2900
http://crossmark.crossref.org/dialog/?doi=10.1039/c8ee01676c&domain=pdf&date_stamp=2018-09-05
http://rsc.li/ees
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8ee01676c
https://pubs.rsc.org/en/journals/journal/EE
https://pubs.rsc.org/en/journals/journal/EE?issueid=EE011012

Open Access Article. Published on 16 ottobre 2018. Downloaded on 13/02/2026 01:18:52.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

1 Introduction
1.1 BECCS potential for climate mitigation is uncertain

With a remaining carbon budget of 800 Gtco,, and total global
emissions approaching 40 Gtco, per year, the need for net CO,
removal from the atmosphere in order to maintain a 2 to 1.5 C
trajectory for 2100 is unequivocal. As no negative emissions
technology (NETs) has been found to be an obvious and unique
winner, which, how, and how much of these technologies
should be deployed to guarantee efficient, sustainable and
permanent CO, removal remains a fundamental research
challenge."” Combining two existing technologies - bioenergy
and carbon capture and storage (CCS), and presenting the
co-benefit of producing energy whilst removing CO, from the
atmosphere, BECCS has received particular focus. In particular,
the veracity of claims that BECCS has the potential to simulta-
neously produce power, and remove CO, from the atmosphere
in material quantities and in a relevant time frame, whilst
having limited effects on ecosystems and biodiversity, is the
subject of current study.>® Concerns surrounding excessive
freshwater use, land use, biochemical flows, land use change,
and impact on biodiversity have been raised. In Smith et al.,?
additional water volumes as high as 720 km® as compared to a
business as usual scenario, and land area between 380 and
700 Mha were required to remove 12 Gtco, per year, high-
lighting BECCS as one of the most resource intensive NETs.
In Boysen et al,’ it is argued that even assuming substantial
emissions reduction, BECCS scale of deployment would have
considerable economic and environmental impacts, using over
1.1 Gha of the most productive land, or eliminating over 50% of
natural forests, in addition to using over 100 Mt per year of
nitrogen fertiliser. In a recent study by Heck et al.,’ the authors
studied different BECCS pathways including biomass to hydro-
gen (B2H2) and biomass to liquid fuels (B2L), with different
feedstocks, and argued that, were BECCS to be deployed in
strict respect of the planetary boundaries (PBs) as defined in
Steffen et al.,’ actual CO, removal would be of the order of
0.2 Gtco, per year, hence two orders of magnitude below what
would theoretically be required by 2100.">'" Allowing BECCS to
trespass in the PBs uncertainty zone however, could enable the
removal of up to 22 Gtgo, per year. In previous contributions,**
using the Modelling and Optimisation of Negative Emissions
Technologies (MONET) framework, we quantified the extent
to which BECCS resource mobilisation may be region and
biomass specific, putting forth the need for case specific BECCS
value chain design. Careful design and optimisation of BECCS
value chains therefore appears vital to unlock the potential
large-scale deployment of this technology.

