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Emerging investigators series: microbial
communities in full-scale drinking water
distribution systems – a meta-analysis†

Quyen M. Bautista-de los Santos,a Joanna L. Schroeder,a Maria C. Sevillano-Rivera,b

Rungroch Sungthong,a Umer Z. Ijaz,a William T. Sloana and Ameet J. Pinto*bc

In this study, we co-analyze all available 16S rRNA gene sequencing studies from bulk drinking water sam-

ples in full-scale drinking water distribution systems. Consistent with expectations, we find that

Proteobacteria, particularly Alpha- and Betaproteobacteria, dominate drinking water bacterial communities

irrespective of origin of study and presence/absence of or disinfectant residual type. Microbial communities

in disinfectant residual free systems are more diverse than in those that maintain a disinfectant

residual. Further, we find positive associations between mean relative abundance and occurrence of

bacteria within a disinfectant category group. The relative abundance and occurrence of key bacterial gen-

era (e.g. Legionella, Mycobacterium, Pseudomonas) is influenced by the presence/absence of a disinfectant

residual and the type of disinfectant residual used. Similarly, we find widespread distribution of bacterial

genera that are of interest from both an ecological and process perspectives (e.g. nitrification, predation).

By estimating the contribution of potential contaminating genera to published drinking water datasets, we

recommend that routine sequencing of negative controls be included in drinking water studies. Finally, we

test the utility of predicting the metabolic potential of drinking water communities using 16S rRNA gene

data and recommend against this practice. Though data heterogeneity across available datasets is a major

confounding factor in our meta-analysis, we recommend that efforts to standardize sample processing

protocols to address it may not be optimal for the drinking water microbial ecology field at this juncture.

Rather, we recommend standardizing data and meta-data reporting, starting with making all sequencing

data publicly available, and sample sharing as means of supporting future efforts for comparative analyses

across drinking water systems/studies.

1. Introduction

Drinking water distribution systems (DWDSs) are designed,
built, and managed with the purpose of conveying potable
and palatable water from drinking water treatment plants

(DWTPs) to the consumer's taps. The transport of drinking
water (DW) through the DWDS is accompanied by a mass mi-
gration of the microbial communities that are an inevitable
component of this ecosystem and controlling their growth is
paramount to the provision of safe DW. Minimizing undesir-
able microbial growth in the DWDS is currently achieved by
managing two primary factors: ensuring low concentration of
assimilable organic carbon (AOC)1 and other growth-rate lim-
iting substrates (e.g. nitrogen, phosphorus)2 and/or applying
residual disinfectants such as chlorine or chloramine.
DWDSs without disinfectant residual typically aim to main-
tain AOC levels below 10 μg l−1, while residual disinfectant
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Water impact

Microbial communities in drinking water systems can mediate wide-ranging impacts from biofiltration for pollutant removal to public health risks. Under-
standing their distribution and abundance across systems will enable improved microbial management strategies for the drinking water industry. We
conducted a meta-analysis of microbial communities in bulk drinking water using all available 16S rRNA gene sequencing data to highlight differences and
similarities across full-scale drinking water distribution systems with different microbial growth control strategies.
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concentrations in disinfected DWDSs are typically maintained
lower than the maximum guideline levels (chlorine: 5.0 mg l−1;
monochloramine: 3.0 mg l−1)3 to avoid taste and odor issues. De-
spite these rigorous efforts, it is well documented that DWDSs
harbor abundant and diverse microbial communities.4–7

Recent advances in our understanding of the DW micro-
biome can in large part be attributed to the application of
high-throughput and deep DNA sequencing based methods
that target the 16S rRNA gene.8,9 These approaches have
also highlighted the influence of process operations,5,10,11

disinfectant type,12–14 environmental conditions,7 hydraulic
conditions,15,16 distribution system structure,7,17 premise
plumbing (also referred to as building plumbing) characteris-
tics,13,18 etc. on the structure and composition of the DW
microbiome. Emerging from these studies is a general consen-
sus on the types of microorganisms that are typically encoun-
tered in DW samples. Bacteria within the phylum
Proteobacteria,19 and in particular those within the classes of
Alpha- and Betaproteobacteria, have been shown to be domi-
nant in nearly every study published thus far. Nonetheless,
studies have also reported differences in the dominance of
these classes depending on a range of factors, including but
not limited to seasons7,17 and disinfection strategy.6,12,20,21 De-
spite this emerging consensus about the composition of the
DW microbiome, particularly the bacterial community, to our
knowledge there has been no study that attempts a collective
analysis (i.e. meta-analysis) of all publicly available DW
datasets. Such efforts are particularly critical, as the study of
the DW microbiome with high-throughput sequencing
methods is nascent, compared to efforts to characterize micro-
biomes associated with other environments, e.g. human gut22

and even another engineered aquatic system, i.e. the wastewa-
ter/activated sludge system.23,24 Such an early-stage meta-anal-
ysis effort can reveal conserved features across DW systems
and help identify targeted research questions and also high-
light opportunities to improve future DW microbiome studies.

