Catalysis Science & Technology # Comparison of SiO2-Supported Molybdena, Tungsta and Rhenia Catalysts for Olefin Metathesis | Journal: | Catalysis Science & Technology | | | |-------------------------------|---|--|--| | Manuscript ID | CY-ART-06-2024-000730.R1 | | | | Article Type: | Paper | | | | Date Submitted by the Author: | 14-Jul-2024 | | | | Complete List of Authors: | Zhang, Bin; Lehigh University, Chemical & Biomolecular Engineering Wachs, Israel; Lehigh University, Chemical Engineering | | | | | | | | SCHOLARONE™ Manuscripts # **ARTICLE** # Comparison of SiO₂-Supported Molybdena, Tungsta and Rhenia Catalysts for Olefin Metathesis Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx000000x Bin Zhang, Israel E. Wachs The characteristics of supported MO_x/SiO_2 catalysts (M = Re, Mo, W) for olefin metathesis were compared side-by-side to understand the differences among these catalyst systems. The series of SiO_2 -supported metal oxide (ReO_x , MoO_x , WO_x) catalysts, with maximum achievable dispersion of surface MO_x sites, was synthesized by incipient-wetness impregnation of the corresponding aqueous precursors, molecularly characterized (*in situ* Raman and DRIFTS), chemically probed with transient studies (C_3H_6 -TPSR-MS, C_3H_6 -TPSR-IR, and $C_2H_4/2$ - C_4H_8 titration with C_2H_4 -TPSR-MS) and steady state activity for C_3H_6 metathesis. Under dehydrated conditions, the initial SiO_2 -supported surface metal oxide sites are fully dispersed as isolated sites on SiO_2 and present as isolated tri-oxo ($O=)_3ReO$ sites, isolated di-oxo ($O=)_2MoO_2$ sites and a mixture of isolated di-oxo ($O=)_2MO_2$ and mono-oxo ($O=)WO_4$ sites (dioxo >> mono-oxo) anchored at the isolated Si-OH surface hydroxyls of SiO_2 support. High temperature propylene pre-treatments were required to activate the SiO_2 -supported MO_x catalysts, but also resulted in MO_x volatilization ($ReO_x > MoO_x >> WO_x$). The number of activated surface MO_x sites and TOF values varied with the specific MO_x site, activation temperatures and reaction temperatures, which are related to the stability of the surface MO_x site, activation temperatures and reaction temperatures, which are related to the stability of the surface MO_x site, activation temperatures and MOO_x/SiO_2 catalysts account for adoption of the supported MO_x/SiO_2 catalysts as the industrial olefin metathesis catalyst among these supported MO_x/SiO_2 catalysts. Keywords: metathesis, propylene, silica, molybdena, rhenia, tungsta, Raman, DRIFTS, TPSR, activation # I. Introduction There is a growing gap between the global supply and demand of propylene attributed to a feedstock shift from steam cracking of natural gas and oil refinery operation. The olefin metathesis reaction is considered a promising approach to address the global shortage of propylene by cleaving and rearranging the C=C bonds in ethylene and 2-butene. Among olefin metathesis catalysts employed in industry, high surface area oxide supported- MO_x (M = Re, Mo, W) catalysts have attracted substantial research attention due to their high activity and selectivity.1 Among these catalysts, only the SiO₂supported WO_x catalyst is the preferred propylene metathesis catalysts of small olefins in industrial practice (Philips Triolefin Process and Lummus Olefin Conversion Technology)²⁻³, while SiO₂-supported ReO_x and MoO_x catalysts are essentially not industrially employed.4-5 Previous studies found that the supported ReO_x/Al₂O₃ catalyst is highly active for propylene metathesis at ambient temperature, while the supported ReO_x/SiO₂ catalyst is difficult to activate.⁶⁻⁷ The supported MoO_x/SiO₂ catalyst is also reported to require high Operando Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, United States † Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x temperatures (>400 °C) for activation with propylene⁸⁻⁹ and is about an order of magnitude less active than the supported MoO_x/Al₂O₃ catalyst used for Shell Higher Olefin Process.^{1,10} The supported WO_x/SiO₂ catalyst is a major industrial propylene metathesis catalyst that operates at 400-600°C and also requires high temperature pre-activation with propylene. 11 Although the supported WO_x/SiO₂ catalyst exhibits a longer lifetime than the corresponding supported ReO_x and MoO_x catalysts, ¹¹ a direct comparison of the catalytic surface active sites (molecular structure, anchoring sites, activation, number of activated sites, thermal stability, activity and TOF values for propylene self-metathesis) of SiO₂ supported transition metal oxide catalysts is still lacking and needed to better understand the superior properties of the supported WO_x/SiO₂ catalyst system. The objective of this study is to investigate the behavior of the surface ReO_x , MoO_x and WO_x sites on SiO_2 during activation with propylene and during propylene metathesis. Although the oxide support was found to have a pronounced effect on the activation and catalytic activities of supported MO_x catalysts, 6,13 the present study only focuses on supported MO_x/SiO_2 catalysts in order to obtain fundamental insights into the behavior of the commercial-type supported WO_x/SiO_2 catalyst compared to the corresponding supported ReO_x/SiO_2 and MoO_x/SiO_2 catalysts by their side-by-side comparison. The SiO_2 -supported catalysts were characterized with *in situ* Raman and DRIFTS and chemically probed with transient (double C₃H₆-TPSR-MS, double in situ C₃H₆-TPSR-IR, C₂H₄/2-C₄H₈ titration followed with C₂H₄-TPSR-MS) and steady state self-metathesis of propylene. This is the first time the similarities and differences of the supported ReO_x , MoO_x and WO_x sites on the same metal oxide support (SiO₂) have been compared for propylene metathesis. The side-by-side comparison of these SiO_2 -supported transition metal oxide catalysts will examine the molecular structure, anchoring sites, activation, number of activated sites, thermal stability, activity and TOF values for propylene self-metathesis. The present investigation will provide insights about the reasons for the relative behavior of the SiO₂-supported ReO_x, MoO_x and WO_x catalysts during propylene activation and self-metathesis of propylene. The reversibility of the propylene metathesis reaction (2 $C_3H_6 \rightleftharpoons C_2H_4 + 2\text{-}C_4H_8$) assures that the reaction pathway proceeds similarly in the forward and reverse directions (microscopic reversibility), with also the same number of sites titratable in both directions.