1.2 BECCS value chain design is a multi-criteria optimisation
problem

Cost-based optimisation is a common approach in the field of
supply chain design. In a study by Tagomori et al.,'* the authors
investigated BECCS potential in Brazil by determining the
cost-optimal CO, transport network, with CO, captured from
biogenic sources. Akgul et al.'® studied the optimisation of
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BECCS at the process scale, by determining the BECCS optimal
technological pathway for power generation. Through a pareto-
front analysis, trade-offs between the cost and carbon intensity
of the system were examined. Other studies have looked at
spatially-explicit cost-optimal BECCS deployment pathways in
South Korea,"* France" and the US.'®'” However, owing to the
range of potential environmental impacts associated with
BECCS, as well as services provided — power generation and
carbon dioxide removal, BECCS key performance indicators
(KPIs) are necessarily highly diverse. BECCS value chain
optimisation is therefore inherently multi-objective, and by
focusing either on cost, or on the trade-offs between economic
and environmental performance, one could easily cloud the
complex interactions existing between BECCS environmental
impacts. In their work, Heck et al.® presented a global land and
biomass optimal allocation model for BECCS via B2H2 and
B2L, in which the weighted sum of BECCS environmental
impacts - freshwater use, forest loss, biosphere integrity and
biochemical flows - resulting from achieving a fixed biomass
harvest objective, was minimised. The results highlighted
trade-offs between bioenergy production and negative emissions
potential, as well as freshwater use and forest loss. However, the
difficulty with preference-based optimisation is that the optimi-
sation results obtained are highly dependent on the values
attributed to the weights, thus on the relative importance of
each objective, which can be highly region specific. Furthermore,
whilst the model carefully considered planetary boundaries
and regional biomass production potential, BECCS downstream
logistics, such as biomass processing and transport to potential
CO, storage, were not included. This contribution thus
addresses this gap via the development of a BECCS value chain
optimisation model which explicitly accounts for biomass
processing, transport and use in the vicinity of CO, sinks,
and investigates the trade-offs between BECCS KPIs through
pareto-analysis.

1.3 Deploying BECCS within planetary boundaries: the case of
marginal lands and agricultural residues

In order to be sustainable, BECCS needs to be deployed within
all planetary boundaries. To avoid potential land use change'®"°
and competition with other land uses, there have been many
attempts to evaluate the amount of marginal, yet suitable, land
for bioenergy production. The main caveat comes from the
difficulty in defining the nature of marginal land (MAL). Edrisi
et al.*® differentiates wastelands for biomass cultivation by two
views: the suitability/quality of the land, and the socio-economic
value of the land. In this context, marginal land is considered to
be at the intersection of under-utilised lands and neglected
unused land. The definition of marginal land can also vary in
time. A farmer might choose to use a parcel of marginal land one
year, and leave it unused the next, depending on the profitability
of this land in this specific year.

This diversity in definition results in a variety of marginal
land evaluation. In 2011, Cai et al>' provided an extensive
mapping of marginal land, by quantifying the mixed crops,
natural vegetation land, cropland, schrubland, savanna and
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grassland with marginal productivity. This work resulted in the
spatial determination of marginal land availability with a
spatial resolution of 30 arc second geographic. Total world
marginal land availability was quantified between 320 and
1107 Mha, with between 108 and 256 Mha in South America,
18 and 151 Mha in India, 33 and 111 Mha in Europe, 52-152 Mha
in China, and 66-314 Mha in Africa. This evaluation was later on
downscaled by Fritz et al.>® to 56 to 1035 Mha, with adjustments
made to land cover and human impact assumptions. Several
studies were also performed at the regional level. In Brazil, Lossau
et al.>® evaluated the spatial distribution of marginal land in Brazil
by calculating the residual land from cropland, pastures, forest,
build up, barren, water bodies, and the protected Amazon biome
area. The residual area was then overlayed with the FAO/IIASA
land suitability modelling framework® to assess its suitability.
A total of 37.8 Mha was found to be available and unprotected,
with approximately 20% of this land was considered very suitable
for biofuel production. It is worth noting however that the
suitability modelling framework was used for conventional oil
and grain crops production, and perennial grasses such as
Miscanthus and Switchgrass could potentially be more resilient.
In China, marginal land including saline land, steep hillside and
idle land was evaluated at 35-75 Mha,* while another study
pointed to 44 Mha exploitable for energy plants.>® A more detailed
study on miscanthus production in China evaluated at only
17 Mha the potential Miscanthus production area in China, with
yields as low as 2 t per ha in bare areas.”” In Europe, a study by
Strapasson et al.”® based on FAO land cover and land use data
quantified the land available in the EU for bioenergy production
to 20 Mha. In India, a study by Edrisi et al?*® evaluated the
potential of MAL for bioenergy production to 39 Mha, providing
suitable soil amendments and agro-technologies are used to
improve the fertility/productivity of the various wasteland
considered. Table 1 summarises these findings, highlighting
the great range in marginal land availability assessments in
the literature. Using agricultural residues could represent an
alternative to using marginal land, while still avoiding land
use change. However, mismanagement or over-utilisation of
agricultural residues could led to various negative impacts
among increased water evapotranspiration, soil depletion,
productivity loss, erosion.?**° The use of agricultural residues
in an attempt to reduce BECCS’s impact on land use, water use
and land use change, therefore needs to be carefully monitored.

