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Polariton Induced Conical Intersection and Berry Phase.†

Marwa H. Farag,a Arkajit Mandal,a and Pengfei Huo∗a,b

We investigate the Polariton induced conical intersection (PICI) created from coupling a diatomic
molecule with the quantized photon mode inside an optical cavity, and the corresponding Berry
Phase effects. We use the rigorous Pauli-Fierz Hamiltonian to describe the quantum light-matter
interactions between a LiF molecule and the cavity, and exact quantum propagation to investigate
the polariton quantum dynamics. The molecular rotations relative to the cavity polarization direction
play a role as the tuning mode of the PICI, resulting in an effective CI even within a diatomic molecule.
To clearly demonstrate the dynamical effects of the Berry phase, we construct two additional models
that have the same Born-Oppenheimer surface, but the effects of the geometric phase are removed.
We find that when the initial wavefunction is placed in the lower polaritonic surface, the Berry
phase causes a π phase-shift in the wavefunction after the encirclement around the CI, indicated
from the nuclear probability distribution. On the other hand, when the initial wavefunction is placed
in the upper polaritonic surface, the geometric phase significantly influences the couplings between
polaritonic states and therefore, the population dynamics between them. These BP effects are further
demonstrated through the photo-fragment angular distribution. PICI created from the quantized
radiation field has the promise to open up new possibilities to modulate photochemical reactivities.

1 Introduction

Conical intersections (CIs) are ubiquitous in polyatomic
molecules and it is known to play an important role in the non-
adiabatic dynamics of photochemical reactions.1–9 At the vicin-
ity of the CI, the energy difference between adiabatic poten-
tials is small and eventually vanishes at the CI, resulting in a
large non-adiabatic coupling between the adiabatic states, and
a singular non-adiabatic coupling at the CI point. As a result,
the the Born-Oppenheimer approximation breaks down6,10 and
the non-adiabatic transitions between electronic states are en-
hanced.11–13 CIs are known to play a key role in the relax-
ation dynamics of most polyatomic molecules and it provides
pathways for an ultrafast population transfer between electronic
states.9,14–22 In addition, CIs introduce a nontrivial geometric
phase,23,24 commonly referred to as the Berry phase,25 for elec-
tronic wavefunctions that causes a sign change of the electron
wavefunctions when the nuclei complete a closed path around
the CI.23,25–29 Both enhanced non-adiabatic transitions and the
geometric phase are attributed to as characteristic features of the
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presence of CIs.8,27,28,30

In addition to the intrinsic CIs in polyatomic molecules, CIs
can also be created by either standing31,32 or running33–35

laser waves in a diatomic molecule. This type of CIs are
artificially created through light-matter interactions, and are
commonly referred to as the light-induced conical intersection
(LICI).31,32,36,37 For diatomic molecules, the angle between the
molecular axis and the polarization axis of the classical laser field
gives rise to a rotational motion which constitutes a new de-
grees of freedom (DOF) that allows forming CIs. In polyatomic
molecules, LICIs can be formed even without rotation due to the
presence of several vibrational degrees of freedom.38 In contrast
to the field-free CIs where the position of the CI and the strength
of the non-adiabatic coupling vectors are inherent properties of
a molecule and non-trivial to manipulate, in the LICI, one can
easily modify the position of the LICIs and the non-adiabtic cou-
pling strength of the CIs by varying the parameters of light-matter
couplings, such as the frequency and the intensity of the classical
laser.

LICIs open up new directions in which one can modulate
the excited-states dynamics and the inherent physical properties
of molecules without modifying the structure of the molecules.
Thus, it is vital to reveal the characteristic features of these LI-
CIs. Previous theoretical studies, employing the classical de-
scription of light, investigated the nature of the LICI in diatomic
molecules34,35,39–44 and to what extent the geometric phase of
the LICI is similar to the natural CIs for polyatomic molecule
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in a field free space.33,45–47 It has been demonstrated that LICI
strongly impact the spectroscopic and dynamical properties of
molecules, such as the molecular alignment, the photodissocia-
tion probability, molecular spectra, and the angular distribution
of the dissociation photofragment.

Coupling electronic states of molecules or nanoparticles to the
quantized radiation field inside an optical cavity creates a set of
new photon-matter hybrid excitations, so-called polaritons.48–51

As opposed to atoms, the vibrational modes of molecules pro-
vide new degrees of freedom (DOF) to mediate the quantum
transitions between the electronic and photonic states, offer-
ing new paradigms for chemical transformations. For example,
strong couplings between molecules and an optical cavity has
yielded great promise to manipulate chemical reactions in a trans-
formative way.48–56 Through quantum light-matter interactions,
the curvatures of these polaritonic potential energy surfaces can
be engineered by tuning the frequency of the quantized radia-
tion field53,57,58 or the coupling strength of light-matter interac-
tions,57,58 thus opening up new possibilities to control chemical
reactions by changing the fundamental properties of the quan-
tized cavity field.53,57,59,60

The molecular rotations relative to the cavity polarization di-
rection play a role as the tuning mode of the PICI, resulting in an
effective CI even within a diatomic molecule. We referred to this
as polariton induced conical intersection (PICI).61–63 The PICI
in the diatomic molecules have been theoretically investigated as
well.61,62,64–66 These theoretical works reported a significant ef-
fect on the spectroscopic and dynamical properties of diatomic
molecules in optical cavities. In particular, Ref. 62 provides a the-
oretical study of coupling a LiF molecule within an optical cavity,
and investigates the influence of the PICI on the polariton quan-
tum dynamics of the light-matter hybrid system. Unfortunately,
that work is based on the model Hamiltonian that ignores the
dipole self-energy (DSE). It is well known that in the molecular
cavity QED, DSE is a necessary component for achieving gauge in-
variant dynamics.67–70 Without DSE, the polariton potential en-
ergy surface is not properly bounded, leading to incorrect polari-
ton dynamics.67,68

In this work, we use the rigorous Pauli-Fierz Hamiltonian to
describe the quantum light-matter interactions between a LiF
molecule and the cavity, and exact quantum dynamics propaga-
tion to investigate the polariton quantum dynamics of the hybrid
system. We use the theoretical approach developed in Ref. 71 to
investigate the intrinsic geometric phase effects by forming polari-
ton. This approach eliminates the role of the BP effects in the dy-
namics and does not change the shape of the adiabatic potential
energy surface, hence provides a rigorous theoretical framework
to investigate the intrinsic geometric phase effects compared to
the previously used 1D model that completely eliminates the dy-
namical propagation along the rotational DOF of the molecule.62

We find that when the initial wavefunction is placed in the lower
polaritonic surface, the Berry phase causes a π phase-shift in
the wavefunction after the encirclement around the CI, indicated
from the nuclear probability density and the photo-fragment an-
gular distribution. We further investigated the influence of the
PICI on the excited state polaritonic dynamics of the hybrid sys-

tem. These BP effects from PICI demonstrate the new possibilities
to modulate photochemical reactivities using the molecule-cavity
interactions.