³²⁻³³ # II. Experimental Details ### Catalyst Synthesis. The supported ReO_x, MoO_x and WoO_x catalysts were prepared by incipient-wetness impregnation (IWI) of aqueous perrhenic acid (HReO4, Alfa Aesar, 75-80%), aqueous ammonium heptamolybdate ((NH₄)₆Mo₇O₂₄·4H₂O, Alfa Aesar, 99%) and ammonium metatungstate $((NH_4))_6H_2W_{12}O_{40}\cdot xH_2O$, Pfaltz and Bauer, 99.5%) into the SiO₂ (Cabot, Cab-O-Sil, EH-5, 350 m²/g) support. Prior to IWI, the SiO_2 support was treated with H_2O to increase the number of surface hydroxyls and calcined in air at 500°C for 4h. After impregnation of the aqueous precursors, the supported catalysts were dried at room temperature overnight, then at 120°C for 2h in air before finally being calcined by ramping the temperature at 1°C/min in flowing air (100 mL/min) to 500°C and held at this temperature for 4h. Due to the poor reactivity of the SiO₂ surface silanols, the maximum achieved loading (surface coverage) of ReO_x, MoO_x and WO_x on the SiO₂ support was $5.5\% \text{ ReO}_{x}$ ($2.3x10^{-4} \text{ mol Re atoms/g}$; 0.4 Re/nm^{2}), 7.5% MoO_x (3.1x10⁻⁴ mol Mo atoms/g; 0.9 Mo/nm²), and 6.0% WO_x $(2.5x10^{-4} \text{ mol W atoms/g}; 0.5 \text{ W/nm}^2).$ # In situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The *in situ* DRIFTS spectra of SiO_2 -supported metal oxide catalysts were collected with a Thermo Scientific Nicolet 8700 FT-IR spectrometer equipped with a Harrick Praying Mantis attachment (DRA-2 with CaF_2 window). The collected spectra employed a Mercury-Cadmium-Telluride (MCT) detector having a resolution of 4 cm⁻¹ with an accumulation of 96 scans/min. About 20mg of catalyst powder was loaded into the *in situ* reaction cell (Harrick, HVC-DR2 with a CaF2 window) for DRIFTS spectral collection. A Brooks 5850E mass flow controller controlled the gas flow rate through the *in situ* cell. The procedure for collecting *in situ* DRIFTS spectra of dehydrated catalysts was as follows: the catalyst was heated at 10°C/min from room temperature to 500°C under flowing 10% O_2/Ar (Praxair, UHP, 30 mL/min) and held for 1 h, the temperature was subsequently cooled at 10°C/min to 120°C under flowing 10% O_2/Ar . The procedure for collecting in situ $C_3H_6\text{-TPSR-DRIFTS}$ spectra is the same as described below for the $C_3H_6\text{-TPSR-MS}$ studies. ### In situ Raman Spectroscopy. The in situ Raman spectra of SiO₂-supported metal oxide catalysts were collected by a Horiba Labram HR Evolution spectrometer (442nm). The laser was focused on the catalysts with a confocal microscope equipped with an Olympus BX-30 X50 objective lens. A 900 grooves/nm grating was selected to optimize the spectral resolution to approximately 1 cm⁻¹. Daily calibration of the Raman spectrometer employed a silicon standard having a reference peak of 520.7 cm⁻¹. The same mass flow controllers as indicated above were used to monitor the
gas flow rates. Approximately 20mg of catalysts powders were loaded into an in situ reaction cell (Harrick Scientific HVC-MRA-5) that was controlled by a pre-calibrated temperature controller (ATK-024-4). The thermocouple of the controller is in direct contact with the catalyst bed to obtain accurate temperature reading. The Raman spectra were collected with an accumulation of 3 scans (20s/scan) with a Horiba-Jobin Yvon CCD-3000 V CCD camera detector. The following procedure was employed for collecting the in situ Raman spectra: (1) the reaction cell was heated at 10°C/min in flowing O₂/Ar (Praxair, UHP, 30 mL/min) to the dehydration/reaction temperatures (450°C (ReO_x/SiO₂), 550°C (MoO_x/SiO₂), 650°C (WO_x/SiO₂))and held for 60min at the final indicated temperatures, (2) the flowing gas was switched to 5% C_3H_6/Ar (Praxair, Purity 99%, 30 mL/min) for 90min at the reaction temperature, and (3) the catalysts were re-oxidized with 10% O₂/Ar (Praxair, UHP, 30 mL/min) at the dehydration temperature for 60 min. The internal standard for normalization of the Raman spectra was the Raman band of the SiO₂ support at ~ 607 cm⁻¹. The dehydration, activation and re-oxidation temperatures were determined from the 1^{st} C $_3$ H $_6$ -TPSR-MS findings given below. ### C₃H₆-Temperature Programmed Surface Reaction (TPSR)-MS. The C₃H₆-TPSR-MS measurements were performed on the Altamira Instruments system (AMI-200). Approximately 0.1g of catalyst powder was loaded into a U-tube quartz reactor and placed in the AMI-200 system. The dehydration procedure was the same as indicated above for the Raman experiments. Following catalyst dehydration, Ar (Air Gas, UHP, 30 mL/min) was first flown through the reactor at 30°C for 30 minutes and followed by two C_3H_6 -TPSR cycles: (1) in the 1^{st} cycle, 5% C_3H_6/Ar (Praxair, Purity 99%, 30 mL/min) was initially flown and held at 30°C for several minutes to stabilize the MS signal and the reactor was subsequently heated at 10°C/min to 600°C $(ReO_x/SiO_2, MoO_x/SiO_2)$ and $800^{\circ}C$ (WO_x/SiO_2) ; and (2) in the 2nd cycle, the reactor was cooled to room temperature with flowing Ar (Air Gas, UHP, 30 mL/min), switched to 5% C₃H₆/Ar (Praxair, Purity 99%, 30 mL/min) and heated again at 10°C/min to 600° C (ReO_x/SiO₂, MoO_x/SiO₂) and 800° C (WO_x/SiO₂). The Journal Name ARTICLE higher reaction temperature for WO_x/SiO_2 was employed because olefin metathesis with this catalyst required higher activation and reaction temperatures. The outlet of the reactor was connected to an online quadrupole mass spectrometer (MS, Dycor ProLine Process) to measure the exiting gases. The following mass/charge ratio channels were used for analysis of propylene and the reaction products: $m/z=18~(H_2O),~m/z=28~(CO),~m/z=42~(C_3H_6),~m/z=44~(CO_2),~m/z=56~(C_4H_8)$ and m/z=58~(acetone). The MS signals were calibrated for each channel and corrected for cracking contributions from different components. #### Ethylene/2-Butene Titration and Ethylene-TPSR-MS. The C₂H₄/2-C₄H₈-Titration and subsequent C₂H₄-TPSR-MS experiments were also performed with the Altamira Instruments AMI-200. The dehydration procedure was the same as given above for the Raman studies. After dehydration, the catalysts were activated with 1% 2-C₄H₈/Ar (Praxair, Purity 99%, 30 mL/min) at activation temperatures of 450°C (ReO_x/SiO₂), 550°C (MoO_x/SiO₂), and 650°C (WO_x/SiO₂)) for 30 min. Different activation temperatures were employed because the catalysts activated at different temperatures. The reactor was then cooled to 100°C in flowing 1% 2-C₄H₈/Ar (Praxair, Purity 99%, 30 mL/min), and the temperature was then held at 100°C for 30min in flowing 1% C₂H₄/Ar (Praxair, Purity 99%, 30 mL/min). Subsequently, the temperature was ramped at 10° C/min to 600° C for ReO_x/MoO_x and 800° C for WO_x catalysts to titrate the surface intermediates generated from 2-butene chemisorption after the high temperature activation. Only one surface Re=CHCH₃/Mo=CHCH₃/W=CHCH₃ intermediates was assumed to be present on the SiO₂supported ReO_x/MoO_x/WO_x catalysts, respectively, after saturation of the surface with 2-butene at 100°C. The number of activated surface sites was assumed to be equal to the number of C₃H₆ molecules produced during subsequent C₂H₄- C_4H_8 titration with the C_2H_4 -TPSR-MS experiment. The same m/z channels were monitored as for the above 2nd C₃H₆-TPSR-MS experiments. ## Steady State Propylene Metathesis. The steady state propylene self-metathesis activities were also measured in the Altamira Instruments AMI-200. The dehydration procedure was the same as indicated above for the Raman experiments. After dehydration, the catalysts were activated with 5% C₃H₆/Ar (Praxair, Purity 99%, 30 mL/min) at the activation temperatures of 450° C (ReO_x/SiO₂), 550° C (MoO_x/SiO_2) , and $650^{\circ}C$ (WO_x/SiO_2)) for 30 min. The reactor temperature was then changed to various steady state reaction temperatures from 100°C up to 550°Cin flowing Ar (Air Gas, UHP, 30 mL/min). Note that each catalyst required a different activation and reaction temperature because of the different stability or reducibility of the surface MO_x sites on SiO₂. The steady state reaction was performed by flowing 5% C_3H_6/Ar (Praxair, Purity 99%, 30 mL/min) at the reaction temperatures for 60min. The catalytic activities (mmol/g/h) were obtained by normalizing the conversion of propylene by the flow rate and catalyst weight. The turnover frequency (TOF) values were obtained by normalizing the steady state activity by the number of activated surface sites determined from the C_2H_4/C_4H_8 titration. ## III. Results #### In situ DRIFTS of Surface Hydroxyl Anchoring Sites. The *in situ* DRIFTS difference spectra of the SiO₂—supported metal oxide catalysts under dehydrated conditions are presented in Figure 1. The bare SiO₂ support contains both isolated Si–OH (3737 cm⁻¹) and geminal Si(–OH)₂ (broad peak \sim 3727–3755 cm⁻¹) surface hydroxyls. The difference spectra between the supported MO_x/SiO₂ catalysts and the SiO₂ support reveal that the supported ReO_x, MoO_x and WO_x sites mainly anchored at the isolated Si-OH surface hydroxyls. 6, 12-13 **Figure 1.** In situ DRIFTS difference spectra of the surface hydroxyl region of the SiO_2 -supported catalysts metal oxide under dehydrated conditions (120°C). The spectrum of the dehydrated SiO_2 support was subtracted from the spectrum of each SiO_2 -supported metal oxide catalyst. # In situ Raman under dehydrated, activated and re-oxidized conditions. Dehydrated Conditions. The in situ Raman spectra of the SiO₂supported metal oxide catalysts under dehydrated, activated and re-oxidized conditions are presented in Figure 2 with the assignments of the vibrational bands. The SiO₂ support gives rise to Raman bands ~500, 607, 800 cm⁻¹, along with a weak band ~970 cm⁻¹ from the surface Si-OH vibration that is overshadowed by the strong Mo=O and W=O bands of the surface metal oxides. 12,14 The absence of strong Raman bands from crystalline Re₂O₇ (798, 820, 993 cm⁻¹), MoO₃ (820, 997 cm⁻¹) and WO₃ (715, 806 cm⁻¹) indicate that the surface coverage of ReO_x, MoO_x and WO_x sites are maximized without formation of crystalline Re₂O₇, MoO₃ and WO₃ nanoparticles on the SiO₂ support.¹² Furthermore, the absence of bridging Re-O-Re, Mo-O-Mo and W-O-W Raman bands at ~200-300 cm⁻ 1 indicates that these surface metal oxides are present as isolated sites, which is also confirmed with UV-vis. 6,12-13,15 The surface ReO_x sites have a strong $v_s(Re=0)$ band at 1012 cm⁻¹ and a relatively weak $v_{qs}(Re=0)$ band at 987 cm⁻¹ from tri-oxo $(O=)_3$ Re-O-Si sites.^{6,15} The surface MoO_x sites exhibit a strong $v_s(Mo=O)$ band at 986 cm⁻¹ and a relatively weak $v_{as}(Mo=O)$ band at 964 cm⁻¹ from surface dioxo (O=)₂Mo(-O-Si)₂ sites.^{13,15} The surface WO_x sites possess a strong $v_s(W=0)$ band at 980 cm⁻¹ from di-oxo (O=)₂W-O₂ sites and a relatively weak v_s (W=O) band at 1008 cm⁻¹ from a minor amount of mono-oxo O=W(-O-Si)₄ sites.^{12,15} Activation and Re-oxidation Conditions. dehydration, activation and re-oxidation temperatures were determined from the 1st C₃H₆-TPSR-MS findings given below. The in situ Raman spectra of SiO₂ supported metal oxide catalysts under activation and re-oxidization conditions are shown in Figure 2 and S1. After 90 min of C_3H_6 activation at high temperatures, the intensity of the Raman bands of all the SiO₂-supported metal oxide catalysts significantly diminished primarily due to the accumulation of coke on the surface, blocking the detection of surface metal oxide sites. After reoxidation with O2 for 60min, the surface coke was burned off and the activated surface ReO_x, MoO_x and WO_x sites that only represent a smaller portion of total surface metal oxide sites were successfully re-oxidized back to their dehydrated state. The Raman bands of $v_s(Re=0)$ and $v_{as}(Re=0)$ from the surface ReO_x sites and $v_s(Mo=O)$ and $v_{as}(Mo=O)$ bands from the surface MoO_x sites exhibit notably lower Raman band intensities compared to the band intensities after the initial dehydration. The approximate decrease in the area of the Raman bands relative to the SiO₂ support band at ~607 cm⁻¹ follows the trend: ReO_x (~49%) > MoO_x (~38%) >> WO_x (~4%). The reduction in intensity of the Raman bands indicates the significant loss of surface ReO_x¹⁶ and MoO_x¹⁷ sites from these catalysts due to their volatility at high temperatures. The intensity of the Raman band of the $v_s(W=0)$ of surface WO_x sites, however, was almost fully recovered to that of the initial band intensity after the initial dehydration treatment, reflecting minimal volatilization of WO_x at elevated temperatures. **Figure 2.