1.4 Achieving negative emissions via BECCS: the example
of the UK

As part of its transition to a low-carbon economy, the UK has
committed to be carbon neutral by 2050. Forecasts anticipate
that in achieving this target, 50 Mt per year of carbon dioxide
could be sustainably removed from the atmosphere, in order
to offset remaining emissions from various sectors of the
industry.>* Furthermore, at the time of writing, the Committee
for Climate Change (CCC) has been instructed to investigate
the implications of meeting the Paris targets on UK carbon
budgets, signalling a potential increase in ambition.*> Were
NETs to be delivered via BECCS, building sustainable biomass
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Table 1 Literature review on marginal land availability

Region Year MAL (Mha) Sources
South America 2011 108%-256° 21
Brazil 2015 10°-38¢ 23
China 2009 35-75° 25
China 2011 147 26
China 2011 529-152° 21
China 2016 g¢-21" 27

UK 2009 1.4/ 31
England and Wales 2010 0.6* 32

UK 2015 3.4! 33
Europe 2011 33%-111° 21
EU28 2016 20 28
India 2011 18%-151° 21
India 2016 39%5-47°¢ 20

USA 2011 431237 21
World 2011 32011077 21
World 2013 56"-1035™ 22

¢ Mixed crop and natural vegetation land with marginal productivity.
b Mixed crops and natural vegetation land, cropland, scrubland,
savanna and grassland with marginal productivity, discounting the
total pasture land. ¢ Total protected MAL suitable or very suitable for
conventional oil and grain crops. ¢ Total unprotected MAL. ¢ Total MAL
including saline, steep and idle land./ Total MAL. ¢ Fraction of the
MAL which is suitable. ” Total MAL for Miscanthus. ‘ Total MAL for
bioenergy based on FAO land use/land cover data.” Relatively high
quality land for perennial crops. 0.2 for miscanthus, 0.4 for SRC
willow from agricultural land quality and yield map. ‘ Total available
arable and grassland for bioenergy in 2030. ™ Cai et al. MAL values
downscaled after land cover and human impacts corrections.

supply chains, as well as deploying an efficient CCS network,
will be crucial in reaching this target. In 2015, the total EU
pellet consumption reached 20 Mt of biomass pellets, with 6.2
Mt of imports, coming at 90% through the North America-EU
trading route. In the UK, Drax power plant alone used 6.5 Mtgo,
of pellets in 2016 for its three biomass-dedicated 660 MW units.
Though the majority of Drax feedstock originates from sawmill
and forestry residues,*® an increasing biomass demand in the
UK, for both bioenergy and negative emissions purposes, will
inevitably result in the diversification of the biomass feedstock,
likely combining both domestic and imported agricultural
residues and dedicated energy crops. On the CCS front, sizable
volumes of CO, storage have been identified in both offshore
and onshore aquifers.’” Given the UK’s 2050 carbon removal
target and identified available CO, storage in the North Sea, the
design of optimal BECCS value chains for UK-based CO, removal
from the atmosphere is the central case study investigated in this
contribution. However, the framework is applicable to any region
with identified CO, storage and CO, removal targets, and
we further extend this work to present a series of thought
experiments describing optimal supply chains to meet US and
China-specific carbon removal targets, in southern US and eastern
China, respectively.