In this study, we systematically collate and compare all
publicly available datasets involving bulk DW samples col-
lected at the outlet of the DWTP (DWTPoutlet), in the DWDS,
and at point-of-use (POU). We have focused our analysis on
bulk DW samples for several reasons. First, bulk water repre-
sents the primary mode of customer exposure to DW micro-
bial communities. Second, studies have clearly shown that
bacterial communities in bulk water and biofilms on pipe
walls are distinct,25,26 although biofilms influence the for-
mer27,28 and can have potential impacts on health.29 Finally,
several studies have demonstrated that though there is tem-
poral variation,7 the bulk DW bacterial community within a
given distribution system is relatively stable irrespective of
the sampling location6,7,30 over short time-scales and is even
reproducible over annual time-scales.7 In contrast, biofilms
are extremely spatially heterogeneous31 and are likely to de-
velop over time-scales that are much longer than the resi-
dence time of water within a given DWDS. This spatial
heterogeneity and uncertainty related to time-scales of com-
munity assembly results in a poor understanding of how a

biofilm community at one location in the DWDS may relate
to those at other locations within the same system. There-
fore, the lack of rigorous characterization of biofilm heteroge-
neity even for a single DWDS, limits the utility of comparing
biofilm communities across systems. The objectives of this
study were to: (1) identify microbial populations that are
detected across all publicly available bulk DW datasets; (2)
evaluate the variation in the occurrence and relative abun-
dance of target microbial groups, at the phylum/class and op-
erational taxonomic unit (OTU) level, (3) evaluate the rela-
tionship between occurrence and relative abundance of taxa
across systems, (4) determine the association between disin-
fection strategy and microbial community, and (5) provide in-
sights into their functional potential across all samples and
within disinfection strategy type, to the extent possible.

2. Methods
2.1. Data collection

We focused our efforts on published datasets that involved
(1) collection of bulk water samples from either the
DWTPoutlet, in the DWDS and/or at the POU, (2) extraction of
DNA from the sample without an enrichment or cultivation
step, (3) PCR amplification of any of the hypervariable re-
gions of the 16S rRNA gene from the extracted DNA, and (4)
sequencing of the PCR product on any high-throughput DNA
sequencing platform (i.e. Illumina MiSeq, 454 pyrosequenc-
ing, and Ion Torrent). Further, we focus on differences across
sampling locations, rather than temporal change at each
sampling location. As a result, multiple temporally distinct
samples collected from the same sampling location were
collapsed into a single sample. Based on these criteria, we
were able to identify 21 distinct studies with 6,5,4,2,2,1, and
1 datasets from USA,7,32–36 China,10,37–40 Netherlands,6,20,26,41

UK,15,28 Switzerland,11,42 Australia,43 and France,44 respec-
tively. Of these 21 datasets, only 14 datasets were either
publicly available or made available upon data request
(Table S1†). Hence, only these 14 datasets comprising of
142 distinct sampling locations were included in this
study.6,7,10,15,26,28,32–35,37–39,43

2.2. Data processing

The FASTA/FASTQ files from individual datasets were
processed using a combination of tools and quality filtering
criteria depending on sequencing platforms and hypervari-
able regions of the 16S rRNA gene sequenced. The FASTQ
files containing single-end reads were quality filtered using
sickle v.1.3345 with a minimum quality score of 28 and a min-
imum length of 150 bp after trimming and then converted to
FASTA format using the fastq_to_fasta command in the
FASTX-Toolkit v.0.0.13.2.46 The FASTQ files containing
paired-end reads were processed using pear v.0.8.147 to make
contigs, with a minimum quality score of 28 and a minimum
length of 150 bp after assembly. The FASTA files were
dereplicated in mothur,48 and unique sequences were
matched against the SILVA 119 SSURef_Nr database49 using
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blastn50 with an identity ≥97% and an expect (e) value less
than 0.000005. The best match 16S rRNA gene sequences
from the SILVA 119 database were extracted and used for fur-
ther analysis. Sequences that did not find a suitable match in
the Silva 119 database were excluded from alpha and beta-
diversity analysis. The best-match sequences corresponding
to each sample were then aligned against the SILVA seed
alignment available through mothur.48 The alignment was
screened to remove poorly aligned sequences and filtered
using the vertical = T and trump = . options in mothur.48 The
filtered alignment was then clustered into OTUs at sequence
similarity cutoff of 97% using the average neighbor clustering
approach.48 All sequences were classified using the Naïve
Bayesian classifier51 (80% confidence threshold) using SILVA
taxonomy and consensus taxonomy of OTUs was estimated
using 80% consensus cutoff.

2.3. Data analyses and statistics

The number of sequences across the 142 sampling locations
varied from 223 to 10.8 million. Given significant variability
in sample size,52 we subsampled the data to normalize the
dataset. In order to determine the appropriate subsampling
depth, we estimated the Good's coverage for all sampling lo-
cations at sampling depths ranging from 200–2500 se-
quences. An appropriate sampling depth was determined by
selecting subsampling depths that provided >80% Good's
coverage for each sample while retaining the maximum num-
ber of sampling locations from the dataset. This presented
the options of subsampling at 500 and 1000 sequences per
sample, with the loss of 2 and 6 sampling locations at each
of these subsampling depths, respectively (Fig. S1†). A Mantel
test conducted using distances matrices constructed with
Bray–Curtis metric at subsampling depths of 500 and 1000
sequences per sampling location showed significant correla-
tions between the two distance matrices (Mantel's R = 0.995,
p = 0), indicating that a small benefit from a higher
subsampling depth was accompanied by the loss of 4 addi-
tional sampling locations. As a result, a subsampling depth
of 500 was selected to maximize the number of sampling lo-
cations retained. All estimates of alpha and beta-diversity
were performed at this subsampling depth.

A subsampled OTU table was used as input for a range of
diversity analyses using vegan53 and plots using the package
ggplot254 in R.55 Specifically, we estimated richness (i.e.
observed OTUs), Inverse Simpson index, Shannon index,
and Pielou's evenness as measures of alpha-diversity. Beta-
diversity analyses involved clustering of samples using the
heatmap2 module in gplots56 using the Bray–Curtis distance
metric, while overlap in membership between communities
was estimate using the Jaccard index in mothur.48 The most
abundant sequence in each OTU was used as the representa-
tive sequence (see results) and RAxML57 was used to con-
struct a maximum likelihood phylogenetic tree with the gen-
eralized time reversible (GTR) substitution model and
GAMMA distribution model using 1000 bootstraps using

these representative sequences. The resultant phylogenetic
tree and relevant OTU data were then visualized in
EvolView.58 Permutational multivariate analysis of variance
(PERMANOVA)53 tests were conducted to determine the effects
of the study of origin, source water type, disinfectant strategy,
and proportion of data retained after matching the SILVA data-
base on differences between samples using the Bray–Curtis
and Jaccard metrics.