** *In situ* Raman spectra (200-1200 cm⁻¹) of the SiO₂-supported metal oxide catalysts after dehydration, propylene activation and
re-oxidization conditions: (A) ReO_x/SiO₂ at 450 °C, (B) MoO_x/SiO₂ at 550 °C and (C) WO_x/SiO₂ at 650 °C. #### C₃H₆-TPSR-MS. $\mathbf{1}^{st}$ $\mathbf{C_3H_6}\text{-}\mathsf{TPSR}\text{-}\mathsf{MS}$ cycle. The $\mathbf{1}^{st}$ $\mathbf{C_3H_6}\text{-}\mathsf{TPSR}\text{-}\mathsf{MS}$ spectra of the dehydrated SiO_2 supported metal oxide catalysts are presented in Figure 3. The dehydrated supported ReO_x/SiO₂ catalyst only produces C₄H₈ at the high temperatures of ~ 420-550°C (Tp=450°C). Similarly, the dehydrated supported MoO_x/SiO₂ catalyst only produces C₄H₈ at somewhat higher temperatures of \sim 350-600°C (Tp=520°C). The dehydrated supported WO_x/SiO₂ catalyst only produces C₄H₈ at even higher temperatures of ~ 550-785°C (Tp=718°C). All the SiO₂supported metal oxide catalysts also produce oxygenated products (CO, CO₂, and H₂O) at high temperatures from partial reduction of surface metal oxide sites by propylene during the catalyst activation stage. While the combustion products precede the formation of butene for the supported ReO_x/SiO_2 catalyst, the combustion products primarily form after the start of butene formation for the supported MoO_x/SiO₂ and WO_x/SiO₂ catalysts. The supported WO_x/SiO₂ catalyst has relatively higher CO/CO₂ production ratio than the supported ReO_x/SiO_2 and MoO_x/SiO_2 catalysts. The propylene metathesis activation product acetone is only observed from the supported ReO_x/SiO₂ (Tp=133, 412°C) and MoO_x/SiO₂ (Tp=190, 520 °C) catalysts. It is possible that acetone decomposed at the much higher temperatures required for activation of the surface WO_x sites on SiO₂ or that a different activation path is followed by the supported WO_x/SiO₂ catalyst. **Figure 3.** The 1st C_3H_6 -TPSR-MS cycle spectra (30-600/800°C) of the SiO_2 -supported metal oxide catalysts: (A) ReO_x/SiO_2 , (B) MoO_x/SiO_2 , and (C) WO_x/SiO_2 . **2nd C₃H₆-TPSR-MS cycle.** The 2nd C₃H₆-TPSR-MS spectra of SiO₂-supported metal oxide catalysts that have been activated by the 1st C₃H₆-TPSR cycle are presented in Figure 4, and allows chemically probing the properties of the activated sites in the 1st C₃H₆-TPSR cycle. The activated supported ReO_x/SiO₂ catalyst produces C₄H₈ at intermediate temperatures ~ 250-400°C (Tp=300 °C) and high temperatures ~ 420-550°C (Tp=470°C), but the amount of C₄H₈ produced is drastically decreased compared to the 1st cycle. The activated supported MoO_x/SiO₂ catalyst produces C₄H₈ at both low ~ 30-250°C (Tp=107°C) and high temperatures ~ 250-600°C (Tp=470°C) with a much larger Journal Name ARTICLE amount of C_4H_8 produced compared to the 1^{st} cycle. The activated supported WO_x/SiO_2 catalyst produces C_4H_8 at both low ~ $30\text{-}170^{\circ}\text{C}$ (Tp= 87°C) and high temperatures ~ $350\text{-}800^{\circ}\text{C}$ (Tp= 576°C) with a much larger amount of C_4H_8 produced compared to the 1^{st} cycle. The C_4H_8 production during the 2^{nd} C_3H_6 -TPSR cycle follows the trend (i) at low temperatures: $MoO_x > WO_x >> ReO_x$, and (ii) at high temperatures $WO_x > MoO_x >> ReO_x$. The consumption of C_3H_6 during the 2^{nd} C_3H_6 -TPSR cycle is compared in Figure S2. The activated supported MoO_x/SiO_2 and WO_x/SiO_2 catalysts consume propylene for C_3H_6 self-metathesis at low temperature and consume propylene for both C_3H_6 self-metathesis and C_3H_6 combustion at high temperature. The activated supported ReO_x/SiO_2 catalyst exhibits only minor C_3H_6 consumption at both low and high temperatures. **Figure 4.** The C_4H_8 production of 1^{st} and 2^{nd} C_3H_6 -TPSR -MS (30-600/800 °C) cycles with online MS for the SiO_2 supported metal oxide catalysts. The MS signals of C_4H_8 were normalized by the MS signals of the Ar carrier gas. #### C₃H₆-TPSR-IR. The in situ C₃H₆-TPSR-IR spectra of the dehydrated SiO₂ supported metal oxide catalysts are presented in Figure S3. There is no notable difference between the 1st and 2nd cycle in situ C₃H₆-TPSR-IR spectra. For all the SiO₂ supported metal oxide catalysts, the in situ IR spectra at 30°C are primarily composed of gas phase propylene (The in situ IR bands at ~ 1444, 1455, 1472, 1638, and 1664 cm⁻¹ correspond to gas phase propylene¹⁸). No detectable v(C=0) vibration at 1686 cm⁻¹ of surface acetone is observed on the SiO₂-supported metal oxide catalysts. Above 320°C, there are no IR bands of gas phase propylene and surface intermediates, reflecting thermal broadening of the gas phase bands and an extremely low density of surface intermediates, respectively. The broad in situ IR bands at ~1279 and ~1570 cm⁻¹ for SiO₂-supported metal oxide catalysts result from a thermal effect on the spectral baseline, and not from surface intermediates.