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Dimensional interpolation for metallic hydrogen

Kumar J. B. Ghosh,a Sabre Kais,b and Dudley R. Herschbachc†

We employ a simple and mostly accurate dimensional interpolation formula using dimensional
limits D = 1 and D = ∞ to obtain D = 3 ground-state energy of metallic hydrogen. We also
present results describing the phase transitions for different symmetries of three-dimensional
structure lattices. The interpolation formula not only predicts fairly accurate energies but
also predicts a correct functional form of the energy as a function of the lattice parameters.
That allows us to calculate different physical quantities such as the bulk modulus, Debye
temperature, and critical transition temperature, from the gradient and the curvature of the
energy curve as a function of the lattice parameters. These theoretical calculations suggest
that metallic hydrogen is a likely candidate for high temperature superconductivity. The
dimensional interpolation formula is robust and might be useful to obtain the energies of
complex many-body systems.
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1 Introduction
In 1935, Eugene Wigner and H.B. Huntington predicted the
metallization of hydrogen1, a phase of hydrogen that be-
haves like an electrical conductor. Ever since this has been
a major quest for condensed matter physics. In pursuing
metallic hydrogen (MH), we have admired many papers,
but cite a few dealing with extreme high-pressure exper-
iments2–7. Moreover, MH is a candidate for phase transi-
tions from superconductivity to superfluidity and vice versa
under the influence of a magnetic field8–10.

Dimensional scaling offers simple solutions for D= 1 and
D→ ∞ limits, then often interpolates to obtain useful re-
sults for D = 3, with accuracy adequate for many areas of
chemical physics11–21. Already, the D→∞ limit for MH was
treated in 1992 by John Loeser22. He employed a Hartree-
Fock Hamiltonian that localizes the electrons in a lattice
of hydrogen atoms with clamped nuclei for rigid three-
dimensional simple cubic (SC), body-centered (BCC), face-
centered (FCC) cubic proton-lattices. We shall tune up the
D→ ∞ limit and develop the D = 1 limit for MH and in-
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terpolate to obtain D = 3. Recently, we used dimensional
interpolation to apply ground-state energies for two, three,
and four electron atoms and for ground-state H2 molecule
over a wide range of the internuclear distance R. The re-
sults compare well with the standard exact energies ob-
tained from the Full Configuration Interaction23.

Here we investigate the phase transition for metal-
lic hydrogen using dimensional scaling with the three-
dimensional proton lattices: SC, BCC, and FCC. Section
2 describes an interpolation formula for extended systems.
Sections 3 and 4 develop a one-electron Hamiltonian for
quantum theory of MH in SC, BCC, and FCC lattice with
D→ ∞ and D = 1 respectively. Section 5 implements the
dimensional interpolation to obtain D = 3, observes MH
and its phase transition. Section 6 uses extrapolation and
curve fitting to obtain a functional form of the ground state
energy of MH in SC, BCC, FCC lattice as a function of the
lattice parameter, R, and investigate the physical properties
like bulk modulus, Debye temperature, melting curve, and
superconductivity. Section 7 has some prospects.

2 Dimensional interpolation formula for ex-
tended systems

For dimensional scaling of atoms and molecules the energy
erupts to infinity as D→ 1 and vanishes as D→ ∞. Hence,
we adopt scaled units (with hartree atomic units) whereby

Journal Name, [year], [vol.], 1–10 | 1

Page 1 of 10 Physical Chemistry Chemical Physics



ED = (Z/β )2
εD and β = 1

2 (D−1), so the reduced energy
εD remains finite in both limits. When expressed in a 1/Z
perturbation expansion, the reduced energy is given by

εD =−1+ ε
(1)
D λ + ε

(2)
D λ

2 + ... (1)

with λ = 1/Z, where Z is the total nuclear charge of the
corresponding atom.

The interpolation for atoms, developed in Ref.20,
weights the dimensional limits by δ = 1/D, providing δε1

and (1−δ )ε∞ in a simple analytic formula

εD = δε1 +(1−δ )ε∞ +
[
ε
(1)
D −δε

(1)
1 − (1−δ )ε

(1)
∞

]
λ . (2)

For a diatomic molecule, a different scaling scheme is
used and illustrated. The rescaling of distances is:

R→ δR′ for D→ 1; R→ (1−δ )R′ for D→ ∞. (3)

An approximation for D = 3 (where R = R′) emerges:

ε3
(
R′
)
=

1
3

ε1

(
1
3

R′
)
+

2
3

ε∞

(
2
3

R′
)
, (4)

interpolating linearly between the dimensional limits24–27.