2 Theory

2.1 The Pauli-Fierz Hamiltonian

To investigate the light-induced conical intersection in the frame-
work of cavity quantum electrodynamics (C-QED), we begin by
deriving the quantum light-matter interaction Hamiltonian.

The matter Hamiltonian and the corresponding total dipole op-
erator are defined as follows

ĤM = T̂+V̂ (x̂) = ∑
j

1
2m j

p̂2
j +V̂ (x̂); µ̂µµ = ∑

j
z jx̂ j, (1)

where j is the index of the jth charged particle (including all elec-
trons and nuclei), with the corresponding mass m j and charge z j.
In addition, x̂ ≡ {x̂ j} = {R̂, r̂} with R̂ and r̂ representing the nu-
clear and electronic coordinates, respectively, p̂≡ {p̂R, p̂r} ≡ {p̂ j}
is the mechanical momentum operator as well as the canonical
momentum operator, such that p̂ j =−ih̄∇∇∇ j. Further, T̂ = T̂R + T̂r
is the kinetic energy operator, where T̂R and T̂r represent the ki-
netic energy operator for nuclei and for electrons, respectively,
and V̂ (x̂) is the potential operator that describes the Coulombic
interactions among electrons and nuclei.

The cavity photon field Hamiltonian under the single mode as-
sumption is expressed as

Ĥph = h̄ωc
(
â†â+

1
2
)
=

1
2
(

p̂2
c +ω

2
c q̂2

c
)
, (2)

where ωc is the frequency of the mode in the cavity, â† and â
are the photonic creation and annihilation operators, and q̂c =√

h̄/2ωc(â† + â) and p̂c = i
√

h̄ωc/2(â†− â) are the photonic co-
ordinate and momentum operators, respectively. Choosing the
Coulomb gauge, ∇∇∇ · Â = 0, the vector potential becomes purely
transverse Â = Â⊥. Under the long-wavelength approximation,

Â = A0
(
â+ â†)= A0

√
2ωc/h̄ q̂c, (3)

where A0 =
√

h̄
2ωcε0V

ê, with V as the quantization volume inside
the cavity, ε0 as the permittivity, and ê is the unit vector of the
field polarization.

The light-matter interaction is described by using the minimal
coupling QED Hamiltonian (the “p ·A" form) is expressed as

ĤC = ∑
j

1
2m j

(p̂ j− z jÂ)2 +V̂ (x̂)+ Ĥph, (4)

We further introduce the Power-Zienau-Woolley (PZW) gauge
transformation operator72,73 as

Û = exp
[
− i

h̄
µ̂µµ · Â

]
= exp

[
− i

h̄
µ̂µµ ·A0

(
â+ â†)], (5)

or Û = exp
[
− i

h̄

√
2ωc/h̄µ̂µµA0q̂c

]
= exp

[
− i

h̄ (∑ j z jÂx j)
]
. Recall

that a momentum boost operator Ûp = e−
i
h̄ p0q̂ displaces p̂ by

the amount of p0, such that ÛpÔ(p̂)Û†
p = Ô(p̂+ p0). Hence, Û

is a boost operator for both the photonic momentum p̂c by the
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amount of
√

2ωc/h̄µ̂µµA0, as well as for the matter momentum p̂ j

by the amount of z jÂ.

The QED Hamiltonian under the dipole gauge (the “d ·E"
form72,74) can be obtained by performing the PZW transforma-
tion on ĤC as follows

ĤD = ÛĤCÛ† (6)

= ĤM + h̄ωc(â†â+
1
2
)+ iωcµ̂µµ ·A0(â†− â)+

ωc

h̄
(µ̂µµ ·A0)

2,

and the last three terms of the above equation are the results of
ÛĤphÛ†. More specifically, the last term in Eq. 6 is commonly
referred to as the Dipole self-energy (DSE).

Using q̂c and p̂c, one can express ĤD as follows

ĤD = ĤM +
1
2

ω
2
c q̂2

c +
1
2
(p̂c +

√
2ωc

h̄
µ̂µµA0)

2, (7)

The widely used Pauli-Fierz (PF) QED Hamiltonian in the
dipole approximation75–77 in recent studies of polariton chem-
istry can be obtained by using the following unitary transforma-
tion

Ûφ = exp
[
−i

π

2
â†â
]
. (8)

Note that Ûφ â†âÛ†
φ
= â†â, Ûφ âÛ†

φ
= iâ, and Ûφ â†Û†

φ
=−iâ†, apply-

ing Ûφ on ĤD, we have the PF Hamiltonian as follows

ĤPF = Ûφ ĤDÛ†
φ

(9)

= ĤM + h̄ωc(â†â+
1
2
)+ωcµ̂µµ ·A0(â+ â†)+

ωc

h̄
(µ̂µµ ·A0)

2

≡ ĤM +(â†â+
1
2
) h̄ωc +

√
h̄ωc

2
(â† + â)λλλ · µ̂µµ +

1
2
(λλλ · µ̂µµ)2,

where we have introduced the short-hand notation

λλλ =

√
1

ε0V
ê≡ λ ê. (10)

In the numerical simulation of this paper, we denote the

molecule-cavity coupling strength as λ = κ ·
√

2
h̄ωc

, where κ is

a coefficient in the unit of A0ωc, which is
√

h̄ωc/2ε0V . Further,
one can clearly see that the dipole self-energy term 1

2 (λλλ · µ̂µµ)
2 is

a necessary component in ĤPF, which is originated from ÛĤphÛ†

in ĤD and preserved from ĤD to ĤPF under the transformation of
Ûφ (Eq. 8). Thus, without DSE, the gauge invariance between the
p ·A and the d ·E form of the Hamiltonian (including HD and HPF)
will explicitly breakdown.67,68,78,79 This is a well-known results
in QED as well as revisited in the current literature.68,70,78–80

2.2 Model System

For the molecular Hamiltonian ĤM, we use a well-parameterized
diabatic model of the LiF molecule81 to investigate the molecule-
cavity QED enabled new phenomena. The model contains two
diabatic states, the ionic state |I〉 and the covalent state |C〉, and

ĤM in the |I〉, |C〉 electronic subspace is expressed as

ĤM =

(
− h̄2

2m0
∇

2
R +

L̂2
θ

2m0R̂2

)
⊗ 1̂e +

[
V̂I(R) V̂IC(R)

V̂CI(R) V̂C(R)

]
(11)

where 1̂e = |C〉〈C|+ |I〉〈I| is the identity operator in electronic sub-
space, R is the dissociation coordinate, L̂2

θ
=−h̄2 1

sinθ

∂

∂θ
sinθ

∂

∂θ
, is

the angular momentum operator82 of the LiF molecule, and m0 is
the reduced mass of the LiF molecule. Explicitly diagonalizing the
matrix of V̂ in Eq. 11 provides the adiabatic energy as well as two
adiabatic states, |g(R)〉 and |e(R)〉, which parametrically depend
on nuclear coordinates.