We estimated the mean relative abundance (MRA) and oc-
currence of each OTU across all sampling locations and sam-
pling locations grouped by disinfection strategy. For these
calculations, we estimated the relative abundance of each
OTU for a sampling location by using all reads in the sample
and not just the subset of reads matching the SILVA data-
base. These full-samples were also used to compare occur-
rence and MRA of key OTUs across disinfection strategies
(see Results and discussion section). To check for the likeli-
hood of contamination in DW studies, we extracted all OTUs
classifying to the genus level that corresponded to the list of
kit/reagent contamination genera identified by Salter et al.59

and estimated their contribution to the overall dataset. The
subsampled OTU table was also used to predict functional
potential of the bacterial and archaeal (where present) com-
munities using Tax4Fun.60 Tax4Fun generates a relative abun-
dance of KEGG61 orthology (KO) groups associated with each
sampling location depending on matches of the representa-
tive sequence from each OTU to KEGG organisms, while also
providing information on fraction of OTUs that do not match
KEGG organisms, i.e. the FTU metric. Analysis of variance
(ANOVA) was performed to assess whether FTU values were
significantly different across the three disinfectant strategies.
For comparisons of KO relative abundance in samples
grouped by disinfection strategy, we picked a subset of sam-
ples from each disinfection strategy (as outlined in the re-
sults and discussion) such that the distribution of FTU values
and mean FTU was not significantly different between disin-
fection strategies. Significantly different KO's across different
disinfection strategies were identified using the Kruskal–
Wallis with Benjamini–Hochberg62 correction with a false
discovery rate of 0.05. A schematic outlining the workflow for
all data-analyses in this manuscript is provided in the supple-
mental material (Fig. S2† with a summary).

3. Results and discussion
3.1. Data structure and composition

The 14 datasets consisted of 142 distinct sampling locations,
with 79 and 63 sampling locations associated with systems
with and without a disinfectant residual, respectively. Of the
79 sampling locations from systems with a disinfectant resid-
ual, 40 and 39 were from chlorinated and chloraminated sys-
tems, respectively. Data for a majority of these sampling loca-
tions was obtained on the 454 pyrosequencing platform (n =
103), with data for 25 and 14 locations obtained on the
Illumina MiSeq and Ion Torrent sequencing platforms, re-
spectively. The 16S rRNA gene hypervariable regions also
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varied depending on the datasets. Specifically, the hypervari-
able regions covered by the sequencing libraries for the 142
sampling locations included V1–V2 (n = 17), V1–V3 (n =7), V3
(n =14), V3–V4 (n = 2), V3–V5 (n = 2), V4 (n = 25), V4–V5 (n =
20), V4–V6 (n = 3), and V5–V6 (n = 52). Given the significant
amount of data heterogeneity (sequencing platform and tar-
get 16S rRNA gene hypervariable region), we could not cluster
sequences across studies directly into OTUs, a constraint
highlighted by other recent meta-analysis efforts.63,64 Hence,
we utilized a pre-processing step of sequence matching to the
SILVA database as a means of being able to combine this
highly heterogeneous data (i.e. a reference based approach).
A limitation of this approach is that the analysis becomes da-
tabase dependent, and the results will be constrained to the
taxonomic groups present in the database used as reference.

Given the reported dominance of Proteobacteria (a domi-
nant phylum also in the reference 16S rRNA gene databases)
in DW samples, it was surprising to discover a high level of
variability in terms of the proportion of sequences for each
sampling location matching a reference sequence in the
SILVA database (Fig. 1), which ranged from 22.7% to as high
as 99% across all locations. The low proportion of matches to
the SILVA database was not specific to any particular study,
but rather there was significant variability within studies
themselves. For example, the proportion of sequences with
SILVA matches was 28–85%, 23–84%, and 36–77% for sam-
ples from Holinger et al.,32 Pinto et al.,7 and Roeselers
et al.,6 respectively. There were indicative trends suggesting
that a greater proportion of sequences generated from sys-
tems without a disinfectant residual were less likely to find a
match in the reference 16S rRNA gene database. The average
proportion of data with matches to the SILVA database for
chlorinated (Chl), chloraminated (Chm), and disinfectant
residual-free (Drf) samples were 82.1 ± 13.9% (n = 40), 83.9 ±
16.1 (n = 39) and 52 ± 8.5% (n = 63), respectively (Fig. 1A, p <

0.0001 for Chl-Drf and Chm-Drf groups). This suggests that
disinfectant residual-free DW systems harbor bacterial diver-

sity that is not well represented in 16S rRNA gene reference
database and will render reference based OTU picking ap-
proaches vulnerable to poorly capturing overall diversity.
However, this observation should be treated with caution as
a majority of the samples from the Drf dataset emerge from a
single comprehensive study,6 and hence is heavily influenced
by 16S rRNA gene primer choice.

Significant differences in the proportion of data matching
the SILVA database were observed according to the sequenc-
ing platform (454-Illumina and 454-Ion Torrent, p < 0.001)
(Fig. 1B); however, the samples sequenced with Ion Torrent
consist of only one hypervariable region amplified, therefore
these results should be interpreted with caution. Similarly,
significant differences in the proportion of data matching
the SILVA database were observed according to the hypervari-
able region amplified, with p-values ranging from 6.1 × 10−14

to 0.001. The direct effect of the lack of matches in the refer-
ence database meant that a proportion of data from each sam-
ple was not used for alpha and beta-diversity analyses. Specif-
ically, all alpha and beta-diversity analyses were based on
81.5% of the sequence data from 142 sampling locations,
with the average sequence data retained per sampling loca-
tion being 69.4 ± 19.9%. It is also important to note that our
efforts to combine multiple datasets does not account for
biases that arise from sample collection and handling proto-
cols,65,66 DNA extraction,67 and PCR amplification68 ap-
proaches. As a result, this meta-analysis study does not pro-
vide a quantitative perspective on similarities and differences
between the samples included in this study. Rather, we aim
to highlight indicative differences that might be prime candi-
dates for follow-up studies designed using standardized proto-
cols across sample/system types.