1.5 Contribution of this study

This study presents a region-specific optimal allocation of
resources — biomass feedstock, land, water, energy - to meet
region specific carbon dioxide removal target via BECCS.
The MONET framework was used to determine the optimal

This journal is © The Royal Society of Chemistry 2018


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8ee01676c

Open Access Article. Published on 16 ottobre 2018. Downloaded on 13/02/2026 01:18:52.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

combination of feedstock type, region, land type, and transport
route to a given region to remove CO, with a fleet of 500 MW
UK, US and China-based pulverised combustion power plants,
in conjunction with CO, capture and storage. Section 2 presents
the model and assumptions used for this analysis, detailing the
amendments and additions made to the MONET framework
since its first implementation.” Section 3 presents the different
optimal BECCS value chains to minimise either the total water
use, land use and biomass use. Section 3.2 investigates the
trade-offs between these different environmental indicators,
while Section 4 investigates the sensitivity of these indicators
to the availabilities of marginal land and crop residues. Finally
Section 5 further investigates the relationship between the two
services provided by BECCS - carbon dioxide removal and
energy production - by highlighting the trade-offs between
BECCS environmental performance indicators and energy
production service.

2 Methodology

In order to sustainably contribute to climate change mitigation,
negative emissions technologies must (1) deliver the service(s)
for which they were deployed, i.e., CO, removal and, in the case
of BECCS, energy production, (2) at a low resource cost, and (3)
with limited indirect impact on the markets and ecosystems.
We summarise these three criteria by the NETs trilemma,
illustrated in Fig. 1. The NETs key performance indicators
(KPIs) include net CO, removal, tNgo, and net electricity
production, tNE, to evaluate technical performance, water
use, tWU, land use, tLU, and biomass use, tBU, to evaluate
resource efficiency, and agricultural residue use, tRU, and land
use change, tLUC, to evaluate BECCS economic-environmental
impacts. To clarify, no cost analysis was included in the
MONET framework, which means that the total system cost
is not one of the objective functions explored in this study.
This is left for future work.

Technical performance

Carbon removal
Energy production/use

The NETs
trilemma
Economic-
environmental impacts Resource efficiency
Land use change Water use
Soil erosion Land use
Biochemical flows Biomass use/CO,
Biodiversity efficiency

Fig. 1 Schematic of the NETs trilemma. NETs key performance indicators
are reassembled in three categories: technical performance — net CO,
removal and electricity production, resource efficiency — water, land and
biomass use (equivalent to CO, efficiency), and economic-environmental
impacts — land use change and agricultural residues use (with potential
impact on soil productivity and erosion).

This journal is © The Royal Society of Chemistry 2018
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In order to position BECCS within this performance
trilemma, we designed the MONET framework which comprises
(1) a BECCS value chain model which calculates the water use,
land use, net CO, removed, CO, breakeven time, net electricity
produced and net CO, efficiency of different BECCS value
chains, and (2) a BECCS value chain optimisation model which
determines the optimal combination of BECCS value chain
configurations to meet a given CO, removal target.

2.1 MONET value chain modelling framework

The value chain model specifically accounts for biomass culti-
vating, harvesting, pelleting, transport to a given region and
conversion in a pulverised combustion plant combined with
post-combustion CO, capture and subsequent storage in the
vicinity of the power plant. The conversion technology considered
is a 500 MW dedicated pulverised biomass thermal power plant,
combined with post-combustion amine-based carbon capture.
In a previous contribution, we evaluated the power generation
efficiency of the facility at 26%yyy, including the CCS energy
penalty.*

The value chain configurations are characterised by distinct:

e Biomass feedstock, b: miscanthus, switchgrass and short
rotation coppice willow as archetypal dedicated energy crops,
and wheat straw as an archetypal agricultural residue,

e Sub-region, sr, from which the biomass is imported: Brazil,
China, EU, India and the USA are considered as potential
regions of import, and discretised at the state/province level,
resulting in 170 potential cells for biomass farming. Each cell is
defined by its area and the position of its centroid.