Under the diabatic representation, the dipole operator µ̂µµ is ex-
pressed as

µ̂µµ = µµµ I(R)|I〉〈I|+µµµC(R)|C〉〈C|. (12)

Note that {I,C} are eigenstates of µ̂µµ in the truncated electronic
subspace, which are commonly referred to as the Mulliken-Hush
diabatic states81,83–86, and are commonly used as approximate
diabatic states that are defined based on their characters (cova-
lent and ionic). In this work, we explicitly assume that |I〉 and
|C〉 are strict diabatic states, hence 〈C|∇R|I〉 = 0 (they are R-
independent).

The cavity photon mode and the molecule are coupled through
the λλλ · µ̂µµ term in Eq. 9, which characterizes the light-matter cou-
pling vector oriented in the direction of polarization unit vector
ê. We denote the angle between the dipole vector µ̂µµ and ê as θ ,
and µ̂ = |µ̂µµ|, hence the light-matter coupling can be expressed as

λλλ · µ̂µµ = λ µ̂ cosθ . (13)

The Hamiltonian in Eq. 9 can be recast as

ĤPF = ĤM+(â†â+
1
2
) h̄ωc+

√
h̄ωc

2
(â†+ â)λ µ̂ cosθ +

1
2
(λ µ cosθ)2.

(14)

The polariton state |α(XXX)〉 is defined through the following
eigen equation

Ĥpl|α(XXX)〉 ≡ (ĤPF− T̂ )|α(XXX)〉= Eα (XXX)|α(XXX)〉, (15)

where the polariton Hamiltonian is expressed as Ĥpl = ĤPF− T̂ ,
and the T̂ is the vibrational and rotational nuclear kinetic energy
of the molecule in Eq. 11. Note that |α(XXX)〉 is not necessarily
a single valued vector. The polariton potential energy surface
Eα (XXX) is the eigenvalue of Ĥpl that parametrically dependents on
nuclear configuration XXX . This equation is numerically solved by
using the diabatic-Fock basis, {|I〉⊗ |n〉, |C〉⊗ |n〉}, with the Fock
states of the radiation mode (vacuum photon field) {|n〉}, i.e., the
eigenstate of (â†â+ 1

2 )h̄ωc.

In this paper, we did not explicitly consider the cavity loss.
The time scale of the PICI dynamics is ultra-fast (∼ 100 fs), and
the state-of-the-art distributed Bragg reflector (DBR) Fabry-Pérot
(FP) cavity87 can already sustain the photonic life time longer
than that. Explicitly including the cavity loss into the simulation
is also theoretically straightforward.87,88 Further, we acknowl-
edge that achieving the ultra-strong coupling (commonly defined
as µeg ·A0 > 0.1) is still a challenging task. However, it is pos-
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sible to achieve it experimentally with a Fabry-Pérot cavity.89

Thus, besides the pure theoretical value to explore the PICI ef-
fects,61,66 our theoretical simulation is also within the reach of
the near future experimental setup. Another strategy that could
increase light-matter coupling strength62 is to excite the system
into the |g,n〉 states, where the overall coupling strength scales
with

√
n+1, due to the presence of the (â† + â) term in Eq. 9.

This helps to achieve a more efficient PICI,62 although we did
not explore this possibility in the current study.

2.3 Polariton Berry Phase

The Berry phase25,90, also known as the geometrical phase, is
the sign change of the electronic adiabatic wavefunction when
the nuclei follow a closed path around the CI. This sign change is
canceled out by a corresponding sign change in the boundary con-
dition of the nuclear wavefunction, ensuring that the total wave-
function is single valued. The Berry phase is one of the main
characteristic features of the CI and can be seen as a fingerprint
for the presence of CIs.27,47,91,92 Here, we investigate the Berry
phase signatures for the PICI created by the quantized radiation
field of the cavity.

To simplify our discussion of BP in molecular cavity QED, let us
restrict to the subspace of {|g(XXX),1〉, |e(XXX),0〉}, where the nuclear
coordinate is XXX ≡{R,θ}. The g and the e correspond to the molec-
ular adiabatic electronic states of LiF, while 0 and 1 correspond to
the Fock states of the cavity photon mode. This effectively con-
fined the system within the Jaynes-Cummings (JC) model93 sub-
space. We emphasize that this is only used for analyzing the BP
effect, whereas all of the numerical simulations of the polariton
quantum dynamics are performed using the ĤPF within a large
enough basis to converge the results. In this subspace, the two
photo-dressed adiabatic states can be viewed as diabatic states,
because 〈g,1|∇∇∇XXX |e,0〉= 〈g|∇∇∇XXX |e〉 · 〈1|0〉= 0 due to the orthogonal-
ity among vacuum’s Fock states. Within the subspace, the polari-
tonic states can be analytically expressed as follows

|+,0(XXX)〉= sinϕ(XXX)|g,1〉+ cosϕ(XXX)|e,0〉, (16)

|−,0(XXX)〉= cosϕ(XXX)|g,1〉− sinϕ(XXX)|e,0〉, (17)

with the mixing angle

ϕ(XXX) =
1
2

arctan
2〈g,1|Ĥpl|e,0〉

Eg1(X)−Ee0(X)
, (18)

where 〈g,1|Ĥpl|e,0〉=
√

h̄ωc
2 〈1|(â

†+ â)|0〉·〈g|λλλ · µ̂µµ|e〉, and the ener-

gies are Eg1(X) = 〈g,1|Ĥpl|g,1〉 and Ee0(X) = 〈e,0|Ĥpl|e,0〉. When
the nuclear coordinates complete a closed path around the CI
point, varying ϕ(XXX) from 0 to π causes the polariton adiabatic
wavefunctions |−,0(XXX)〉 and |+,0(X)〉 alter their sign, causing the
accumulation of the geometrical phase. As a result, the electronic
wavefunction becomes double valued.