3.2. Microbial community composition

Across all datasets, bacteria constituted a majority of the
microbial community with the archaea being detected at very

Fig. 1 Proportion of reads from each sample location matching a reference sequence in the SILVA119 database with a minimum percent identity
of 97% (e value < 0.000005) grouped by (A) disinfection group (Chl: chlorinated, Chm: chloraminated, Drf: disinfectant residual-free); (B)
sequencing platform; and (C) 16S rRNA gene hypervariable region represented in the datasets utilized in this study.
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low levels, despite the fact that several studies used 16S rRNA
gene primers that span bacterial and archaeal domains (e.g.
V4 primer set used by Caporaso et al.).9 Specifically, archaeal
sequences were detected in 9.5%, 19.5%, and 89% of the
sampling locations from chlorinated, chloraminated, and dis-
infectant residual-free systems, respectively. Despite the wide-
spread detection of archaeal sequences in disinfectant
residual-free locations they contributed at a low level
towards the overall community, with their MRA across Drf
locations being 0.13 ± 3.3%. As has been reported in several
previous DW studies, Proteobacteria were by far the
most dominant bacterial phylum with their MRA for chlori-
nated, chloraminated, and disinfectant residual-free loca-
tions being 68 ± 42.7%, 75 ± 42.9%, and 54 ± 20.9%, re-
spectively (Fig. 2A). Within Proteobacteria, Alpha- and
Betaproteobacteria were dominant and constituted greater
than 80% of the proteobacterial sequences across all loca-

tions. Actinobacteria was the second most abundant phyla
in disinfected systems, constituting 11.7 ± 16.2 and 8.2 ±
10.7% of the data from chlorinated and chloraminated sys-
tems, respectively. In contrast, Acidobacteria was the sec-
ond most dominant phyla for the disinfectant residual-free
locations (MRA = 6.3 ± 4%), while it constituted less than
1% of the sequences in disinfected systems. These differ-
ences between disinfection strategies was not only limited
to the abundance of the various phyla, but also with re-
spect to their occurrence (Fig. 2B). For example, sequences
from phyla Nitrospinae and Crenarchaeota were not
detected in any of the disinfected samples, while being
present in 29% and 46.7% of the samples without a dis-
infectant residual. Similarly, several low to medium abun-
dance phyla were detected much more routinely in disin-
fectant residual-free systems compared to the systems with
a disinfectant residual, indicating a greater taxonomic

Fig. 2 (A) Mean relative abundance of bacterial phyla/classes grouped by disinfection strategy (Chl: chlorinated, green; Chm: chloraminated, red;
Drf: disinfectant residual-free, blue), estimated as the number of reads assigned to the phylum/class divided by the total number of reads in each
sampling location averaged over the disinfection strategy; (B) occurrence of main bacterial phyla/classes per disinfection group, estimated as the
proportion of sampling locations in which the phylum/class was detected. This figure only includes reads in each sampling location that mapped
to the SILVA database.
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diversity of the bacterial community in absence of a disin-
fectant residual.

3.3. Alpha-diversity of bacterial communities

There were no significant differences in alpha-diversity be-
tween the sampling locations with chlorine and chloramine
as the disinfectant residual (Fig. 3). The inverse Simpson in-
dex was slightly higher for the chlorinated (12.8 ± 15.4) as
compared to the chloraminated (9.3 ± 6.4) systems, however
they also showed higher variability across locations. Consis-
tently, the samples from disinfectant residual-free systems
were richer, more diverse, and more even as compared to the
samples with a residual disinfectant (p < 0.0001). For exam-
ple, the average number of OTUs in the disinfectant residual-
free systems was 225 ± 60 as compared to 85 ± 60 and 87 ±
25 for chlorinated and chloraminated samples, respectively.
Similarly, bacterial communities in disinfectant residual-free
systems were significantly more even (0.84 ± 0.14) as com-
pared to those in the chlorinated (0.64 ± 0.19) and
chloraminated (0.64 ± 0.13) systems. This observation of
higher diversity in disinfectant residual free sampling loca-
tions arises despite the fact that a smaller proportion of se-
quences from the non-disinfected samples were utilized for
OTU construction due to fewer matches to the SILVA data-
base (Fig. 1A). As a result, it is likely that the magnitude of
difference in diversity between disinfectant residual-free and
disinfected systems is much larger than depicted in Fig. 3.
These consistent differences between samples with and with-
out a disinfectant residual could in large part be attributable

to the selective pressures exerted by the process of disinfec-
tion on the DW microbial community.6,33,35

3.4. Shared membership across disinfection strategies

The most commonly detected OTUs in chlorinated,
chloraminated, and disinfectant residual-free systems were
Porphyrobacter (class: Alphaproteobacteria) (MRA= 9.8 ± 22%,
occurrence = 0.62), Bosea (class: Alphaproteobacteria) (MRA =
11.6 ± 45%, occurrence = 0.53), and Nitrospira (phylum: Nitro-
spirae) (MRA = 11 ± 14.1%, occurrence = 0.86), respectively.
Table 1 provides an overview of the most commonly detected
OTUs (occurrence >0.5) across the different disinfection
strategies. Of the 7124 OTUs retained after subsampling,
6.6% (n = 470), 8.6% (n = 611), and 2.4% (n = 169) were
shared (present in all samples under consideration) by: (i)
chloraminated and chlorinated, (ii) chloraminated or chlori-
nated and disinfectant residual-free, and (iii) chlorinated,
chloraminated, and disinfectant residual-free locations, re-
spectively. Proteobacteria constituted a majority of the OTUs
shared between samples emerging from all three disinfection
strategies (n = 131) with 56, 41, and 22 OTUs classified as
Alpha-, Beta, and Gammaproteobacteria, followed by OTUs
within the phylum Bacteroidetes (n = 12) and Actinobacteria (n
= 10) (Fig. 4A). Though there was no clear relationship be-
tween the abundance of an OTU at sampling locations with
one disinfection strategy and its abundance or occurrence
across the others, there was a clear and positive relationship
between abundance and occurrence of an OTU within a dis-
infection strategy (Fig. 4B–D). This suggests that if an OTU is
found to be abundant in a system within a microbial growth