We keep the structure of the formula same as above for
extended systems like metallic hydrogen. We assume the
cubic symmetry for the metallic hydrogen in the large D
limit and a linear chain of atoms in one dimension. The
rescaled distances in different dimension is given by:

In D = 1 : r→ r′/3 and R→ R′/3; (5a)

In D→ ∞ : ρ → 2ρ
′/3 and R→ 2R′/3 . (5b)

The coordinates r and ρ are the electronic coordinates,
and the parameter R is the spacing between the atomic nu-
clei (or lattice parameters) in D = 1 and D = ∞ respectively.

3 Metallic hydrogen at the large-D-limit

With appropriate scaling, energies will be in units of 4/(D−
1)2 hartrees, and distances in units of D(D−1)/6 bohr radii.
Loeser applied with simplifications the Hartree-Fock one-
electron Hamiltonian in the D→ ∞ limit in a lattice of hy-
drogen atoms with clamped nuclei22:

H =
9

8ρ2 −
3

2ρ
+W (ρ,R), (6)

where

W (ρ,R) =
3
4 ∑

l,m,n
∈L ′

1√
σ2R2

− 2√
σ2R2 +ρ2

+
1√

σ2R2 +2ρ2
,

(7)
with

σ
2 = l2 +m2 +n2, (8)

for some set of integer triples l,m,n. In particular, the set of
all integer triples gives the SC lattice, the set with l,m,n all
even or all odd gives the BCC lattice, and the set with even
l +m+n gives the FCC lattice.

For any specified lattice type and scaled lattice constant
R, the minimum of Eq. (6) with respect to ρ gives the en-
ergy per electron. The whole lattice is three-dimensional,
noted L ′ minus the one site (0,0,0). The single variable ρ

is the orbit radius and R is the lattice spacing. The quantity
(ρ/R) is used to characterize the different density regimes.

We began with the simple cubic lattice. In Hartree-Fock
approximation of MH the triple sum W (ρ,R) is a kind of
Madelung sum. Loeser evaluated W (ρ,R) for the two lim-
iting cases. For, the low-density regime (ρ � R), the sums
over integers are taken from the tables of Born and Misra28

and the Hamiltonian of Eq. (6) becomes:

lim
ρ�R

H =
9

8ρ2 −
3

2ρ
+3.89157

(
3ρ4

2R5

)
. (9)

For the high-density regime (ρ � R), the sum can be re-
placed by an integral and the Hamiltonian of Eq. (6) be-
comes:

lim
ρ�R

H =
9

8ρ2 −
3

2ρ
+2.17759

(
3ρ2

2R3

)
. (10)

For the criticality of the metallic hydrogen, we have to
find the critical density for which the above Hamiltonian
(6) attends the minimum. For calculation-convenience
we fix the parameter R = 1 and the lattice size to be
(400× 400× 400). Although ideally the number lattice
points should be infinitely large, but for calculation our lat-
tice size is sufficient to observe the critical phenomenon.
We calculate numerically and display in Fig.1(a) of the
above Hamiltonian for a wide range of ρ, from 0.01 to
65, i.e. the density (ρ/R) ranges from 0.01 to 65. From
Fig. 1(b), we find that, for R = 1, at density ρ/R = 0.799
Hamiltonian (6) attends the minimum.
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(a)

(b)

Fig. 1 At the top panel 1(a), we plot the electronic energy per
atom H(ρ,R), for MH in SC lattice, as a function of ln(ρ) keeping
the parameter R = 1. We also plot the energy for ρ � R obtained
from Eq.(10) in red, and the energy for ρ � R obtained from Eq.
(9) in green. At the bottom 1(b), we plot the energy for each atom
H (ρ) as a function of ρ for R = 1.0,1.5 and 1.28 respectively.

Then, we choose different values of R and calculate the
minimum of the Hamiltonian H (ρ?,R) by varying the pa-
rameter ρ for each R, which gives the electronic ground
state energy per atom.