The Berry phase is defined as10,27,94

γα (C) = i
∮

C
〈α|∇∇∇XXX |α〉dXXX =−i

∫
S

∇∇∇×〈α(XXX)|∇XXX |α(XXX)〉dS (19)

where |α〉 is the single valued polariton adiabatic wavefunction.
Note that by changing line integral to the surface integral during
the second equality of Eq. 19, one no longer requires the wave-
function to be a single valued function,25 because the deriva-
tive is directly acting on the Hamiltonian operator instead of the
wavefuntion. Hence, all |α(XXX)〉 from Eq. 15 can be used. On the
other hand, one can define the single-valued polariton wavefucn-
tion as27 |α〉= e−iϕ(XXX)|α(XXX)〉, and the berry phase becomes

γα (C) = i
∮

C
〈α(X)|eiϕ(XXX)

∇∇∇XXX e−iϕ(XXX)|α(XXX)〉dXXX (20)

=
∮

C
∇∇∇Xϕ(XXX)dXXX + i

∮
C
〈α(X)|∇∇∇XXX |α(XXX)〉dXXX =

∮
C

∇∇∇Xϕ(XXX)dXXX ,

where we used the fact that 〈α(X)|∇∇∇XXX |α(XXX)〉= 0 because |α(XXX)〉
is a pure real basis. This is because that ∇∇∇XXX 〈α(X)|α(XXX)〉 = ∇∇∇XXX ·
1 = 0 hence 〈∇∇∇XXX α(X)|α(XXX)〉+〈α(X)|∇∇∇XXX α(XXX)〉= 0. Also note that
〈∇∇∇XXX α(X)|α(XXX)〉 = 〈α(X)|∇∇∇XXX α(XXX)〉∗, hence leading to the results
that 〈α(X)|∇∇∇XXX |α(XXX)〉= 0 if it is pure real.

With Eq. 20, one can numerically evaluate the Berry phase by
line integral of ∇∇∇Xϕ(XXX)dXXX . Choosing a particular path of en-
criclement that centered at (R0,θ0), with a radius ρ and encir-
clement angle φ depicted in Fig. 1c, such that

R = R0−ρ cosφ ; θ = θ0 +ρ sinφ . (21)

The Berry phase along this encircled path is27

γα (C;XXX) =
∮

C
∇∇∇Xϕ(XXX)dXXX =

∮
C

dϕ(XXX) = ϕ(φ)|2π
0 = π, (22)

suggesting that there is an additional π phase shift and can be
calculated from the difference of the diabatic-adiabatic transfor-
mation angle ϕ(XXX) (see Eq. 18) at the beginning and at the end
of the closed path.27,33

Figure 1a presents the schematic illustration of the LiF
molecule couple to the cavity, with θ as the angle between the
polarization direction of the cavity photon mode and the direc-
tion of the molecular dipole moment.

Figure 1b presents the polariton potential energy surface (PES)
Eα (XXX) obtained from diagonalizing the matrix of Ĥpl in Eq. 15,
with ten Fock state employed to achieve convergence. As one can
see, the polaritonic surfaces give rise to a conical intersection (CI)
at R ≈ 5 a.u. and cos θ = 0(θ = π/2). This type of conical inter-
section is referred to as the Polariton Induced Conical Intersection
(PICI), arising due to the rotational DOF of the diatomic molecule
coupled to the radiation field.

Figure 1c presents three different enclosing path in the nu-
clear configuration space XXX = {R,θ}, where only one path (red)
is looped around the PICI. Figure 1d presents the value of the
mixing angle ϕ(φ) (Eq. 18) at a particular value of the encir-
clement angle φ along the path presented in Figure 1c with the
same color-coding. The Berry phase along a path is expressed as
γα (C;R,θ) =

∫ 2π

0 ∇∇∇Xϕ(XXX)dXXX = ϕ(2π)−ϕ(0), as a function of the
encirclement angle φ . As shown in Figure 1d, following a full cir-
cle around the PICI (red), the initial and final ϕ(R,θ) is changed
by π. On the other hand, when the path does not encircle around
the PICI, the difference between the initial and final ϕ(R,θ) is
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Fig. 1 (a) The angle between the polarization direction of the cavity
photon mode and the direction of the molecular dipole moment. (b)
The polaritonic potential energy surface (|−,0〉 and |+,0〉) as a function
of the dissociation coordinate (R) and the angular coordinate (θ) for a
cavity coupling λ = 0.04

√
2/h̄ωc (κ = 0.04 a.u.). (c) The contours used

in the Berry phase calculations. (d) The transformation angle ϕ (Eq. 18)
as a function of the encirclement angle φ .

zero. In the former case, the polariton wavefunctions are double
valued, whereas in the latter case, the polariton wavefunctions
are single valued.

Further analysis is performed by artificially removing the Berry
phase using the approach described in Ref. 71. This approach,
which is referred to as the non-BP model71, eliminates the berry
phase by using the absolute value of the coupling |〈g,1|Ĥpl|e,0〉|
instead of its original expression 〈g,1|Ĥpl|e,0〉 inside the mixing
angle ϕ (see Eq. 18). Using this approach, one can remove the
presence of the Berry phase, without changing the original adia-
batic potential. This approach also explicitly propagates the dy-
namics along the rotational DOF governed by L̂θ , as opposed to
simply ignoring it (such as in the case of the 1D model62). This
novel non-BP approach thus provides a theoretically rigorous way
to demonstrate the genuine and intrinsic effects of the CI.71 Here,
we adapt this novel theoretical approach to investigate the intrin-
sic effects of cavity-induced GP.

In Fig. 1c, we consider the encirclement path (red circle), and
the transformation angle ϕ(φ) for the full PF Hamiltonian and the
non-BP model are provided in Fig. 1d. As one can clear see, when
the Berry phase is removed in the non-BP model (magenta curve
in Fig. 1d) the difference between the initial and final γ(R,θ) is
zero. Consequently, the corresponding polariton wavefunctions
in Eqs. 16-17 remain single-valued. Therefore, the CI created by
the quantized cavity filed gives rise to a Berry phase with a π

phase shift (red curve in Fig. 1d), similar to the Berry phase of
the CI in molecules27 and the CI created by the classical laser
field in the Floquet picture.33,71,95 We emphasize that the PICI is
mathematically isomorphic to the molecular CI or LICI. However,
the novelty of the PICI lies in the new concept of using molecular
cavity QED (under the low number of photon regime) to engi-
neer artificial CIs in molecule-cavity hybrid systems, as opposed
to shining intense lasers in the case of LICI. On the other hand,

we do acknowledge that the presence of the PICI discussed in
the work (as well as in previous work61,62) is based upon the
long-wavelength approximation (or the electric-dipole approxi-
mation). While the neglected terms in the multi-polar expansion
of the multipolar gauge Hamiltonian may be small, they might
break the strict degeneracy. Beyond long-wavelength approxima-
tion, the light-matter interaction term iωcµ̂µµ ·A0(â†− â) (the third
term in Eq. 6) is expressed as96 − 1

ε0

∫
dr3P⊥(r) ·D⊥(r), where

D⊥(r) = ε0E⊥+P⊥ is the transverse displacement field and the
P⊥(r) is the transverse component of the polarization field of the
molecular system. Future investigations will explore the possibili-
ties of finding a certain θ , such that

∫
dr3P⊥(r) ·D⊥(r) = 0, giving

rise to a conical intersection even beyond the long-wavelength
approximation. On the other hand, the proposed photofragment
angular distribution measurements in this work (see Fig. 5 and
Fig. 8) can be a useful measure to determine whether the CI ex-
ists in the realistic experimental setup.