Fig. 3 (A–D) Alpha-diversity per sample grouped by disinfection group (Chl: chlorinated, Chm: chloraminated, Drf: disinfectant residual-free). These
analyses were done using the OTU table subsampled to 500 reads per sample. Significant differences between disinfection strategies were evalu-
ated using ANOVA and are indicated by bars at the top of each figure panel (p values: * = <0.01, ** = <0.001, *** = <0.0001).
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control strategy, it is likely to occur widely in similar systems.
A similar relationship between relative abundance and occur-
rence of OTUs has also been reported recently,7,17 with pro-
posals of the utility of occupancy-abundance based modeling
approaches towards microbial management in DW systems.7

3.5. Incidence of bacteria within Legionella, Mycobacterium,
and Pseudomonas genera across disinfection strategies

Disinfectant residual-free systems showed significantly higher
relative abundance and occurrence of OTUs classified as
Legionella at the genus level as compared to chlorinated (p <

0.01) and chloraminated (p < 0.001) systems. The MRA of
Legionella OTUs was 0.17 ± 0.68%, 0.18 ± 0.24%, and 0.58 ±
0.5%, while the occurrence of Legionella OTUs was 0.5, 0.59,

and 0.97 in chlorinated, chloraminated, and disinfectant
residual-free systems, respectively (Fig. 5). This higher MRA
and occurrence of Legionella in disinfectant residual-free sys-
tem was also accompanied by a greater diversity of OTUs.
Specifically, chlorinated, chloraminated, and disinfectant
residual-free systems harbored 2.2 ± 3.67, 7.21 ± 11.62, and
25.03 ± 13.55 OTUs that classified as Legionella, respectively.
In contrast to Legionella, OTUs classified as Mycobacterium
and Pseudomonas were more abundant and more frequently
detected in disinfected systems as compared to disinfectant
residual-free systems, with each of them exhibiting different
trends when comparing chlorinated vs. chloraminated sys-
tems. For instance, mycobacterial OTUs were more abundant
and frequent in chlorinated (MRA = 8.93 ± 15.37%, occur-
rence = 0.93) as compared to chloraminated systems (MRA =

Table 1 A summary of the mean relative abundance (%) and occurrence of the most commonly occurring bacterial OTUs in across chlorinated,
chloraminated, and disinfectant residual free drinking water distribution systems

Chlorinated systems (Chl)
Chloraminated system
(Chm)

Disinfectant residual free
(Drf)

OTU Classification genus level Commonly detected in MRA (stdev) Occurrence MRA (stdev) Occurrence MRA (stdev) Occurrence

4 Porphyrobacter Chl/Chm 9.85Ĳ22.15) 0.62 2.26(3.75) 0.50 0.02(0.13) 0.02
6 Mycobacterium Chl 8.62Ĳ31.19) 0.54 2.26(9.33) 0.26 0.02(0.13) 0.02
12 Sphingomonas Chl 9.23Ĳ20.29) 0.51 0.24(0.54) 0.18 0.05(0.38) 0.02
15 Vampirovibrio Chl 15.54Ĳ29.82) 0.51 1.47(2.6) 0.45 0.14(0.4) 0.13
30 Bosea Chm 1.51(4.64) 0.23 11.55Ĳ45.69) 0.53 0.02(0.13) 0.02
94 Nitrospira Drf 0(0) 0.00 0(0) 0.00 11(14.14) 0.86
162 Parcubacteria Drf 0(0) 0.00 0(0) 0.00 6.25Ĳ10.85) 0.71
189 Bdellovibrio Drf 0.46(2.21) 0.05 0.47(0.98) 0.26 2.86(4.26) 0.68
167 Parcubacteria Drf 0(0) 0.00 0.16(0.44) 0.13 5.86(9.74) 0.67
59 Sideroxydans Drf 0(0) 0.00 0(0) 0.00 14.57Ĳ41.29) 0.67
265 Nitrospira Drf 0(0) 0.00 0(0) 0.00 2.21(2.82) 0.67

Fig. 4 (A) A maximum likelihood phylogenetic tree of representative sequences from OTUs detected in samples across all three disinfection
strategies. Color legends indicate the phylum of each OTU and the outer rings correspond to the log normalized relative abundance and
occurrence within each disinfection strategy. Figure panels B–D highlight the positive relationship between the relative abundance and occurrence
of all OTUs within a given disinfection strategy, irrespective of study origin. All data in these figures was constructed using the OTU table
subsampled to 500 reads per sample. (Chl: chlorinated, Chm: chloraminated, Drf: disinfectant residual-free).
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2.84 ± 7.73%, occurrence = 0.79), though the difference be-
tween the two was not significantly different (Fig. 5). Simi-
larly, OTUs classified as Pseudomonas were slightly more
abundant in chloraminated systems (MRA = 3.17 ± 14.6%, oc-
currence = 0.87) as compared to chlorinated systems (MRA =
1.24 ± 3.28%, occurrence = 0.93) (Fig. 5), but this difference
was also not significant. It is important to note that genus
level classification though informative is not indicative of the
presence of pathogens. For example, the genus Legionella
contains in excess of 50 characterized species69 with less than
half posing a health risk and even fewer species ever isolated
from treated DW.70,71 The same is true for bacteria within
the genera Mycobacterium and Pseudomonas. As a result, our
findings should not be interpreted to suggest that one disin-
fection strategy is better than the other from the “pathogen”
perspective. Rather, this finding should encourage rigorous
follow-up studies that use standardized protocols with
species-specific primers for quantitative assessment of the oc-

currence and absolute abundance of organisms of interest at
DW systems that span the three disinfection strategies.