At R = 1.28, we find ρ? = 0.932 at the minimum and
see in Fig. 2(a), the ground state energy becomes posi-
tive to negative around R = 1.28. Physically this means for
R < 1.28, the ground state energy becomes positive there-
fore makes the system is unstable. Therefore, at the point
R = 1.28 and ρ? = 0.932, the system goes through a phase
transition. This is an elemental model at D→ ∞ limit with
Hartree-Fock approximation and hydrogen atoms are in
a simple cubic lattice, but we observe the criticality and
find a critical density for the corresponding critical phe-
nomenon.

Remarkably, Loeser added to the Hartree-Fock approxi-
mation in the D→ ∞ limit by introducing inter-electronic

correlation22. That was essentially by opening the dihedral
angles in the simple cubic lattice22. As shown in Fig. 2(a),
the energy with correlation is nearly the same as without
the correlation. Further, in Fig. 2(b), we plot the differ-
ence between the correlation energy and the Hartree-Fock
energy.

(a)

(b)

Fig. 2 At the top panel 2(a), we plot the energy obtained at
D→ ∞ with inter-electronic correlation in blue, compared with the
HF energy as a function of R in green. At the bottom 2(b), the
difference between the correlation energy and the HF energy (Ecorr)
is plotted as a function of R.

We first choose the parameter R = 1 in the electronic
Hamiltonian per atom and calculate the energies with re-
spect to the variable ρ; see Fig 3(a). Like the SC case
we find a minimum for the Hamiltonian, which is ρBCC =

0.88 = ρFCC.
Again we calculate the minimum of the Hamiltonian

H (ρ?,R) for the different values of R by varying the pa-
rameter ρ, which gives the electronic ground state energy
per atom. From Fig. 3(b), we see that the ground state
energy becomes positive to negative around R = 1.15 for
both FCC and BCC lattices. Hence, the ground state energy

Journal Name, [year], [vol.], 1–10 | 3

Page 3 of 10 Physical Chemistry Chemical Physics



becomes positive so makes the lattice is unstable or the sys-
tem loses the crystalline structure. Therefore, around the
point RBCC = 1.15 = RFCC and the system goes through a
phase transition. Since the parameters (ρ,R) at the transi-
tion point are same for BCC and FCC lattices, this could be
coming from some symmetry working akin to their recip-
rocal spaces.

(a)

(b)

Fig. 3 At the top panel 3(a), we plot the energy per atom H(ρ,R),
for MH in BCC and FCC lattices, as a function of the parameter
ρ fixing R = 1 and 1.15 respectively. At the bottom 3(b), we plot
the ground state energy Hmin(ρ

?,R) as a function of R.

4 Metallic hydrogen in D = 1

A lonely, single hydrogen molecule in one-dimension is
described by I. R. Lapidus29,30. However, to investigate
the quantum theory of MH in one dimension, we need
to develop a long chain of N individual hydrogen atoms,
with the nuclei sitting on the lattice sites located at r =

0,R,2R, ...(N − 1)R. Hence one-electron Hamiltonian in
D = 1 using atomic units can be written as:

H =−1
2

∂ 2

∂ r2 −
N−1

∑
i=0

δ (r+ iR)

+electron-electron interaction part.

(11)

We choose the linear combination of atomic orbitals
(LCAO) representation and construct the state for each
electron in the metallic hydrogen chain in one dimension
as follows:

ψ(r) =
1

N
[φ0(r)+φ1(r)+φ2(r)+ ...] , (12)

with the of the normalization constant

N =

[
∑
i, j

e−|i− j|R (1+ |i− j|R)

]1/2

, (13)

and the individual normalized wave functions

φi(r) = e−|r+iR|.

The kinetic and potential energy part of the above Hamil-
tonian is calculated as:

EKE+PE =
〈
ψ(r)

∣∣− 1
2

∂ 2

∂ r2 −
N−1

∑
k=0

δ (r+ kR)
∣∣ψ(r)

〉

=
1

N 2

[
−1

2 ∑
i, j
(−1+ |i− j|R)e−|i− j|R−∑

i, j,k
e−|i−k|Re−| j−k|R

]
.

