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Assessing the photovoltaic technology landscape:
efficiency and energy return on investment (EROI)†

Z. Zhou * and M. Carbajales-Dale

This study builds on previous meta-analyses of photovoltaic (PV) systems to assess the tradeoff between

efficiency and energy inputs (i.e. cumulative energy demand, CED) in the energetic performance (as measured

by energy return on investment (EROI)) of PV technologies under both high-cost and low-cost balance of

system scenarios. This study focuses on three existing technology groups (wafer, thin film, and organic). We

find that earlier projections of third-generation (high-efficiency, low-cost), thin-film technologies have not yet

emerged, since ‘‘third-generation’’ technologies currently have low-cost but also low-efficiency. However, we

also find that the best advances in energetic performance to date come from thin film technology.

Introduction

Solar power is widely promoted as an important means to
reduce harmful environmental impacts from electricity generation,
particularly avoiding the emission of climate-changing greenhouse
gases (GHGs). Governments worldwide support renewable energy
by mandating renewable portfolio standards, tax incentives and
feed-in tariffs.1 Due in part to government support and large
reductions in module costs, the global installed capacity of solar
photovoltaic (PV) systems is increasing rapidly.2

The energetic performance of solar cells is dependent on a
number of factors: efficiency, lifetime, capacity factor, and energetic
cost of cell manufacture. There is a large drive to boost the efficiency
of PV cells via a number of techniques including improved light
trapping;3 high-efficiency materials, such as gallium arsenide
(GaAs);4 multiple-junction cells to capture more of the sunlight
spectrum;5 multiple excitation generation and quantum dot
cells;6 and plasmonic and hot carrier cells.7 Previous studies
have highlighted both the energetic and climate benefits of PV
systems with low embodied energy.8–10

This study explores the landscape of energetic performance
of a variety of different PV technologies in terms of efficiency,
embodied energy (as measured by cumulative energy demand,
CED), and energy return on investment (EROI) to identify potential
benchmarks for research and technology development.

Background

There has been a large push globally to reduce the financial
costs of PV system production. The US Department of Energy

(DOE) initiated the SunShot program, targeting a PV system
cost of ‘one dollar per watt’ of installed capacity.11 Balance of
system is usually considered as components and equipment
aside from the PV modules themselves that among other
functions convert DC energy, which is generated by the solar
panel, to the AC energy system.12 At the outset of the program,
the breakdown between financial cost of PV modules versus
BOS costs was assumed to be around half–half (50 : 44%, the
other 6% being power electronics) of the $3.40 per watt system
cost. Other researchers have found a similar split (66 : 34)
between module and BOS for conventional crystalline silicon
(c-Si) PV technology, with an efficiency of 18%.13

Many of the costs of PV system production (especially BOS
components such as support structures) scale with system area.
As efficiency increases, the need to generate the same amount
of electricity decreases. As such, system efficiency has become
the holy grail of PV technology development. The DOE’s
National Renewable Energy Laboratory (NREL) tracks developments
in the field by maintaining a ‘leaderboard’ of PV cell efficiency.14

A seminal work in the field of PV system analysis represents
the tradeoff between efficiency [%] and panel cost [USD per m2]
for three generations of PV: (I) wafer based; (II) thin film; and
(III) advanced thin films.15 In this efficiency–cost space, diagonal
lines depict the cost per unit of capacity [USD per W]. The first-
generation, wafer-based technology has a higher efficiency than
second-generation thin film but at a higher cost per unit area,
leading to an overall higher cost per unit capacity. This seminal
work projects that third-generation technologies would have
dramatically increased efficiency through several approaches
(such as multiple energy level, intermediate level cells, and
multi carrier excitation), while the cost per unit area would be
only slightly higher than traditional thin film.

However, efficiency and financial cost are not the only
important metrics by which to judge PV system performance.
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Net energy performance and environmental impacts (such as GHG
emissions or water consumption) may also be important indicators
of the benefits and costs of energy delivery technologies.16,17

Previous meta-analyses have: (i) used GHG emissions,18,19 water
consumption,20 and CED10,21 to compare PV technologies;
(ii) used cumulative electrical energy demand (CEeD) [kW he/Wp]
and electrical energy payback time (EePBT) [years] to assess the
performance of the global PV industry;8,22 (iii) understood
the impact of deploying energy storage technologies to support
PV and wind;23 and (iv) compared wind, solar PV, and con-
centrating solar power (CSP) technologies.24 This paper uses
the electrical energy return on investment (EeROI) as a metric
to evaluate and compare the performance of different PV
technologies with a specific focus on the impact of panel
efficiency and BOS.

Another important financial metric that is increasingly used
to assess the financial viability of solar PV technologies is the
levelized cost of electricity (LOCE) over the full lifetime of the
plant. Estimates range between $60–560 per MW h,25 with
record-breaking-low bids being made in the United Arab Emirates
of $23 per MW h.26

Methodology
Meta-analysis

We build on several previous meta-analyses of the energy
inputs to PV systems and update them to find the distribution
in CEeD for different PV technologies. For more discussion of
the method, see the ESI,† Section S2, and the spreadsheet of
research data taken from previous studies27–79 is also uploaded
as ESI.† The meta-analysis is based mainly upon currently
commercialized technologies, unfortunately meaning a lack
of studies on perovskite technologies, which show a great deal
of promise at the level of research cells.

Capacity factor

PV system electricity generation is dependent on the average
power delivery capacity per watt of nameplate capacity, often
termed the capacity factor [Wavg/Wp]. Previous studies have
determined the global average capacity factor for PV systems
to be around 12%.8,16 We have updated this assessment to
obtain a value of 15% (for details see Section S2.1, ESI†).