3.6. Detection of ecologically relevant OTU's across
disinfection strategies

The broad detection of Nitrospira in disinfectant residual-free
systems (Table 1) is particularly interesting given the (1) im-
pact of nitrification in the DWDS on the stability of DW qual-
ity and its implications for infrastructure (e.g. corrosion)72

and (2) the recent discovery of complete ammonia oxidizing
(comammox) Nitrospira bacteria,73–75 including in a DWTP.75

To this end, we evaluated the diversity and relative abun-
dance of OTUs linked to nitrifying organisms. These nitrify-
ing organisms were grouped as ammonia oxidizing archaea
(AOA), ammonia oxidizing bacteria (AOB), nitrite oxidizing or
comammox bacteria (NOB/CB), strict nitrite oxidizing bacte-
ria (NOB), and anaerobic ammonia oxidizing bacteria

Fig. 5 Relative abundance of OTUS classified as Legionella, Mycobacterium and Pseudomonas in each sample visualized by disinfection strategy
type (Chl: chlorinated, Chm: chloraminated, Drf: disinfectant residual-free). One dataset from chloraminated samples from Shaw et al. 2015
though retained in the statistical analyses is removed from the figure due to high abundance of Pseudomonas (>80%) to allow for better
visualization of the remaining data. Significant differences between groups, evaluated by ANOVA, are indicated by bars at the top of each figure
panel (p-value legend: * = <0.01, ** = <0.001, *** = <0.0001).

Fig. 6 Relative abundance of nitrifier OTUs in each sample visualized by disinfection strategy type (Chl: chlorinated, Chm: chloraminated, Drf:
disinfectant residual-free). X-axis labels correspond to: ammonia oxidizing archaea + bacteria (AOA + AOB), Nitrospira based nitrite oxidizing or
comammox bacteria (NOB/CB), strict nitrite oxidizing bacteria (NOB), and anammox bacteria (ANMX). Significant differences between groups, eval-
uated by ANOVA, are indicated by bars at the top of each figure panel (p-value legend: * = <0.01, ** = <0.001, *** = <0.0001).
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(anammox) (Fig. 6). Disinfectant residual-free systems
exhibited the greatest relative abundance of AOA (MRA = 0.48
± 0.8%) and they were detected in 0.79 of the disinfectant
residual-free locations. However, AOA were also consistently
low abundance in disinfected systems with the maximum
MRA being 3.3%, while being detected in only 0.50 of the
chloraminated locations with no detection in chlorinated sys-
tems. Disinfectant residual-free samples also harbored higher
abundance and greater diversity of AOB and NOB/CB (Fig. 6).
For example, the MRA of AOB was 0.01 ± 0.02%, 0.19 ± 0.34%
and 0.56 ± 1.62%, while the occurrence of AOB was 0.15, 0.36
and 0.9 in chlorinated, chloraminated and disinfectant
residual-free systems, respectively. Strict NOB were extremely
low in abundance and were detected in only 0.20 of the sam-
pling locations across the three disinfection strategies with
maximum MRA of 0.12%. Interestingly, OTUs classified as
Nitrospira, a genus that includes both strict NOB and the
newly discovered comammox73–75 bacteria were detected at a
higher relative abundance and frequency than either AOB or
NOB in disinfectant residual-free systems. For instance, while
the NOB and AOB were detected in 0.20 and 0.54 of all sam-
pling locations, NOB/CB were detected in 0.68 of sampling lo-
cations across all disinfection strategies, with their MRA
nearly 4 fold higher than AOB and AOA combined. Given this
finding, it is likely that comammox bacteria may play a sig-
nificantly more important role in nitrification in DW systems
(either DWTP or DWDS), as compared to strict AOB and
NOB.

Another broadly distributed class of OTUs that has thus
far received little attention within DW studies involves preda-
tory bacteria. Specifically, OTUs classified as Bdellovibiro
(class: Deltaproteobacteria) and Vampirovibrio (phylum:
Melainabacteria) were among the top 10 frequently detected
OTUs across all three disinfection strategies (Table 1). This
wide-scale detection of bacteria with a predatory lifestyle is
particularly interesting as it highlights a poorly explored eco-
logical dynamic within DW systems and may even provide an
avenue for microbial growth control76 in the DWTP/DWDS.
Predatory bacteria are phylogenetically diverse and genus
level identification is not sufficient to ascertain the presence
of bacteria with obligate or facultative predatory lifestyle.
Nonetheless, OTUs classified to some genera can be catego-
rized as emerging from predatory bacteria (e.g. Bdellovibrio).
Specifically, we found several OTUs classified as Bdellovibrio
(n = 114), Cystobacter (n = 10), Lysobacter (n = 46),
Peredibacter (n = 13), and Vampirovibrio (n = 92), all of which
can be functionally classified as obligate or non-obligate
predatory bacteria. The three most frequently detected preda-
tory OTUs (i.e. Bdellovibrio, Lysobacter, and Vampirovibrio),
showed a significantly higher occurrence in disinfectant
residual-free systems as compared to disinfected systems. For
example, Bdellovibrio, Lysobacter, and Vampirovibrio were
detected in 0.95, 0.52 and 0.98 of the locations from the dis-
infectant residual-free systems, respectively while the detec-
tion of the same predatory OTUs in chlorinated and
chloraminated samples ranged from 0.25–0.38, 0.38 and

0.64–0.88, respectively. Further, though Bdellovibrio was sig-
nificantly more abundant in disinfectant residual-free sys-
tems, both Lysobacter and Vampirovibrio exhibited a greater
relative abundance in chlorinated systems. Specifically,
Lysobacter and Vampirovibrio exhibited a relative abundance
of 4.87 ± 13.69% and 5.21 ± 7.2% in chlorinated samples, re-
spectively, while constituting less than 1% of the overall com-
munity for chloraminated and disinfectant residual-free sam-
ples. A possible explanation for the higher abundance and
detection frequency of predatory bacteria in disinfectant
residual-free systems could be the higher biomass present in
these systems, as this provides a rich source of nutrients for
predatory bacteria.