2.4 Computational Details

To solve the time-dependent Schrödinger equation of the
molecule-cavity hybrid system, the dynamics is propagated with
the numerically exact method based on the discrete variable rep-
resentation (DVR) approach.10,82 The angular coordinate is rep-
resented by the Legendre polynomial82 Pm

j (cosθ) with m = 0 and
j = 0,1, . . . ,Nθ − 1, where the number of the basis function Nθ

equals 101. The dissociation coordinate of LiF, on the other hand,
is represented by the sin-DVR82 with number of basis function NR

equals 1170 for the range of 1.8 ≤ R ≤ 60 (a.u.). The electronic
and photonic DOFs are represented by using the diabatic-Fock ba-
sis, {|I〉⊗|n〉, |C〉⊗|n〉}, with |n〉 as the Fock states of the radiation
mode. The equation of motions are solved using the fourth-order
Runge-Kutta integrator and the time step ∆t = 0.005 fs. All the
simulations are carried out by employing the Pauli-Fierz Hamilto-
nian.

The initial wavefunctions are prepared as the product of the
ground vibrational state |ν〉 of the LiF located around R ≈ 3 a.u.
on the |I〉 electronic state (ground electronic states), with either
J = 0 or J = 1 quantum number for the rotational DOF. The wave-
function with J = 0 is symmetric, while the wavefunction with
j = 1 is asymmetric with respect to θ = π/2 (see Figure 3 a,c).
The initial wavefunction is then placed either in the |I,1〉 state
or the |C,0〉 surface for the subsequent propagation. When the
wavepacket is placed in the |I,1〉 surface, we apply a shift of the
wavefunction along the dissociation coordinate by 0.8 a.u. The
wavefunction is centered at R≈ 2.2 a.u. instead of 3.0 a.u. along
the dissociation coordinate. This value is chosen to overcome an
initial barrier in the |I,1〉 surface to facilitate the dynamical evo-
lution of the hybrid system.

To analyze the effect of the Berry phase on the calculated quan-
tities, we compare the results obtained from the 2D model with
two other models where the effect of the CI is theoretically elimi-
nated. The first model is referred to as the one-dimensional (1D)
model,34 in which the angular momentum operator is set to be
zero (L̂θ = 0 in Eq. 11). As a consequence, there is no dynami-
cal evolution along the angular coordinate and θ is treated as a
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parameter in the potential. The second model is referred to as
the non-BP model, where the Berry phase is artificially removed
by replacing λ̂λλ · µ̂µµ by its absolute value.71 As a consequence, the
originally double-valued polariton wavefunction is forced to be
single-valued.71

3 Results and Discussion
Fig. 2 presents the potential energy surface (PES) of the LiF model
system, as well as the polariton quantum dynamics without con-
sidering the rotational DOF (by setting L̂2

θ
= 0 in Eq. 11). Fig. 2a

presents the diabatic potentials energy surface Vα (R) of the |I〉
state (red) and |C〉 state (blue) in a LiF molecule, respectively.
The crossing of these two diabatic curves occur at R = R0 ≈ 13.5
a.u., forming an avoided crossing between the adiabatic states |g〉
and |e〉 (not shown here). The diabatic coupling is VIC(R) (gold
line). Fig. 2e-f presents the exact polariton quantum dynamics of
the model system (e) with dipole self energy (solid lines) and (f)
without dipole self energy (DSE) term. The DSE is the last term
in Eq. 9 in the PF Hamiltonian. Ignoring DSE gives incorrect po-
lariton surfaces and also incorrect polariton quantum dynamics,
hence, leading to incorrect polariton quantum dynamics, such as
missing the |G,0〉 population.
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Fig. 2 (a) The diabatic potential energy surface of the LiF as a function of
the dissociataion coordinate (R). (b) The LiF permanent and transition
dipole moment in the diabatic and adiabatic representation. (c) The
polaritonic potential energy surface with dipole self energy (DSE) term
and (d) without DSE term for a cavity coupling λ = 0.02

√
2/h̄ωc. (e)

The time evolution of the polaritonic state population with DSE term
and (f) without DSE term.

Fig. 2b presents the matrix elements of µ̂µµ in both the diabatic
(solid lines) and the adiabatic (dashed lines) representations. The
ionic permanent dipole (solid red) µµµ I(R) increases linearly with
R, while the covalent permanent dipole (solid blue) µµµC(R)≈ 0, as

one expects. The adiabatic states switch their characters around
R0, as a result, the adiabatic permanent dipole switches in that
region, and µeg(R) peaks at R0 as the two diabatic states cou-
ple strongly around R0. Fig. 2c-d presents the polariton potential
energy surface Eα (R) defined in Eq. 15, (c) with the dipole self-
energy (DSE) 1

2 (λ̂λλ · µ̂µµ)
2 term (see Eq. 9) and (d) without consid-

ering DSE. Note that even though we label these polariton states
with a “photon number" (such as |±,0〉), they are the eigenstate
of Ĥpl. Here, a strong light-matter coupling (λ = 0.04

√
2/h̄ωc) is

used and the frequency of the cavity photon mode is 3.995 eV.

Unlike a previous work on LiF couple to the quantized cavity
field62, we explicitly account for the dipole self-energy to com-
pute the full Hamiltonian for the LiF in an optical cavity. We
find that under a moderate and a strong light-matter coupling λ ,
excluding the DSE results in an incorrect potential energy sur-
face. As we can clearly see, without the DSE, the ground state
is no-longer bonded and becomes dissociative at a large nuclear
distance.67,68,97
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the encirclement (t = 0 fs) and right: after the encirclement (t = 134 fs)
for the initial rotational quantum number J = 0 (a,b) and J = 1 (c,d).