¹³ ## Ethylene/2-Butene Titration. The $C_2H_4/2$ - C_4H_8 titration measurements were performed by activating the catalyst with 2- C_4H_8 at elevated temperatures, titrating the resulting surface M=CHCH $_3$ intermediates with flowing C_2H_4 -TPSR and quantifying the number of C_3H_6 molecules produced with the online MS as shown in Figure S4. The initial $C_2H_4/2$ - C_4H_8 titration studies at 100° C (Figure S4 A), reveal that much more surface MoO_x sites were activated than surface ReO_x and WO_x sites at 100°C. The C₂H₄-TPSR-MS spectra for the supported MO_x/SiO₂ catalysts are presented in Figure S4 B and the corresponding number of activated sites are given in Table 1. The 2-butene activated supported ReO_x/SiO₂ catalyst has only one C₃H₆-TPSR peak at 505°C, which represents activation of 17.1% of the total surface ReO_x sites. The 2-butene activated supported MoO_x/SiO₂ catalyst exhibits two C₃H₆-TPSR peaks at 100 °C and 540°C that represent 20.0% (100 °C) and 1.1% (540 °C) of activated surface MoO_x sites, respectively. Since a portion of the surface ReO_x and MoOx sites volatize during the high temperature C3H6 activation, the actual fraction of activated surface ReO_x and MoO_x sites will be higher than the fractions indicated in Table 1. The 2-butene activated supported WO_x/SiO₂ catalyst shows only one C₃H₆-TPSR peak at 705°C that represents 2.1% of activated surface WO_x sites. Although the supported ReO_x/SiO₂ and MoO_x/SiO₂ catalysts have a higher number of activated sites (~ 20% of the initial oxidized sites), the supported WO_x/SiO₂ catalyst has an order of magnitude lower number of activated sites (~ 2% of the initial oxidized sites). Furthermore, since only surface MoO_x sites exhibit a C₃H₆-TPSR peak at low temperatures (~100°C), this indicates that the surface Mo=CHCH₃ intermediates are much more reactive at low temperatures than the surface Re=CHCH3 and W=CHCH3 intermediates towards ethylene titration. | Catalyst
(wt.%) | Total Number
of Initial Surface | Number of
C₃H ₆ Produced | Fraction of
Activated surface | |--------------------|------------------------------------|--|----------------------------------| | | MO _x Sites (mol) | (mol) | Sites | | 5.5%ReSi | 2.3x10 ⁻⁵ | 3.9x10 ⁻⁶ (505°C) | 17% (505°C) | | 7.5%MoSi | | 6.2x10 ⁻⁶ (100°C) | 20% (100°C) | | | 3.1x10 ⁻⁵ | 3.5x10 ⁻⁷ (540°C) | 1.1% (540°C) | | 6%WSi | 2.5x10 ⁻⁵ | 5.3x10 ⁻⁷ (703°C) | 2.1% (703°C) | **Table 1.** Number of activated surface MO_x sites calculated from activation by $2\text{-}C_4H_8$ and subsequent titration with C_2H_4 -TPSR-MS. Fraction of activated sites referenced against total number of initial oxidized sites. # Steady State Propylene Metathesis of catalysts activated with C_3H_6 . The steady state propylene self-metathesis activity (mmol/g/h) and TOF (s⁻¹) values of the activated SiO₂-supported metal oxide catalysts are presented in Table 2 as a function of reaction temperature and activation temperatures. At the reaction temperature of 100° C, the supported MoO_x/SiO₂ catalyst is the most active catalyst while the supported ReO_x/SiO₂ and WO_x/SiO₂ catalysts are two-orders of magnitude less active. Increasing the reaction temperature decreases the activity of the supported MoO_x/SiO₂ catalyst and increases the activity of the supported ReO_x/SiO₂ and WO_x/SiO₂ catalysts. Surprisingly, the activity of the supported MoO_x/SiO₂ catalyst increases somewhat at a reaction temperature of 550°C. At the highest reaction temperature of 450-550°C, the supported WO_x/SiO₂ catalyst is about an order of magnitude more active than the supported MoO_x/SiO₂ and ReO_x/SiO₂ catalysts. The corresponding TOF values follow the same trends as the activity values and reveal low specific reaction rates for olefin metathesis over this set of catalysts. At 100° C, the supported MoO_x/SiO_2 has the highest TOF that is one to two orders of magnitude greater than the supported ReO_x/SiO_2 and WO_x/SiO_2 catalysts. At 550°C, the supported WO_x/SiO₂ catalyst exhibits the highest TOF value that is about two orders of magnitude greater than that of the supported MoO_x/SiO₂ and ReO_x/SiO₂ catalysts. These olefin metathesis SiO₂-supported metal oxide catalysts exhibit a wide range of activity and TOF values that reveal different dependence on the reaction temperature with the supported MoO_x/SiO₂ catalyst most active at lower temperatures and supported WO_x/SiO₂ catalyst most active at high temperatures. | Catalyst
(Activation
Temperature) | $Steady\ State\ Activity\ (mmol/g/h)$ $(TOF\ (s^{-1}))^* *TOF\ normalized\ by\ number\ of\ sites\ determined\ with$ $C_2H_4/C_4H_8\ titration$ | | | | | | |---|--|----------------------------------|----------------------------------|----------------------------------|---|--| | | 100°C | 200°C | 300°C | 400°C | 450°C or
550°C | | |
5.5%ReSi
(450°C) | 0.03
(0.22x10 ⁻³) | 0.03
(0.22x10 ⁻³) | 0.10
(0.73x10 ⁻³) | 0.38
(2.80x10 ⁻³) | 0.51
(450°C)
(3.70x10 ⁻³) | | | 7.5%MoSi
(550℃) | 4.0
(1.7x10 ⁻²) | 2.0
(0.85×10 ⁻²) | 0.03
(0.13x10 ⁻³) | 0.01
(0.43×10 ⁻⁴) | 0.48
(550°C)
(0.20x10 ⁻²) | | | 6%WSi
(650 ℃) | 0.02
(0.11x10 ⁻²) | 0.03
(0.16x10 ⁻²) | 0.03
(0.16x10 ⁻²) | 0.23
(0.12x10 ⁻¹) | 3.6
(550°C)
(1.9×10 ⁻¹) | | **Table 2.** Steady state activity (mmol/g/h) and TOF values of C_3H_6 pre-activated catalysts (catalyst activation temperatures are indicated in Table 2). #### IV. Discussion ### Anchoring of MO_x Species on SiO₂ Surface Hydroxyls The metal oxides preferentially anchor at the isolated Si-OH surface hydroxyls. The geminal Si(-OH)₂ surface hydroxyls are either unreactive or minimally reactive towards anchoring of the aqueous ReO_x , MoO_x and WO_x species (Figure 1). Consequently, all three metal oxides primarily anchor at the same isolated silanol Si-OH surface hydroxyls.¹⁹⁻²⁰ # Molecular and Electronic Structure of Surface ReOx, MoO_x , WO_x sites on SiO_2 under oxidative dehydration and olefin activation conditions. The initial dehydrated surface MO_x sites on SiO_2 are completely dispersed as isolated sites on the SiO_2 support. The presence of only isolated surface metal oxide sites on SiO_2 supports is related to the low density of reactive surface hydroxyl anchoring sites associated with the isolated Si-OH surface hydroxyls. Crystalline Re_2O_7 , MoO_3 , and WO_3 nanoparticles are not present and are only present when the surface coverage is well above the maximum dispersion limit on SiO₂ or monolayer coverage. 12 The dehydrated surface ReO_x sites are present as fully oxidized Re(+7) cations with an isolated tri-oxo (O=)₃ReO structure.