3.7. Potential for contamination affecting DW microbial studies

Studies involving low-biomass samples are particularly sus-
ceptible to contamination emerging from a range of potential
sources – from sample handling to PCR/DNA extraction re-
agents to contaminants from the sequencing process itself
(e.g. sequences from one sample being attributed to another).
Recent studies have demonstrated that kit/reagent contami-
nation can critically impair studies that rely on sequencing
datasets59,77 with one study proposing an extended list of
common kit-contamination genera.59 Though majority of
studies include negative controls during the sample process-
ing, DNA extraction, and PCR amplification step, these nega-
tive controls are rarely included during the sequencing pro-
cess itself. To our knowledge, only one DW study has
explicitly stated the inclusion of a negative control during the
sequencing process.34 In this study though the number of se-
quences in the negative controls were significantly lower than
the samples of interest, the classification of OTUs detected in
negative controls was highly similar to those commonly
detected in DW samples.

Overall, 18.5 ± 23% of the sequencing data across all stud-
ies was associated with a list of potentially contaminating
genera provided by Salter et al.59 Approximately 23.5 ± 19.8%,
29.6 ± 25.5%, and 8.5 ± 18.3% of data was associated with
these genera for chlorinated, chloraminated, and disinfectant
residual-free systems, with the proportions being significantly
higher in disinfected as compared to disinfectant residual-
free samples (Fig. 7), which typically have a significantly
higher cell count.41,78 The lower proportion of potentially
contaminating data in disinfectant residual-free datasets
could be related to higher biomass concentration in these
samples. It is important to note that we do not suggest that
these numbers accurately reflect levels of contamination in
published DW datasets. What this exercise emphasizes is the
need to routinely sequence negative controls is particularly
critical for DW studies, not only because of the low-biomass
nature of these samples but also because bacteria associated
with kit/reagent contamination genera are also commonly
found in DW samples. As a result, a genuine contaminant
might be passed of as belonging to the DW sample under
consideration.
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3.8. Differences in community structure and composition
across disinfection strategies

Clustering of samples showed a clear distinction between
disinfected and disinfectant residual-free samples (Fig. S3†),
but there was no clear clustering by the type of disinfectant
residual (i.e. chloramine vs. chlorine). Nonetheless, multiple
factors can confound such broad level clustering (Fig. S4†).
As discussed above, the available DW sequencing data is
highly heterogeneous. A majority of the factors that contrib-
ute to data heterogeneity (e.g. DNA extraction protocol, PCR
primer choice, sequencing platform, etc.) can largely be col-
lapsed into one major variable – origin of study.
PERMANOVA tests conducted using distance matrices
constructed (after subsampling) using Bray Curtis/Jaccard
metrics indicated that origin of study had a strong impact on
differences between samples (R2 = 0.34/0.24, p = 0.001)
followed by type of source water (surface water, groundwater
or mixed) (R2 = 0.02/0.02, p = 0.001) and disinfection type (R2

= 0.014/0.01, p = 0.01). Another variable that could affect the
similarity between samples is the proportion of data used fol-
lowing the SILVA matching exercise (Fig. 1). However, this
had a minor effect on the community membership and struc-
ture based clustering using Jaccard (R2 = 0.007, p = 0.049)
and Bray Curtis distance metrics (R2 = 0.007, p = 0.04), re-
spectively. This confounding aspect of variation between
studies is a common theme across meta-analysis
efforts.63,64,79

3.9. Predicting microbial community functional profiles

Increasingly 16S rRNA gene data is being utilized to leverage
functional datasets to predict the metabolic characteristics of
whole microbial communities using tools such as PiCrust,80

Tax4Fun,60 etc. Such approaches rely on matching 16S rRNA
gene sequences to organisms represented in functional data-
bases and using the abundance of associated OTUs to
predict the metabolic potential of a given microbial commu-
nity. Though this is a rather cost-effective and hence, an
attractive way to get more information for less resource
(16S rRNA gene studies are significantly inexpensive as com-
pared to metagenomic studies on a per sample basis) there is
also potential for over or under-predicting the metabolic po-
tential of the microbial community depending on the compo-
sition of these functional databases and the sample under
consideration.

To this end, we wanted to test the utility of Tax4Fun,60

which leverages the KEGG database,61 to capture differences
in metabolic potential of microbial communities in
disinfected and disinfectant residual-free systems. The OTU
sequences from disinfectant residual-free samples exhibited
significantly lower similarity to organisms in the KEGG data-
base; this was despite the fact that only sequences matching
the SILVA database were used for this exercise. Specifically,
greater than 80% of the disinfectant residual-free sampling
locations had less than 50% of sequences matching organ-
isms in the KEGG database (Fig. 8), while for the disinfected
group 35.3 ± 24% of the sequences per sample had no match.
This clearly indicates that the metabolic potential of DW
microbial communities will be vastly under-represented by
function predictions tools that leverage 16S rRNA gene data,
particularly for disinfectant residual-free systems. Despite
this under-representation, we wanted to test the utility of this
approach to detect relevant differences between samples that
may be related to the presence and absence of a disinfectant
residual. To adjust for this range of sample FTUs, we
established a FTU threshold of 0.5, with 10 disinfectant
residual-free sampling locations meeting this threshold. We
then picked 5 chlorinated and 5 chloraminated sampling lo-
cations such that there was no significant difference in the
FTUs between disinfected and disinfectant residual-free loca-
tions used for this exercise (p = 0.83). Using this subset of
samples (n = 20), we tested for differences in relative abun-
dance of KO's (i.e. gene level) between disinfected and disin-
fectant residual-free sampling locations. Of the 100 most
abundant KO's returned by Tax4Fun, only 17 showed signifi-
cant difference in relative abundance between disinfected
and disinfectant residual-free locations (corrected p-value <