Fig. 3 presents the nuclear probability density (NPD) of the
|−,0〉 state before and after the encirclement around the PICI
with the full 2D model that explicitly consider the rotational DOF.
The initial rotational wavefunction is chosen as (a)-(b) J = 0 and
(c)-(d) J = 1. The initial excitation places the wavepacket on the
lower polariton surface |−,0〉, and the polariton dynamical evolve
predominately on the same surface (through adiabatic dynamical
evolution). One notices that both J = 0 and J = 1 rovibrational
wavefunctions alter their symmetries with respect to θ = π/2 after
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encircling around the CI. For J = 0 (Fig. 3a-b), the initial polari-
ton wavefunction is symmetric with respect to θ = π/2 before the
encirclement (Fig. 3a), and it becomes asymmetric after passing
around the CI (Fig. 3b). This is caused by a destructive inter-
ference at θ = π/2 due to the BF accumulation for the clock-wise
and counter clock-wise path, manifesting into a node in the NPD.
On the contrary, in the J = 1 case (Fig. 3c-d), the initial wave-
function is asymmetric with respect to θ = π/2 (Fig. 3c), and it
becomes symmetric after encircling around the CI (Fig. 3d). This
is caused by a constructive interference at θ = π/2. Note that a
similar feature of NPD has been discovered in the study of split-
ting one existing electronic CI into two through molecule-cavity
interactions.63
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Fig. 4 presents the NPD by theoretical eliminating the effects
of BP, using either the non-BP model in panel (a) and (c) or
the 1D model in panel (b) and (d). The former neglect the ef-
fect of the Berry phase, whereas the latter prevents the dynamics
along the angular coordinate. To illustrate how the character of
the Berry phase is manifested in the wavefunction dynamics, we
compare the NPD obtained from these two models with the NPD
obtained with the full 2D model in Fig. 3. Unlike the 2D model,
the symmetry of the initial wavefunction in the non-BP model do
not change after passing around the CI. In particular, the rovibra-
tional wavefunction with j = 0 remains symmetric after it passing
the CI (Fig. 4a) and the rovibrational wavefunction J = 1 stays
asymmetric with respect to θ = π/2 after encircling around the
CI (Fig. 4c). Similarly, in the 1D model (Fig. 4b and d),we no-
tice both rovibrational wavefunction with (b) J = 0 and (d) J = 1
have a zero amplitude at θ = π/2. In the 1D model, the angular
momentum operator is set to be zero, hence the dynamics along
the angular coordinate θ is not permitted. As a result, the rovibra-

tional wavefunction does not encircle around the CI. This explains
the absent of amplitudes at θ = π/2 for both J = 0 and J = 1 cases
in the 1D model, due to the fact that the angler DOF is treated
as a static parameter in the model. These results further corrobo-
rate that the NPD pattern observed in the 2D model in Fig. 3 is a
direct signature of the Berry phase due to the encirclement of the
wavefunction around the PICI.
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Fig. 5 The normalized photofragment angular distribution obtained from
(a) 2D model, (b) non-BP model, and (c) 1D model for the rovibrational
wavefunction j = 0 and j = 1.

To further interpret different interference patterns of the wave-
function after the encirclement around the CI in the 2D model
and the non-BP model, we adapt the Feynman path unwind-
ing approach of Althorpe and co-workers29,98 which can be di-
rectly applied to the system confined to the lower adiabatic sur-
face. Due to the presence of CI, there are inaccessible region
in the space, resulting in multiply connected space in the lan-
guage of topology. As a consequence, the paths around the CI
can be classified according to the number of loops around the
CI.98 All Feynman Paths can be group into two distinct classes,
one corresponds to all even number of loops and another with
all odd number of loops. The even loops (e) correspond to the
Feynman paths encircling clockwise around the CI, whereas the
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odd loops (o) correspond to the Feynman paths encircling coun-
terclockwise around the CI.29 Althorpe and co-workers demon-
strate that the effect of the geometric phase is to change the
relative sign between the even (e) and odd (o) loops on the
time evolution operator as K(XXX ,XXX0|t) = Ke(XXX ,XXX0|t)−Ko(XXX ,XXX0|t),
whereas without considering the geometric phase, the propaga-
tor is K̃(XXX ,XXX0|t) = Ke(XXX ,XXX0|t)+Ko(XXX ,XXX0|t), XXX0 denotes the initial
nuclear configuration and XXX refers to the nuclear configuration
at time t. The kernel operator propagates the initial wavefunc-
tion Ψ(XXX0,0) and gives29,98 Ψe(XXX , t) =

∫
dXXX0 Ke(XXX ,XXX0|t) Ψ(XXX0,0)

and Ψo(XXX , t) =
∫

dXXX0 Ko(XXX ,XXX0|t) Ψ(XXX0,0). The final wavefunction
after the encirclement can therefore be expressed as

Ψ(XXX , t) =
1√
2
[Ψe(XXX , t)−Ψo(XXX , t)] (23)

Ψ̃(XXX , t) =
1√
2
[Ψe(XXX , t)+Ψo(XXX , t)] (24)

where Ψ(XXX , t) and Ψ̃(XXX , t) are the wavefunctions obtained with
geometric phase and without geometric phase, respectively. Eqs.
(23) and (24) indicate that explicitly consider the geometric
phase alters the interference patterns. These patterns of the wave-
functions obtained from the Feynman path theory are consistent
with the NPD obtained from the 2D and non-BP models in Fig. 3
and Fig. 4, confirming that the difference between the NPD ob-
tained from the 2D model and the non-BP model is a consequence
of the Berry phase.

We further compute the photofragment angular distribution
(PAD) for the two rovibrational wavefunctions J = 0 and J = 1
from 2D, non-BP, and 1D models. The PAD is defined as34

P(θ) =
∫

∞

0
〈Ψg0(t)|Θ(R−RD)|Ψg0(t)〉dt, (25)

where Θ is the Heaviside step function, and RD = 19.0 a.u. is the
starting point of the dissociation, |Ψg0(t)〉= 〈g,0|Ψ(t)〉 is the time-
dependent polariton wavefunction projected on the |g,0〉 surface.
The PAD provides details about the direction in which the pho-
todissociation occurs. Figure 5 summarizes the results of the PAD
obtained from 2D, non-BP, and 1D models for J = 0 and J = 1.
This quantity has been experimentally measured in a recent work
of the light-induced conical intersection for a H+

2 molecule cou-
pled to an intense laser field.37

Fig. 5 presents the angle-resolved photo-dissociation probabil-
ity of the LiF occurs, where θ = 0 or θ = π represent directions
nearly parallel to the polarization axis of the cavity, and θ = π/2
represents a direction perpendicular to the polarization axis of the
cavity. The behavior of the PAD at the perpendicular orientation
θ = π/2 is different for each model. More specifically, in the 2D
model (Fig. 5a), we observe a local minimum at θ = π/2 for J = 0
(blue), and a local maximum for J = 1 (red). These results are
in contrast to those obtained from the non-BP model (Fig. 5b) in
which the Berry phase is absent. In the non-BP model, we observe
a local maximum for J = 0 (blue) and a local minimum (red) for
J = 1 at θ = π/2. Importantly, we find that there is a π phase-
shift at θ = π/2 between the PAD obtained from the 2D model
and non-BP models. This pattern at θ = π/2 is a consequence of

the Berry phase. On the other hand, in the 1D model (Fig. 5c),
both rovibrational wavefunctions with J = 0 and J = 1 exhibit a
local minimum at θ = π/2. This is because the dynamics along
the angular coordinate is not permitted in the 1D model. Notably,
the PAD obtained from the 2D, non-BP, and 1D models are consis-
tent with the results of NPD presented in Fig. 3-Fig. 4. The results
obtained above suggest that by comparing the PAD for J = 0 and
J = 1 molecular species in directions nearly perpendicular to the
polarization axis of the cavity photon mode, one can probe the
Berry phase of the PICI in diatomic molecules. This findings are
reminiscent of a previous work investigating H+

2 molecule37 or
D+

2 molecule coupled to an intense classical laser field.46
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Fig. 6 Population of the polaritonic states for the rovibrational wave-
function J = 0 (left panel) and J = 1 (right panel).