^{6,15} The dehydrated surface MoO_x sites are present as fully oxidized Mo(+6) cations as isolated di-oxo (O=)₂MoO₂ sites.^{13,15} The surface dehydrated WO_x sites are present as fully oxidized W(+6) with a mixture of isolated di-oxo (O=)2WO2 and a small amount of mono-oxo (O=)WO₄ sites. 15,21 These surface isolated MO_x structures are in agreement with the structures reported in the literature for dehydrated supported MO_x/SiO₂ catalysts from multiple in situ characterization studies (Raman, 12, 15, 22-24 UV-vis, 22-23 IR, 22 and XAS^{22,24}) and DFT calculations²⁵⁻²⁷. The nature of the activated surface MO_x sites on SiO₂, however, still require direct spectroscopic characterization because the activated surface MO_x sites possess the same oxidation state as the unactivated sites, which complicates the spectroscopic deconvolution of the unactivated and activated sites. The presence of carbon deposits (coke) on the catalysts also adds additional complexity to the analysis. The initial formation of surface metal=carbene proceeds via a mechanism where the fully oxidized surface metal-oxo sites (Re(=O)3, O=Mo=O, O=W=O, W=O) initially reduce to a lower oxidation state by the olefins as the oxo-oxygen is removed and then re-oxidized back to the highest oxidation state via formation of surface M=CH2 and M=CHCH₃ species.²⁵ The C₂H₄/2-C₄H₈ titration studies clearly demonstrate that surface M=CHCH₃ and M=CH₂ intermediates are indeed present on the activated catalysts. # Volatilization of surface MO_x sites from the SiO_2 support during activation Volatilization of the active component in heterogeneous catalysts is a serious concern since it leads to loss of expensive catalyst components as well as catalyst deactivation (fewer catalytic active sites). The current study demonstrated that an appreciable fraction of surface ReO_x (~49%) and MoO_x (~38%) sites on SiO₂ volatilizes during the high temperature C₃H₆ activation, which is a required step for activation of active olefin metathesis catalysts.^{2, 8} In contrast, only a negligible fraction of surface WO_x sites (~4%) on SiO₂ volatizes (Figure 2). Additional surface ReO_x and MoO_x sites probably volatize under olefin metathesis reaction conditions at high temperatures and catalyst regeneration under oxidizing conditions that are required to remove catalyst coke, especially at elevated temperatures. Volatilization of surface MO_x sites on SiO₂ takes place by hydrolysis of bridging M-O-Si bonds that forms M-OH and HO-Si, which weakens the metal oxide-silica interaction.^{28, 29} The extent of volatilization is related to the lower sublimation temperatures of Re₂O₇ $(^{250}^{\circ}C)^{16}$ and MoO₃ $(^{525}^{\circ}C)^{17}$ compared to WO₃ $(800^{\circ}C)^{30}$. Thus, the supported WO_x/SiO₂ catalyst is more robust in comparison to the supported ReO_x/SiO₂ and MoO_x/SiO₂ catalysts for olefin metathesis, especially under harsh elevated temperatures. It is important to note that the initial number of surface MO_x sites on the SiO₂ support is not a critical parameter since the number of stable surface $MO_{\boldsymbol{x}}$ sites is controlled by metal oxide volatilization during catalyst activation and the olefin metathesis reaction. #### Number of Activated Surface MO_x Sites on SiO₂ Although both surface MoO_x and WO_x on SiO_2 predominantly possess the same initial dioxo surface $(O=)_2M(-O)_2$ sites, they have very different responses towards activation by the ethylene/2-butene titration. A higher fraction (~20%) of the surface Mo=CHCH3 intermediates undergo metathesis with C₂H₄ at low temperatures to yield C₃H₆. In contrast, only a minor fraction of the surface W=CHCH₃ intermediates undergo metathesis with C₂H₄ and require high temperatures to yield C₃H₆. This difference in fraction of activated sites between MoO_x/SiO₂ and WO_x/SiO₂ catalysts is related to the more facile reduction by propylene of surface MoO₄ sites on SiO₂ than the surface WO_4 sites on SiO_2 (Mo (Tp = 520°C) and W (Tp=715°C). The fraction of activated sites in MoO_x/SiO₂ and WO_x/SiO₂ catalysts are limited by the suitable geometry and neighborhood of surface sites that can be effectively activated by alkenes.²⁶ The trioxo surface (O=)₃Re(-O) sites possess a different structure than the surface MoO₄ and WO₄ sites, but responds similarly to the surface MoO₄ sites with ~17% of the surface ReO₄ sites becoming activated by exposure to propylene (Tp = 450°C). The facile reduction by propylene of the surface ReO₄ sites is related to rhenia's intrinsic ease of reduction.7 ### Activation of SiO₂-supported MO_x catalysts by C₃H₆ The lower activation temperature of the supported MoO_x/SiO₂ catalyst than the supported WO_x/SiO₂ catalyst is agreement with the DFT calculation that reveals lower predicted overall activation Gibbs energies for the MoO_x/SiO₂ than the WO_x/SiO₂ catalyst ³¹ The 1st C₃H₆-TPSR indicates the temperatures where each of the surface MO_x sites on SiO_2 become activated, while the 2nd C₃=-TPSR reveals the reactivi . of the activated surface MO_x sites. Both supported MoO_x/SiO₂ and WO_x/SiO₂ catalysts reveal the presence of highly active surface MO_x sites on SiO₂ at ~100°C°C after high temperature activation (>400°C°C). For supported MoO_x/SiO₂, however, most of the activated sites perform olefin metathesis at ~100°C metathesis. All three metal oxides selectively anchor at the isolated while most of the activated sites for supported WO_x/SiO₂ perform olefin metathesis at ~600°C. This difference in activity is reflected in the olefin metathesis reaction rates of these two supported MO_x/SiO₂ catalysts, which will be elaborated upon below. The activated surface ReO_x sites on SiO₂ don't possess low temperature activated sites and only exhibit modest olefin metathesis activity at intermediate reaction temperatures (~470°C). # Activity and TOF of SiO₂-supported MO_x catalysts for propylene metathesis. The steady state activity (mmol/g/h) of the catalysts, which doesn't take into account the number of volatized MoO_x sites, indicates that the supported