e Land type, 1, on which the biomass is grown: cropland,
grassland, forest and marginal land. The different land sce-
narios are included to account for direct (LUC) and indirect
(ILUC) land use change, i.e., the direct and indirect CO,
emissions associated with the conversion of a certain land
type to bioenergy production. Different types of land are
associated with distinct LUC and ILUC, and the resulting
emissions are highly dependent on the biomass type, eco-
nomic use of the land, region, timeframe considered, etc. As a
simplification in this study, LUC and ILUC values, within a
range of uncertainty, are attributed to the different land types,
regardless of the region and biomass type. It was therefore
considered that no LUC/ILUC was attributed to marginal land,
medium LUC and high ILUC were attributed to cropland and
grassland, as using these managed lands means an activity
must be re-allocated elsewhere, and high LUC and no ILUC
were attributed to forests. Converting a low vegetation land
such as a marginal land, to a managed bioenergy crop with
deep rooted perennial grasses, could result in negative land
use change, ie. net soil CO, sequestration.’®*? While these
effects could improve BECCS CO, balance, we adopted the
conservative approach of not considering them, given the
uncertainty around their amplitude and permanence.

e Port, p, which is used for shipping the biomass from its
region of origin to the region of conversion and sequestration.
Each sub-region sr has access to a port p as long as there is a
road access to this port.

Energy Environ. Sci., 2018, 11, 3408-3430 | 3411
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Esri, HERE, DelLorme, Mapmylndia, © OpenStreetMap contributors, and the GIS user community.

Fig. 2 Representation of the sub-regions sr (or cells) and ports p considered for BECCS value chain modelling in MONET. Each cell is defined by its area

and the position of its centroid, which were calculated using ArcGIS 10.

5_40

The map also displays the location of the weather stations, indicated by the

blue dot in each cell, and obtained from the software CLIMWAT 2.0,%* from which the climate data of each sub-region was collected. As an example in
this figure, biomass can be shipped to the UK (black arrows), southern USA (purple arrows) and eastern China (blue arrows) for conversion and CO,

sequestration.

A schematic of the current bio-geo-physical map of the
MONET model is presented in Fig. 2, including the ports and
biomass collection points.

2.2 Spatial discretisation and transport distance

Building on our previous work,** the level of spatial discretisation
was increased from the macro-region level - Brazil, China, EU,
India, USA - level to the province/state level — Brazilian, Indian
and US states, Chinese provinces, EU countries. A consequence of
this discretisation in a change in the computation of the road
distance for biomass pellet transport. Sub-regions are polygons
represented geographically by the latitude Y(sr) and longitude
X(sr) of their centroid. Similarly, ports are represented by their
latitude Yp(p) and longitude Xp(p). Three options are considered
for biomass transport from a sub-region, sr, where biomass is
produced, to a sub-region, sre,q, where biomass is converted
into energy and CO, is stored: (1) road transport by heavy duty
vehicles (HDV) if there is a road access between sr and srpq, (2) a
combination of road and sea transport by container ship, (3) and
short distance transport (50k) by HDV if sr and sre,q are the same
regions. For simplicity, rail and barge are not considered in this
analysis. The optimal transport route - option (1), (2) or (3), and
optimal ports p and peng in option (2) - is determined by the
optimisation program. The road distance considered in the model
is therefore the euclidian distance between sr and sre,q in (1), and
the summation of the euclidian distance between sr and p and
between Sreng and pena in (2), corrected by a region-specific
tortuosity factor ¢(sr):

Dioad(ST,p) = ¢(ST) X Rearth X arcos(sin Yp(p)) x sin Y(sr)

+ cos Yp(p) X cos Y(sr) x cos(X(sr) — Yp(p)) (1)

3412 | Energy Environ. Sci., 2018, 11, 3408-3430

tDroad[srysrendyp)pend) = Droad(sr)p) + Droad(srend’pend) (2)
or

t(sr) + #(Stend)

3 X Rearth X arcos(sin Y (stend))

Droad (SI‘7 Srend) =

x sin Y (sr) 4 cos Y (srend) X cos Y (sr)
x cos(Y(sr) — Y(stend))
(3)
2.3 Key outputs of the modelling framework

In order to solve the optimisation model, the following outputs
are obtained with the value chain modelling framework,
for each sub-region sr, biomass b, port p, and land type 1:

° WUCOZ(sr,b,l,p) is the water required to remove 1 ton of
CO, from the atmosphere, in m® per tco,- The MONET tool
calculates the water intensity of BECCS by adding three terms:
the blue, the green and the grey water. In our model, the green
water is considered to be the crop water demand which is
met by precipitation, whereas the blue water is the additional
amount of fresh water required to grow the biomass, and in the
power plant. The grey water is the amount of polluted water
resulting from the fertiliser use at the field level.* In order to
only account for the marginal amount of water required for
BECCS, WUgo (s1,b,1,p) only includes the blue and grey water
contributions. In the case of biomass residues such as wheat
straw, the blue water associated with straw production is
allocated to the production of wheat, and therefore considered
to be zero.

e PPLUco,(s1,b,l,p) is the amount of land used by BECCS
facilities to remove 1 ton of CO,, in ha per tgo,.

This journal is © The Royal Society of Chemistry 2018
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e FLUgo,(st,b,L,p) is the amount of land harvested for
biomass at the field level per ton of CO, removed, in ha per
tco,- In the case of biomass residues such as wheat straw, the
land footprint associated with straw production is allocated to
the production of wheat, and therefore considered to be zero
for straw.

® NEco,(s1,b,l,p) is the amount of net electricity produced
in GJ per ton of CO, removed, accounting for the energy cost
of BECCS value chain. The approach used to calculate this
metric has been presented in detail previously,’ and is not
repeated here.

® BUco (s1,b,1,p) is the amount of biomass used to remove
1 ton of CO, from the atmosphere, in tpy per teo,-

e BioC(b) is the biomass carbon content in %pp.

® CNco,(s1,b,1,p) is the cumulative net amount of CO, stored
by a BECCS configuration, over its lifetime, per hectare of land,
in teo, per ha.

e CNE(sr,b,l,p) is the cumulative net amount of electricity
produced by a BECCS configuration, over its lifetime, per
hectare of land, in M]J per ha.

® BET(o, is the CO, breakeven time of the BECCS configu-
ration, ie., the time required for the system to be carbon
negative.

e BETy is the electricity breakeven time of the BECCS
configuration, i.e., the time required for the system to be energy
positive.

2.4 Supply chain optimisation framework

The purpose of this work is to determine the optimal BECCS
value chain required to remove 50 Mtco, per year in a given
region, by allocating the amount of CO, removed annually per
configuration CO,rem(sr,b,l,p) while minimising or maximising
different objective functions [ fi, f5, f3, fal:

e Minimisation of total water use tWU:

fi=tWU = Z WUco, (s1,b,1,p) x COsrem(sr,b,1,p) (4)
sr,b,l,p

e Minimisation of total land use tLU which accounts for the
harvested land in region sr, and the land used by the BECCS
facilities:

f> = tLU = tFLU + tPPLU (5)

Similarly to fresh water use, the cultivated land associated
with the production of wheat straw is allocated to wheat
production. Wheat straw land footprint at the field level is
therefore not accounted for in the summation:

>

sr,b# Wheat,l,p

tFLU = FLUco, (sr,b,1,p) x COsrem(sr, b, 1, p)

(6)

tPPLU = )~ PPLUco, (sr,b,1,p) x COzrem(sr,b,1,p) (7)
sr,b.l.p

e Maximisation of the total CO, efficiency tnco,, Le., the
ratio of the amount of CO, permanently removed tNco, to the
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amount of CO, stored in the biomass, tBioCO,. The latter is
directly related to the amount of biomass used:

f3 = tBioCO, = Z BioCOs(sr, b, 1, p) x CO,rem(sr, b, 1, p)
sr,b,l,p

(8)
with

BioCO,(st,b,1,p) = BUco,(s1,b,1,p) x BioC(b) x CtoCO,  (9)

tNco, = Z CO,rem(sr, b,1,p) (10)
sr,b,l,p
tNco,
t =—"" 11
Ico, = {BioCO, (11)