So far, we have discussed the wavefunction dynamics in the
lower polaritonic surface |−,0〉 and how the Berry phase mani-
fest into the polariton quantum dynamics. We further investigate
the polariton dynamics with an initial excitation onto the upper
polariton surface |+,0〉. Unlike the dynamics in the lower polari-
tonic surface where the region surrounding the CI is inaccessible,
when initially excited to the upper polaritonic surface, this re-
gion of space is now accessible due to the funnel-like shape of
the CI. Moreover, the polariton states near the CI become nearly
degenerated, causing a significant population transfer between
the the upper |+,0〉 and the lower |−,0〉 polariton state. From
Fig. 1b, one can predict that after a vertical excitation to the
upper polaritonic surface |+,0〉, the initial wavefunction evolves
from the Franck-Condon point toward the CI. During this time-
evolution, the wavepacket splits into several parts. One part of
the wavepacket passes through the CI to the lower polaritonic
surface |−,0〉. The other part of the wavepacket circles around
the CI and remains in the upper polaritonic surface, oscillating
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back and forth between the initial and final nuclear configura-
tions on the upper polaritonic surface. During these oscillations,
the wavepacket gradually passes through the CI to the lower po-
laritonic surface. Note that part of the wavefunction that moves to
the lower polaritonic surface is located to the left of the CI. This
part of the wavefunction in the lower polaritonic surface adds
more complexity to the wavefunction. This is because in addition
to the ability of the wavefunction to encircle around the CI in the
lower surface, it has enough energy to access point along the CI
and passes to the upper polaritonic surface. Because of the com-
plexity of the dynamics with an initial excitation on the upper
polaritonic surface, it is difficult to investigate the symmetry of
the wavefunction to analyze the Berry phase effect as explained
for the lower polaritonic surface. Alternatively, we analyze the
effect of the Berry phase using the time-dependent quantities.99

Fig. 6 presents the population dynamics of the upper |+,0〉 and
the lower |−,0〉 polariton states as well as the ground state |g,0〉
of the molecule-cavity hybrid system, obtained from the 2D model
(red), the non-BP model (gold), and 1D model (blue), with the
initial rotational quantum number J = 0 (left) and J = 1 (right).
In general, we observe that the results with the J = 0 and J = 1
are qualitatively similar. By comparing the polariton populations
obtained from the 2D model and the 1D model, we find that the
dynamics for both models are similar at an early time and then
deviating at a later time. This is not surprising because the 2D
model system does not significantly rotate during this early time
dynamical evolution (see Figure S1 in the ESI which presents the
degree of the alignment of the LiF as a function of time). After
this early time scale (≈ 25 fs), the rotation of the molecule plays
a significant role and the two models predicts different results.
In the 1D model, the polariton wavefunction was not propagated
along the angular coordinate θ to reach the CI region (where the
magnitude of the population transfer is the largest due to nearly
degenerated polariton energy gap), and therefore, the popula-
tion transfer from the upper to the lower polaritonic surface is
not as significant as the 2D model. This explains why the popu-
lation transfer magnitude from the upper polaritonic state in the
1D model is smaller than that in the 2D model.

On the other hand, by comparing the non-BP model with the
2D model, we find that the population transfer from the upper
polaritonic state is faster in the non-BP model than that in the 2D
model. A possible explanation for these results can be rationalize
from the diabatic picture and the symmetry along the angular
coordinate θ (the coupling coordinate)46,71 as follows. In the
2D model, the two surfaces |e,0〉 and |g,1〉 are coupled through
an odd function λλλ · µ̂µµ = λ µ̂ cosθ along the angular coordinate θ

(where the sign change occurs at θ = π/2). In the non-BP model,
the two surfaces are coupled by an even function |λλλ · µ̂µµ| along
the angular coordinate. This leads to a difference in the coupling
matrix elements between the |e,0〉 state and the |g,1〉 states with
a particular rotational quantum number.

Fig. 7 presents the total population of the |e,0〉 and |g,1〉 states
obtained from the 2D model (Fig. 7a) and non-BP (Fig. 7b)
model as well as the contributions from both the even and odd
states of the angular coordinate (Fig. 7c-d). We find that in the
2D model (Fig. 7a) and the initial rotational state J = 0, the even
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Fig. 7 The contribution of the even and odd rotational quantum number
in the population of the |e,0〉 and |g,1〉 obtained from the 2D (a) and non-
BP (b) models for the J = 0 initial rovibrational wavefunction. Solid lines
introduce the total population in |e,0〉 and |g,1〉 and dotted-lines represent
the contribution from the even and odd rotational quantum number.
The contribution of the even and odd rotational quantum number in the
population of the polaritonic state |−,0〉 in the 2D (c) and non-BP (d)
models.

rotational level in the |e,0〉 state is coupled with the odd rotational
level in the |g,1〉 surface. As a consequence, only those rotational
states with an odd J in |g,1〉 are populated, while the rotational
states with an even J are unimportant. On the other hand, in the
non-BP model (Fig. 7 b, the rotational state with an even J in the
|e,0〉 surface is coupled with other even states in the |g,1〉 sur-
face. As a result, only the even states in |g,1〉 are populated while
the odd states remains un-populated. The quantum dynamics re-
sults in Figure 7a-b agree well with these interpretation, showing
that in the 2D model (Fig. 7a), only the even-J rotational states
are populated in the |e,0〉 state (blue) and only the odd-J rota-
tional states (filled circles) are populated in the |g,1〉 state (red),
whereas in the non-BP model (Fig. 7b) only the the even-J rota-
tional states (open circles) are populated on both |e,0〉 and |g,1〉
state. The lower polariton state |−,0〉 (Fig. 7c-d), which are the
superposition states of |g,1〉 and |e,0〉, effectively averaging over
the transition of many rotational states, resulting in difference be-
tween the population transfer from the upper polaritonic state in
the 2D and non-BP model.