0.01) (data not shown). Surprisingly no genes involved in oxi-
dative stress or detoxification5 were significantly different be-
tween disinfected and disinfectant residual-free locations.
The majority of these significantly different KO's were associ-
ated with functions that are widely distributed across bacte-
rial populations (e.g. carbohydrate metabolism, DNA repair,
etc.). Further, though the difference in relative abundance of
these KO's was significant, the magnitude of difference between
disinfected and disinfectant residual-free samples was less than
2 fold for a majority and hence, may not necessarily provide
informative insights about the selection pressure exerted by a
disinfectant residual. Only one KO showed a significant

Fig. 7 Proportion of potential contaminating sequences in each
dataset per disinfection group (Chl: chlorinated, Chm: chloraminated,
Drf: disinfectant residual-free). Significant differences between groups,
evaluated by ANOVA, are indicated by bars at the top of each figure
panel (p-value legend: * = <0.01, ** = <0.001, *** = <0.0001). List of
potentially contaminant genera obtained from Table 1 in Salter et al.
(2014).
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difference (p = 0.0073) with a large effect size in terms of rel-
ative abundance to merit follow-up investigations. Specifi-
cally, K06994, a putative drug exporter gene within the
resistance-nodulation-cell division (RND) superfamily was
>30 times more abundant in disinfected locations as com-
pared to disinfectant residual-free locations.

4. Conclusions and future directions

We provide a number of interesting insights into differences
between disinfected and disinfectant residual-free systems by
co-analyzing available 16S rRNA gene datasets from bulk DW
samples. For example, the higher occurrence of Legionella
OTUs in disinfectant residual-free systems and of Mycobacte-
rium and Pseudomonas OTUs in disinfected systems is a
prime candidate for follow-up investigations. Further, the
broad detection of Nitrospira OTUs and OTUs linked to pred-
atory bacteria may provide for exciting avenues for future re-
search involving fundamental ecological questions with a sig-
nificant practical impact (e.g. revisiting nitrification in
drinking water systems in light of new findings regarding
comammox Nitrospira, exploring the potential of predatory
bacteria for biocontrol). Similarly, we clearly highlight the
critical aspect of including negative controls in sequencing
efforts for DW studies. However, as discussed above our
meta-analysis effort is significantly confounded by data
heterogeneity, particularly with respect to the ones we can
identify based on the data (Fig. 1B and C). If all data in-
cluded in this study was obtained from standardized proto-
cols spanning sample collection, DNA extraction, PCR ampli-
fication, target hypervariable region of the 16S rRNA gene,
and sequencing platform – undoubtedly the insights gener-
ated using a meta-analysis effort would not only be much
more robust but the data would also lend itself to asking

targeted and quantitative questions which is currently not
possible. Thus making a case for standardized protocols
across all DW studies as an attractive prospect. However, ef-
forts to standardize protocols without appropriate resources
to sustain and support them are likely to be more disruptive
than beneficial. For example, it may “price-out” some re-
searchers from collecting data that meets field-approved stan-
dards. Standardizing protocols in a rapidly changing method-
ological landscape presents the pitfalls of generating “kit
monopolies” (i.e. one reagent or sample processing kit be-
comes the default), while also risking the creation of method-
ological inertia in a field that has only recently begun to ex-
ploit the power of high-throughput DNA sequencing. For
example, consider the rate at which DNA sequencing
approaches81–84 have changed over the last few years. Despite
the fact that Sanger sequencing was widely used for DW
microbial studies until 2010,85 we have not included that
data in this study because of its low-throughput nature (low
sequencing depth and sample diversity). Similarly, it is likely
that with the advent of long-read sequencing technolo-
gies,86,87 a meta-analysis effort five years from now might
choose to exclude data generated from currently popular se-
quencing platforms due to their short-read nature and hence,
lower phylogenetic resolution of the data.

Rather than devoting resources towards standardizing
protocols across DW studies, we would suggest researchers
choose sample/data collection and processing approaches
that are (1) methodologically robust based on best-available
information and (2) achievable given resource availability.
Rather, efforts should be made to: (i) standardize data
reporting approaches by depositing raw data in publicly avail-
able databases; and (ii) measure and provide supporting pa-
rameters as possible (temperature, water chemistry parameters,
ATP, cell counts, TOC, AOC, etc.) along with sample metadata,88

Fig. 8 Proportion of sequences matching organisms in the KEGG database (%) versus proportion of samples (%) for disinfected (in blue) and
disinfectant residual-free (in red) datasets in each category. The proportion of sequences matching KEGG organisms was estimated as (1-FTU)*
100, where FTU= fraction of OTUs that could not be mapped to KEGG organisms as estimated by Tax4Fun.
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in a format that can be easily integrated into sequence data pro-
cessing approaches and diversity analyses. This would be a
particularly good place to start, since our experience
conducting this meta-analysis has shown that these standard
practices are not yet commonplace within the DW commu-
nity. And finally, another possible option to support compar-
ative analyses across systems would be to make provisions
for sample sharing, either DNA extract or filtered sample it-
self. Though, this still retains DNA extraction or sample col-
lection variabilities, it will eliminate primer and sequencing
platform biases and allow for robust de-novo clustering89 for
microbial community analyses, with the ability to assess the
aforementioned biases using statistical approaches.
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