Electrical energy return on investment

EeROI may be easily defined as

EeROI ¼ Electrical energy output

Electrical energy inputs
(1)

In the context of this study, energy inputs may be defined on a
per unit area basis [kW h m�2] by the cumulative electrical
energy demand of the PV system CEeDsys, which may be
split into two parts for the module (CEeDmod) and the BOS
(CEeDBOS). We assume that the energetic costs for operation
and maintenance (O&M) as well as disposal are negligible, or

that they vary little between different technologies. We may now
write the expression for EeROI as

EeROI ¼ kL
CeEDsys

¼ kL
L

T
CeEDmod þ CeEDBOS

(2)

where k is the capacity factor and L is the standard system
lifetime [h], which is 24 � 365 � 25 = 219 000. T is the module
life time [h].

Balance of system cost

In order to study the impact of module efficiency on energetic
performance, we combine the BOS data (see Section S3.5, ESI†)
of all technologies together and analyze two scenarios: (a) a
high BOS scenario in which we assume that BOS energetic
costs take the maximum value 206 kW he m�2 from the
BOS distribution (see Fig. 1); and (b) a low BOS scenario
in which BOS energetic costs take the minimum value of
37 kW he m�2.

Fig. 1 Distribution in the cumulative electrical energy demand for the
balance of system (CEeDBOS) on a per unit area basis [kW he m�2] from
our meta-analysis. The 0, 25, 50, 75, and 100 percentile values are,
respectively, 36.58, 47.52, 70.59, 123.55, and 206.36 kW he m�2.

Fig. 2 Energetic performance in terms of efficiency and cumulative
electricity demand of three main photovoltaic types: crystalline silicon
(c-SI in red), thin film (blue), and organic (OPV, in pink). The inset figure
shows the detailed efficiency range between 0 and 20%. The dashed lines
show the whole boundaries of each technology.
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Lifetime

To compare different technologies on an equal basis, we define
a standard lifetime of 25 years. For PV technologies with lower
expected lifetimes, e.g. organic PV systems, CEeDmod will be
increased to account for the replacement of panels over the
25 year period. For example, if the expected lifetime is 5 years,
the CEeDmod would be increased by a factor of 5 because the
panel would need to be replaced 5 times to cover the whole
period, whereas we assume that the BOS does not need to be
replaced. We do not account for any learning that may have
decreased the value of CEeDmod, i.e., the panels are all paid for
‘up front’ at the beginning of the 25 period. We assume that
organic modules have a lifetime of 5 years80 (i.e., they require
the up-front investment for 5 modules). All other technologies
are assumed to last 25 years.

Results and discussion

In Fig. 2, we plot the ‘PV energetic performance landscape’ for
three sets of PV technologies: (1) crystalline silicon (c-SI), which
includes single-crystal (sc), multi-crystalline (mc), and ribbon
silicon; (2) thin film, which includes amorphous silicon (a-Si),
cadmium telluride (CdTe), and copper indium gallium (di)selenide
(CIGS); and (3) organic polymer (OPV). In the plot, the horizontal
axis depicts PV module CEeDmod on a per unit area basis [kW he

m�2], the vertical axis depicts PV module efficiency as a percent of

incoming sunlight energy converted to DC electricity [%]. As can be
seen, the pattern mirrors that of the efficiency vs. financial cost
plot discussed earlier; wafer-based (first-generation) technologies
have higher efficiency and higher energy ‘cost’ (CEeD) compared
with thin-film and OPV (second-generation) technologies. As
yet, no high-efficiency, low-CEeD (i.e. third-generation) panels
have been produced.

In Fig. 3, we compare the energetic performance of the PV
technologies under a high-BOS (left) and low-BOS (right) scenario
now using the efficiency-CEeDsys ‘landscape’, i.e. including the
CEeDBOS costs. In this case, we are using a log–log plot wherein
the EeROI values are depicted as diagonal contours and vary
depending on the (high–low) BOS scenario. Switching between
the two scenarios changes the position and slope of the EeROI
contours in the landscape. The slope of the EeROI contours
suggests that low efficiency is more detrimental at high CEeDsys,
since the curve bends upward more steeply on the right side of
the plot, especially in the high-BOS scenario.

In both scenarios, thin-film technologies perform best (i.e.
have the highest and generally higher EeROI values). Additionally,
the best gains in energetic performance of the technologies
occur when efficiency gains and reduction in CEeDsys move the
technology through the landscape perpendicularly to the EeROI
contours. As can be seen from the shape and direction of the
bounding ovals, OPV technologies are seeing efficiency gains
but at the expense of greater CEeDsys, c-Si is reducing CEeDsys,
but with smaller relative gains in efficiency, whereas thin-film

Fig. 3 PV system performance landscape (cumulative electricity demand, efficiency, and EROI) for different scenarios for the CEeD of the balance of
system (BOS). (a) A high BOS scenario, value 206 kW he m�2 and (b) a low BOS scenario, value 37 kW he m�2. Outliers of each technology group are
captured using a dashed line. As can be seen, the EROI is vastly different in the two scenarios; however, thin-film technologies (CdTe, CIGS, a-Si) perform
best in both cases. The higher efficiency of the c-Si technologies (sc-Si, mc-Si) comes at the cost of a higher cumulative electricity demand for the total
system.
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is seeing concomitant gains in efficiency and a reduction in
CEeDsys.

Conclusions

This study builds on previous meta-analyses of PV systems to
assess the trade-off between efficiency and cumulative energy
demand in the energetic performance of PV technologies under
both a high-cost and low-cost balance of system scenario. We
find that earlier projections of third-generation (high-efficiency,
low-cost), thin-film technologies have not yet emerged. We
further find that, of the existing technology groups (wafer, thin
film, and organic), thin-film has, to date, seen the best advances
in energetic performance and is currently performing better.
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