Fig. 8 presents the PAD (Eq. 25) obtained from the 2D model
(Fig. 8a), the non-BP model (Fig. 8b), and the 1D model (Fig. 8c)
with the initial rotational quantum number of J = 0 (blue) and
J = 1 (red). The results in the 2D model (Fig. 8a) show strong
oscillations for both J = 0 and J = 1 and are absent in the non-BP
(Fig. 8b) and the 1D model (Fig. 8c). When comparing the NPD
obtained from the three models before passing through the CI, we
find that these oscillations arise in the 2D model after passing the
CI. In addition, these patterns do not change during the transition
from |−,0〉 surface to |g,0〉 surface. The NPD for the the |−,0〉
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Fig. 8 The normalized photofragment angular distribution for the rovi-
brational wavefunction J = 0 and J = 1.(a) 2D model. (b) non-BP model.
(c) 1D model.

and |g,0〉 states obtained from the 2D, non-BP, and 1D models for
rotation quantum number J = 0 and J = 1 are shown in Figure S2
in the ESI.

To clearly understand the origin of these oscillations in the PAD
from the 2D model, we analyze the contribution of the even and
the odd quantum number of the angular coordinate in the total
population of the |−,0〉 state and the results are presented in Fig-
ure 7c-d. Figure 7c demonstrates that in the 2D model, the pop-
ulation of the |−,0〉 has contributions from both even and odd
quantum state. This is expected to give rise to both a destruc-
tive and a constructive interference between the odd and even
rotational wavefunctions, resulting in a strong oscillation in the
PAD in the 2D model. On the other hand, Fig 7d demonstrates
that the population of the |−,0〉 in the non-BP model only has
contribution from the even-J rotational state. Thus, the interfer-
ence happens only between even-J rotational wavefunctions with
the same symmetry. This explains why the oscillations are ab-
sent in the non-BP model. Our results, therefore, demonstrate
that the strong oscillation obtained from the 2D model in the PAD
are a consequence of the symmetry of the light-matter coupling

Hamiltonian λλλ · µ̂µµ = λ µ̂ cosθ , which also give rise to the BP phase
effects.

4 Conclusions
We investigate the impact of the Berry phase introduced by the
polariton induced conical intersection (PICIs) by coupling a di-
atomic molecule (LiF) with the quantized radiation field inside
an optical cavity. The Pauli-Fierz Hamiltonian is employed to de-
scribe the quantized light-matter interactions. We compare the
results obtained from the Pauli-Fierz Hamiltonian with other arti-
ficial models where the Berry phase is removed or the wavefunc-
tion is not allowed to encircle around the PICI. We find that when
the initial wavefunction is placed in the lower polaritonic sur-
face, the Berry phase causes a sign change in the polariton wave-
function symmetry along the angular coordinate, resulting in a
change of the interference after encircling the PICI. Our results
reveal that the Berry phase causes a π phase shift, akin to those
obtained from the naturally existing CI in molecules. In addition,
we analyze the Berry phase after excitation to the upper polari-
tonic surface. Our results reveal that the Berry phase strongly
influences the coupling between polaritonic states and therefore,
the population transfer between them. Further, we find that the
symmetry of the light-matter coupling term is the main source for
the observed oscillations in the photo-fragment angular distribu-
tion for LiF. The PICI created from the quantized radiation field
exhibits a non-trivial geometric phase, opening up new possible
direction to manipulate photochemical reactivities of molecules
with optical cavities.
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74 M. Göppert-Mayer, Ann. Phys. (Berlin), 2009, 18, 466–479.
75 J. Flick, M. Ruggenthaler, H. Appel and A. Rubio, Proc. Natl.

Acad. Sci. U. S. A., 2017, 114, 3026–3034.
76 V. Rokaj, D. M. Welakuh, M. Ruggenthaler and A. Rubio, J.

Phys. B: At. Mol. Opt. Phys., 2018, 51, 034005.
77 C. Schäfer, M. Ruggenthaler and A. Rubio, Phys. Rev. A, 2018,

98, 043801.
78 A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta

and F. Nori, Nat. Rev. Phys., 2019, 1, 19–40.
79 O. D. Stefano, A. Settineri, V. Macri, L. Garziano, R. Stassi,

S. Savasta and F. Nori, Nature Phys., 2019, 15, 803–808.
80 D. D. Bernardis, P. Pilar, T. Jaako, S. D. Liberato and P. Rabl,

Phys. Rev. A, 2018, 98, 053819.

81 T. J. Giese and D. M. York, J. Chem. Phys., 2004, 120, 7939–
7948.

82 M. H. Beck, A. Jäckle, G. Worth and H.-D. Meyer, Physics Re-
ports, 2000, 324, 1–105.

83 R. S. Mulliken, J. Am. Chem. Soc., 1952, 74, 811–824.
84 R. J. Cave and M. D. Newton, Chem. Phys. Lett., 1996, 249,

15 – 19.
85 R. J. Cave and M. D. Newton, J. Chem. Phys., 1997, 106,

9213–9226.
86 N. S. Hush, John Wiley & Sons, Inc.: Hoboken, U.S.A., 2007.
87 L. Qiu, A. Mandal, O. Morshed, M. T. Meidenbauer, W. Girten,

P. Huo, A. N. Vamivakas and T. D. Krauss, J. Phys. Chem. Lett.,
2021, 10, jz–2021–01104x.R1.

88 J. Torres-Sánchez and J. Feist, J. Chem. Phys., 2021, 154,
014303.

89 D. G. Baranov, B. Munkhbat, E. Zhukova, A. Bisht, A. Canales,
B. Rousseaux, G. Johansson, T. J. Antosiewicz and T. Shegai,
Nature Comm., 2020, 11, 2715.

90 C. Wittig, Phys. Chem. Chem. Phys., 2012, 14, 6409–6432.
91 C. Xie, B. K. Kendrick, D. R. Yarkony and H. Guo, J. Chem.

Theory Comput., 2017, 13, 1902–1910.
92 C. Xie, D. R. Yarkony and H. Guo, Phys. Rev. A, 2017, 95,

022104.
93 M. Kowalewski, K. Bennett and S. Mukamel, J. Chem. Phys.,

2016, 144, 054309.
94 J. W. Zwanziger, M. Koenig and A. Pines, Annu. Rev. Phys.

Chem., 1990, 41, 601–646.
95 G. J. Halász, P. Badankó and A. Vibók, Mol. Phys., 2018, 116,

2652–2659.
96 T. E. Li, A. Nitzan and J. E. Subotnik, J. Chem. Phys., 2020,

152, 234107.
97 C. Schäfer, M. Ruggenthaler and A. Rubio, Phys. Rev. A, 2018,

98, 043801.
98 S. C. Althorpe, T. Stecher and F. Bouakline, J. Chem. Phys.,

2008, 129, 214117.
99 L. J.-Doriol, I. G. Ryabinkin and A. F. Izmaylov, J. Chem. Phys.,

2013, 139, 234103.

12 | 1–12Journal Name, [year], [vol.],

Page 12 of 12Physical Chemistry Chemical Physics