MoO_x/SiO₂ and WO_x/SiO₂ catalysts are the most active for propylene metathesis. However, the supported MoO_x/SiO₂ is most active at low temperatures (100°C) while supported WO_x/SiO₂ is most active at high temperatures (550°C). It appears that the steady state olefin metathesis activity is dominated by the abundant number of low temperature active surface MoOx sites for MoO_x/SiO₂ while the steady state olefin metathesis activity is dominated by the abundant number of high temperature activated surface WO_x sites for WO_x/SiO₂. This difference in low temperature metathesis activity is a direct consequence of the reactivity of the surface M=CHCH3 and M=CH2 intermediates (Mo >> W). This is further reflected in the specific reactivity (TOF) values where supported MoOx/SiO2 exhibits a TOF values of 1.7 x 10^{-2} /s at 100° C and 0.20×10^{-2} /s at 550°C. The decreasing performance of the supported MoO_x/SiO₂ catalyst with increasing temperatures may be related to additional volatilization of MoO_x during olefin metathesis or possibly coking of the catalyst since catalytic kinetics should increase with reaction temperature. The corresponding supported WO_x/SiO₂ exhibits TOF values of 0.11 x 10^{-2} /s at 100° C and 1.9×10^{-1} /s at 550° C. In contrast to the activated supported MoO_x/SiO₂ and WO_x/SiO₂ catalysts, the supported ReO_x/SiO₂ possesses I don't much lower TOF values of 0.22 x 10^{-3} /s at 100° C and 3.7 x 10^{-3} /s at 450° C. Since the surface MO_x sites are isolated on the SiO₂ support and almost exclusively anchored at the same surface silanol, the TOF values will be independent of surface MO_x coverage. Note that these TOF values are true TOF values that are only based on the remaining active sites titrated after activation and volatilization. At high temperatures, the surface WO_x sites possess the most active sites (highest TOF) compared to the surface MoO_x sites (TOF is ~10x less active) and surface
ReO_x sites (TOF is ~100x less active). The differing activation temperatures and reaction temperatures for the supported MO_x/SiO₂ catalysts are related to the stability of the surface M=O oxo and M=Carbene bonds, respectively. ### **Conclusions** The side-by-side comparison of the SiO₂-supported ReO_x, MoO_x and WO_x catalysts provides fundamental insights about the different characteristics of these supported MO_x/SiO₂ catalysts for olefin surface Si-OH silanols and are present as isolated sites. The surface MoO_x and WO_x on SiO₂ essentially possess the same molecular structures (dioxo $(O=)_2MoO_2$ and $(O=)_2WO_2$) while the surface ReO_x on SiO₂ is present as trioxo ((O=)₃ReO). The different molecular structures are related to the greater number of bonding electrons in the surface $Re^{7+}O_x$ site than the surface $Mo^{6+}O_x$ and $W^{6+}O_x$ sites. These surface MO_x sites on SiO₂ require activation by olefins at elevated temperatures to become active for olefin metathesis. The activation process removes the initial M=O oxo bonds forming coordinative unsaturated sites that allow for olefin chemisorption as surface M=CHCH₃ and M=CH₂ intermediate species, which are confirmed by the titration studies. The high temperature activation process, however, also leads to volatilization of the surface MO_x sites from the SiO_2 support (ReO_x (~49%) > MoO_x (~38%) >> WO_x (~4%)). In spite of the MO_x volatilization, about 20% of the surface MO_x sites become activated for olefin metathesis by the supported MoO_x/SiO₂ and ReO_x/SiO₂ catalysts at lower temperatures. In contrast, only about 2% of the surface WO_x sites become activated for olefin metathesis by the supported WO_x/SiO₂ catalysts at high temperatures. The number of activated sites is related to the ease of reduction of the initial surface MO_x sites on SiO₂. The reactivity of the surface M=carbenes (M=CHCH₃/M=CH₂) for olefin metathesis also follows the same trend: Mo=carbene > Re=carbene > W=carbene. As a result, during the steady state metathesis the surface MoO_x sites are active at lower temperatures (~100°C), the surface WO_x sites are active at high temperatures (~600°C) and the surface ReO_x sites are active at intermediate temperatures (~470°C). Consequently, the surface MoO_x sites are the most active at lower temperatures (TOF= 1.7 x 10^{-2} /s at 100° C), the surface ReO_x sites are the least active at intermediate temperatures (TOF= 3.7×10^{-3} /s at 450°C) and the surface WO_x sites are the most active at high temperatures (TOF=1.9 x 10⁻¹/s at 550°C). The superior performance of the commercial supported WO_x/SiO_2 catalysts compared to the supported MO_x/SiO_2 and ReO_x/SiO_2 catalysts is a consequence of its more robust properties: (i) much lower volatility, (ii) higher steady state activity at elevated temperatures, and (iii) higher TOF at elevated temperatures. In spite of the superior olefin metathesis performance by the supported WO_x/SiO_2 catalyst, the supported WO_x/SiO_2 catalyst suffers from (i) being more difficult to activate that requires much higher activation temperatures, and (ii) only forming a low number of activated sites. Nevertheless, the positive features significantly outweigh the negative features making the supported WO_x/SiO_2 catalyst the superior catalyst for olefin metathesis of small olefins. ### Conflicts of interest There are no conflicts to declare. # **Data availability** The data that support the findings of this study are available from the corresponding author upon reasonable request. The experimental data generated and analyzed during this study are included in this published article and its supplementary information files. ## **Acknowledgements** This study was funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy, Catalysis Science Program, under Award Number FG02-93ER14350. #### References - (1) Ivin, K.J.; Mol, J.C. Olefin Metathesis and Metathesis Polymerization. Academic Press. 