(14)

Unlike the nuclei, which are localized at single points,
the superpositioned electron-clouds are smeared around
the whole lattice. So, to calculate the inter-electronic re-
pulsion part we consider an electron density (or a nega-
tive charge density) over an infinitesimally small line el-
ement dr at a location r which interacts with another
electron density sitting over an infinitesimally small line
element dr′ at a location r′. The repulsion energy for
these two infinitesimally small electron clouds is given by
dEee = ψ(r)ψ(r)δ (r− r′)ψ(r′)ψ(r′) drdr′. Therefore, the
total electron-electron interaction part is given by:

Eee =
∫

∞

∞

∫
∞

∞

drdr′ ψ(r)ψ(r′)δ
(
r− r′

)
ψ(r)ψ(r′)

=
1

N 4

∫
∞

∞

dr ∑
i, j,k,l

φi(r)φ j(r)φk(r)φl(r)

=
1

N 4

∫
∞

∞

dr ∑
i, j,k,l

e−|r−ir|e−|r− jR|e−|r−kR|e−|r−lR|.

(15)
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We break the above expression (15) into many smaller
terms and calculate all them individually as follows:

∫
∞

∞

dr φ
4(r) =

1
2
,

∫
∞

∞

dr φ
2
i (r)φ

2
j (r) = e−2|i− j|R

(
1
2
+ |i− j|R

)
, for i 6= j,

∫
∞

∞

dr φi(r)φ 3
j (r) =

3
4

e−|i− j|R− 1
4

e−3|i− j|R, for i 6= j,

∫
∞

∞

dr φi(r)φ 2
j (r)φk(r)

=
1
2

e(k−i)R− 1
4

e(3k−i−2 j)R− 1
4

e(2 j+k−3i)R, for i > j > k,

∫
∞

∞

dr φi(r)φ 2
j (r)φk(r)

= e(i+k−2 j)R
[

3
4
+( j− i)R

]
− 1

4
e(3k−i−2 j)R, for j > i > k,

∫
∞

∞

dr φi(r)φ 2
j (r)φk(r)

= e(2 j−k−i)R
[

3
4
+(k− j)R

]
− 1

4
e(2 j+k−3i)R, for i > k > j,

∫
∞

∞

dr φi(r)φ j(r)φk(r)φl(r) = e(k+l−i− j)R [1+(k+ j)R]

− 1
4

e( j+k+l−3i)R− 1
4

e(3l−i− j−k)R, for i > k > j > l,

and we use the multinomial theorem:

(x1 + x2 + ...xm)
n = ∑

k1+k2+...km=n

n!
k1!k2!...km!

m

∏
t=1

(xt)
kt

to calculate the interaction part in equation (15).

We set the number of lattice points equal to i, j,k, l =
100 and calculate all the above quantities numerically and
obtain the final energy as a function of the inter-atomic
distance R.

Fig. 4 We plot the energy H1(R) for MH at D = 1 as a function
of R; blue curve is for SC lattice and green for FCC or BCC lattice.

For FCC or BCC lattices the calculations in D = 1 is
slightly different from SC lattice in one dimension. For e.g.
in case of BCC lattice in D = ∞ the Hamiltonian (6), the
lattice parameters l,m,n are either even or odd integers22.
We choose the same conversion for the calculation in one
dimension. In one dimension the FCC and BCC lattices are
the same.

For MH in D = 1 with inter-electronic correlation there is
no way to define dihedral angles between electrons. There-
fore, we keep the Hamiltonian same as defined in Eq. (11).
In Fig. 4, we plot the energy per electron as a function of
the inter-atomic distance R for simple cubic and FCC/BCC
lattices.

5 Metallic hydrogen in D = 3 from dimen-
sional interpolation

The dimensional interpolation formula described in section
2 combines the D = 1 and D = ∞ limits and obtains the
D = 3 reduced energy from

ε3 (R) =
1
3

ε1

(
1
3

R
)
+

2
3

ε∞

(
2
3

R
)
. (16)

In Fig. 5, we plot the electronic energies involved for the
metallic hydrogen in simple cubic lattice (SC). We compare
our interpolation E3(R) curve (blue) with points (red) that
come from density functional theory31 (there Table III).
The agreement is very good. As noted in Fig. 2, the inter-
electronic correlation examined in the D→ ∞ limit turns
quite minor. From Fig. 5 we see that the ground state en-
ergy at D= 3 becomes positive to negative around R= 1.14.
Physically this means for R < 1.14 the ground state energy
becomes positive therefore makes the lattice is unstable or
the system loses the crystalline structure. Therefore, at the
point R = 1.14, the system goes through a phase transition.
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Fig. 5 The orange and green curves describe the results from D= 1
and D→ ∞ respectively. The blue curve energy E3(R) represented
the interpolation result at D = 3 for MH, in the SC lattice. The
red points represent the results obtained from density functional
theory in31. The black line shows the zero-energy line, where the
blue curve goes through on R = 1.14 at a phase transition.