As the total amount of CO, removed is fixed, maximising
thco, is equivalent to minimising tBioCO,. As tfjco, is an non-
linear variable, tBioCO, is thus minimised to ensure the
linearity of the model. It is worth noting that minimising the
total amount of CO, stored in the biomass is equivalent to
minimising the total amount of biomass used.

e Maximisation of the net electricity produced tNE by the
BECCS value chain:

fi =tNE = Z NEco, (sr,b,1,p) x COsrem(sr,b,1,p) (12)
sr,b,L.p

The preference-based procedure of using a weighted sum of
the different objectives as a unique objective function was not
used here for two reasons. First, the inherent diversity of the
different objectives — land use, water use, CO, efficiency and net
energy produced - make them complex to convert into one
single objective. Secondly we estimated that preference of one
objective over the others will be highly region specific, and
choosing these factors arbitrarily could therefore give irrelevant
results as to BECCS optimal value chain. Therefore, in the first
instance, we chose to treat each of these objectives separately,
and leave the multi-criteria, multi-stakeholder problem for
future work. Thus, we have formulated four distinct scenarios
which allow us to perform a series of thought experiments
across the BECCS value chain. These four optimisation scenarios
are subject to the following constraints:

e The configurations considered must be carbon negative
within a relevant time-frame, i.e., the BET¢o (st,b,1,p) must be
smaller than the project lifetime, considered to be 50 years in

this analysis:
BETco,(s1,b,1,p) < 50

(13)

This constraint is equivalent to CNgo,(st,b,l,p) being
positive:
CNCOZ(Sr,b,l,p) >0 (14)
e The amount of net CO, removed annually by the configu-
ration, CO,rem(sr,b,l,p) must be positive:
CO,rem(sr,b,l,p) > 0

(15)

¢ In a first instance, we also constrained the configurations
to be energy positive:

Energy Environ. Sci., 2018, 11, 3408-3430 | 3413


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8ee01676c

Open Access Article. Published on 16 ottobre 2018. Downloaded on 13/02/2026 01:18:52.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Energy & Environmental Science

BETg(sr,b,l,p) < 50 (16)

or

CNE(sr,b,l,p) = 0 (17)
As electricity production is not the primary service delivered
by BECCS, this constraint may be relaxed if the optimisation
problem cannot solve.
e The total amount of CO, removed must be equal to the set
CO, removal target:

tNco,(st,b,1,p) = CO, target (18)

An equality constraint was chosen over an inequality constraint
in eqn (18), as an inequality constraint would lead to BECCS
being deployed over the CO, removal target in the energy
maximisation scenario.

e The amount of land harvested in each region for dedicated
energy crops is limited by the availability LA(sr,]) of land type |
in sub-region sr:

FLUco, (sr,b,1,p) x COsrem(sr, b,1,p) < LA(sr,1)
b# Wheat,p

(19)

e Though no land footprint is attributed to wheat straw
production, the amount of harvested land for wheat is each
region is limited the wheat area availability WA(sr) in sub-
region sr:

Z FLUco, (sr, wheat, cropland, p)
? (20)
x COyrem(sr, wheat, cropland, p) < WA(sr)

To evaluate the extent of land use change under each
optimisation scenario, the variable tLUC is calculated as the
summation of all land types other than marginal land - ie.,
cropland, grassland and forest - used for the production of
dedicated energy crops:

tLUC =

sr,b# wheat,l # marginal land,p

FLUco, (st, b, 1, p)
(21)
x COrem(sr, b, 1, p)

2.5 Pareto-front analysis

The e-constraint method was used to quantitatively evaluate the
trade-offs between the four objective functions. For each combi-
nation of objective functions, f; and f;, the following optimisa-

tion problem was solved:
min f; (22)
st. fu<ef Vk#]J (23)

with & the upper bound vector [e},e3,. . .,éi] linearly distributed
between the lower and upper bounds of f;, m being the number
of points chosen for the purpose of this analysis.
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2.6 Data curation

The model input data at the macro-region level has be