1997, London. - (2) Mol, J. C. Industrial applications of olefin metathesis. J. Mol. Catal. A: Chem. 2004, 213, 39–45. - (3) Tullo, A. H. Turning Ethylene into Propylene. c&en. 2007, 85, 17. - (4) Lavrenov, A. V.; Saifulina, L. F.; Buluchevskii, E. A.; Bogdanets, E. N. Propylene Production Technology: Today and Tomorrow. Catal. Ind. 2015, 7 (3), 175–187. - (5) Butler, J. R. Metathesis Catalyst for Olefin Production. US Patent, US20110077444 A1, 2011. - (6) Zhang, B.; Wachs, I. E. Identifying the Catalytic Active Site for Propylene Metathesis by Supported ReOx Catalysts. ACS Catal., 2021, 11, 1962–1976. - (7) Vuurman, M. A.; Stufkens, D. J.; Oskam, A.; Wachs, I. E. Structural determination of surface rhenium oxide on various oxide supports (Al2O3, ZrO2, TiO2 and SiO2). J. Mol. Catal. 1992, 76, 263–285. - (8) Ding, K.; Gulec, A.; Johnson, A. M.; Drake, T. L.; Wu, W.; Lin, Y.; Weitz, E.; Marks, L. D.; Stair, P. C. Highly Efficient Activation, Regeneration, and Active Site Identification of Oxide-Based Olefin Metathesis Catalysts. ACS Catal. 2016, 6, 5740–5746. - (9) Handzlik, J.; Ogonowski, J.; Stoch, J.; Mikolajczyk, M.; Michorczyk, P. Properties and metathesis activity of molybdena-alumina, molybdena-silica-alumina and molybdena-silica catalysts-a comparative study. Appl. Catal. A: Gen. 2006, 312, 213-219. - (10) Lwin, S.; Wachs, I. E. Olefin Metathesis by Supported Metal Oxide Catalysts. ACS Catal. 2014, 4, 2505–2520. - (11) Mol, J. C. Olefin metathesis over supported rhenium oxide catalysts. Catal. Today. 1999, 51, 289-299. - (12) Lee, E. L.; Wachs, I. E. *In situ* Spectroscopic Investigation of the Molecular and Electronic Structures of SiO2 Supported Surface Metal Oxides. J. Phys. Chem. C. 2007, 111, 14410–14425. - (13) Zhang, B.; Ford, M. E.; Ream, E.; Wachs, I. E. Olefin metathesis over supported MoOx catalysts: influence of the oxide support. Catal. Sci. Technol., 2023, 13, 217-225. - (14) Zhang, B.; Lwin, S.; Xiang, S.; Frenkel, A. I.; Wachs, I. E. Tuning the Number of Active Sites and Turnover Frequencies by Surface Modification of Supported ReO4/(SiO2–Al2O3) Catalysts for Olefin Metathesis. ACS Catal. 2021, 11, 2412–2421. - (15) Lee, E. L.; Wachs, I. E. In Situ Raman Spectroscopy of SiO2-Supported Transition Metal Oxide Catalysts: An Isotopic 180–160 Exchange Study. J. Phys. Chem. C 2008, 112, 6487–6498. - (16) Smith, W. T.; Line, L. E.; Bell, W. A. The Vapor Pressures of Rhenium Heptoxide and Perrhenic Acid. J. Am. Chem. Soc. 1952, 74, 4964. - (17) Pampararo, G.; Garvarino, G.; Ardoino, N.; Riani, P.; Busca. G. A study of molybdena catalysts in ethanoloxidation. Part 1. Unsupported and silica-supported MoO3. J Chem Technol Biotechnol. 2021, 96, 3293–3303. - (18) Afeefy, H. Y.; Liebman, J. F.; Stein, S. E. Neutral Thermochemical Data. In NIST Chemistry WebBook; Linstrom, P. J., Mallard, W. G., Eds; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD. - (19) Knozinger, H.; Ratnasamy, P. Catalytic Aluminas: Surface Models and Characterization of Surface Sites. Catal. Rev.: Sci. Eng. 1978, 17, 31–37. - (20) Burcham, L. J.; Datka, J.; Wachs, I. E. In Situ Vibrational Spectroscopy Studies of Supported Niobium Oxide Catalysts. J. Phys. Chem. B. 1999, 103, 6015-6024. - (21) Liwn, S.; Li, Y.; Frenkel, A. I.; Wachs, I. E. Nature of WOx Sites on SiO2 and Their Molecular Structure–Reactivity/Selectivity Relationships for Propylene Metathesis. ACS Catal. 2016, 6, 3061–3071. - (22) Amakawa, K.; Sun, L.; Guo, C.; Havecker, M.; Kube, P.; Wachs, I. E.; Lwin, S.; Frenkel, I. E.; Patlolla, A.; Hermann, K.; Schlogl, R.; Trunschke, A. How Strain Affects the Reactivity of 464. Journal Name ARTICLE - Surface Metal Oxide Catalysts. Angew. Chem. Int. Ed. 2013, 52, 13553-13557 - (23) Tian, H.; Roberts, C.A.; Wachs, I.E., Molecular Structural Determination of Molybdena in Different Environments: Aqueous Solutions, Bulk Mixed Oxides, and Supported MoO3 Catalysts. J. Phys. Chem. C. 2010, 114, 14110–14120. - (24) Radhakrishnan, R.; Reed, C.; Oyama, S.T; Seman, M.; Kondo, J.N.; Domen, K.; Ohminami, Y.; Asakura, K. Variability in the Structure of Supported MoO3 Catalysts: Studies Using Raman and X-ray Absorption Spectroscopy with ab Initio Calculations. J. Phys. Chem. B. 2001, 105, 8519–8530. - (25) Handzlik, J.; Ogonowski, J. Structure of isolated molybdenum (VI) and molybdenum (IV) oxide species on silica: periodic and cluster DFT studies. J. Phys. Chem. C. 2012, 116, 5571–5584. - (26) Handzlik, J.; Kurleto, K.; Gierada, M. Computational Insights into Active Site Formation during Alkene Metathesis over a MoOx/ SiO2 Catalyst: The Role of Surface Silanols. ACS Catal. 2021, 11, 13575–13590. - (27) Chempath, S.; Zhang, Y.; Bell, A.T. DFT studies of the structure and vibrational spectra of isolated molybdena species supported on silica. J. Phys. Chem. C. 2007, 111, 1291–1298. - (28) Howell, J. G.; Li, Y.; Bell, A. T. Propene Metathesis over Supported Tungsten Oxide Catalysts: A Study of Active Site Formation. ACS Catal. 2016, 6, 11, 7728-7738 - (29) Le, A. V.; Rajbanshi, B.; Lobo, R. F.; Bai, P. Mechanistic study of heterogeneous propene metathesis on WOx/SiO2 catalysts. J. Catal. 2023, 427, 115117 - (30) Millner, T.; Neugebauer, J. Volatility of the Oxides of Tungsten and Molybdenum in the Presence of Water Vapour. Nature. 1949, 163, 601-602. - (31) Handzlik, J.; Gierada, M.; Kurleto, K. Role of Surface Silanols in Active Site Formation during Olefin Metathesis over a WOx/SiO2 Catalyst: A Computational Perspective. J. Phys. Chem. C. 2024. https://doi.org/10.1021/acs.jpcc.4c01305. - (32) Boudart M, Djéga-Mariadassou G. Kinetics of heterogeneous catalytic reactions. (Princeton Univ. Press, 2014). (33) Chauvin Y, Commereuc D. Chemical counting and characterization of the active sites in the rhenium oxide/alumina metathesis catalyst. J. Chem. Soc., Chem. Commun., 1992, 462- The data that support the findings of this study are
available from the corresponding author upon reasonable request. The following datasets are included: - **Experimental Data**: Raw spectroscopy data (.csv files and .xlsx files). These files are available upon request. - **Supporting Information**: Additional data, including detailed experimental procedures, supplementary figures, and tables (.pdf files). These files are available upon request.