(a)

(b)

Fig. 6 The top panel 6(a) is for the BCC lattice, the bottom panel
6(b) for the FCC lattice. Compare results in Fig. 5 for the SC
lattice. Both of the blue curves meet the black line at zero-energy
on R = 1.14 at the same phase transition for all three lattices

Fig. 6 displays the MH energies from the BCC and FCC
lattices, similar to the SC lattice in Fig. 5, interpolating
to D = 3 from Eq.(16). The corresponding transition point
for BCC and FCC lattice, where the ground state energy
changes sign, is given by RFCC = 1.21 = RBCC.

6 Physical properties of Metallic hydrogen

The scaled lattice constant R is related to rs, the standard
solid state parameter defined as the radius of a sphere (in
a0 bohr units) in which contains on average one electron.
For the SC lattice,

4
3

πr3
s = R3. (17)

Thus, rs = 0.71 corresponds to the transition point R =

1.14, for the D→ ∞ limit. Many studies for D = 3 have
obtained rs = 0.8 for the existence of crystalline phase of
metallic hydrogen32. However, we have simply used R
when the interpolation formula provides appropriate en-
ergies of metallic hydrogen for different lattice symmetries
and parameters.

In this section, we are allowed to calculate different
physical quantities such as the bulk modulus, Debye tem-
perature, and critical transition temperature, from the gra-
dient and the curvature of the energy curve as a function of
the lattice parameters. Thus, the numerical results of the
interpolation formula can be fitted to the following func-
tional form as a function of the lattice parameter R33,34,
driven in a following table and Fig. 7.

E (R) =
A
R2 +

B
R
+C−D ln(R), (18)

with the parameters given in the following table 1 :

Table 1 Parameters describing E (R) in different lattice structures

Lattice A B C D
SC in

HF limit 1.3236 -0.0975 -0.9650 -0.2311

SC with
correlation a 1.3458 -0.1689 -0.9457 -0.2264

BCC 0.7889 0.7273 -1.1974 -0.3397

FCC 1.1628 -0.1070 -0.7329 -0.1265

a See Fig. 2 has added SC with inter-electronic
correlation. Others with Hartree-Fock (HF).
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Fig. 7 The simple formula, Eq. (18), fits neatly the energies of
MH in Table 1: SC with HF (in blue) and with correlation (in red);
BCC (in orange), and FCC (in green) lattice structures respectively.

We also calculate the Emin and Rmin from Eq. (18) and in
Table 2 compare them for the lattice structures:

Table 2 Emin and Rmim in different lattice structures

Lattice structure Rmim Emin

SC in HF limit 3.18 -0.597
SC with correlation 3.09 -0.603

BCC 3.48 -0.499
FCC 3.88 -0.512

The minimum energies of the MH lattices are evident
in Fig. 7 and the energy differences are ∆FCC−SC = 0.091,
∆BCC−SC = 0.104, ∆FCC−BCC = 0.013 respectively. The en-
ergy differences between FCC and BCC are very modest
compared to SC. That may lead to possibility for a phase
transition from BCC to FCC structure or vice-versa.

Now we examine briefly consequential properties that
involve from the interpolated formula (Eq. 16) for MH
energy. First is pressure:

P =−dE

dV
=− η

3R2
dE

dR
, (19)

with η = number of atoms in a unit cell. And we see from
the graph that around R = 3.18, where E = Emin, the pres-
sure changes sign; the corresponding rs = 1.9. This tran-
sition has a physical significance. Although at high densi-
ties the crystalline phase is preferred for metallic hydrogen,
however at low densities (rs > 1.6) the metallic hydrogen
behaves like a fluid or liquid metal32,35,36. This particu-
lar point R = 3.18 and E = −0.597 possibly signifies that
crystalline-fluid transition point for MH in simple cubic lat-
tice.

Fig. 8 We plot the pressure P in Mbar for MH in SC (in blue),
BCC (in green), and FCC (in orange) lattices as a function of R.

From the curvature of the energy curves in Fig. 7, we can
calculate the elastic modulus of MH for different structures
as the bulk modulus B of a cubic metallic lattice is given by

B =−V
dP
dV

, (20)

with pressure, P, and volume of the unit cell V = R3. The
shear modulus G can be calculated from the same equa-
tion37. Another important quantity that is available from
the MH energy via pressure is the Debye temperature Θ;
the formula38,39 involves quite a few items:

Θ =
h
k

(
3NAρ

4πM

)1/3

vm, (21)

where h is the Planck constant, k is the Boltzmann constant,
NA is the Avogadro constant, M is the atomic weight, and ρ

is the density, and includes B, the bulk modulus as well G,
the shear modulus, and

vm =

[
1
3

(
2
v3

s
+

1
v3

p

)]−1/3

; vs =

√
G
ρ

; vp =

√
B+4G/3

ρ
.

(22)

Fig. 9 displays Debye temperature Θ (top) and melt-
ing temperature Tm (bottom) as functions of pressure for
MH lattices, SC, BCC, and FCC. As well known, MH will
climb to a very high Debye temperature, and could become
a quantum liquid. Melting curves of metallic hydrogen as
a function of pressure via the Lindemann melting law40,41.
Some samples: For SC lattice at R = 3.1, Θ = 57K, and at
R= 1.12 obtains Θ= 1779K at P= 118 Mbar. For BCC lattice
at R = 3.48, Θ = 52K, and at R = 1.21 obtains Θ = 1627K at
P= 147 Mbar. For FCC lattice at R= 3.88, Θ= 41K, whereas
at R = 1.21 obtains Θ = 2114K at P = 294 Mbar.
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(a)

(b)

Fig. 9 We plot the Debye temperatures Θ (top panel) and melting
points Tm (bottom panel) of MH in SC, BCC, and FCC lattice
structure with the correlation with respect to the pressure, P.

Finally, as many authors predicted that metallic hydro-
gen is a superconductor below some critical temperature
and others even argued that it might be a superconductor
up to a room temperature42,43. Following Koblischka, et
al44, we have used our MH energy curves via interpolation
from Eq. (16) and formulate the transition temperature Tc

for a MH superconductor:

Tc =
h2

(2x)22MLn−2/3πk
. (23)

Here again h is the Planck constant; k is the Boltzmann
constant; x is the atomic distance. A correction factor n is
usually taken to be 1 for metals, and ML is taken to be equal
to the mass of a proton mp.

In Fig. 10, we plot the possible values of transition tem-
perature Tc calculated from Eq. (23) as a function of pres-
sure for MH in SC, BCC, and FCC lattices, within a range
where the energy is negative and pressure is positive. For
the atomic distances, x = R for SC; x = (

√
3/2)R for BCC;

x = R/
√

2 for FCC. Samples: For SC lattice at R = 3.1,
Tc = 28K whereas for R= 1.12, Tc = 215K and P= 118 Mbar.
For BCC lattice at R = 3.48, Tc = 30K whereas at R = 1.21,
Tc = 246K, and P = 147 Mbar. For FCC lattice at R = 3.88,
Tc = 36K whereas for R= 1.21, Tc = 369K and P= 294 Mbar.

Fig. 10 We plot the transition temperature Tc as a function of
pressure, P.

Although the experimental verification of superconduc-
tivity in MH is yet to be confirmed, but from the above
theoretical calculations we see that the metallic hydrogen
is a very good candidate for a high temperature supercon-
ductor.

7 Conclusion
The simplicity of the D→∞ limit causes the disappearance
of derivatives from a Hamiltonian as well as h→ 0, so is
a true classical limit27. It is different from a semiclassi-
cal approximation such as WKB theory for small h. The
simplicity of the D = 1 limit keeps derivatives in a Hamil-
tonian and is a true hyperquantum limit. Combining these
extreme partner limits delivers the dimensional interpola-
tion formula. It was tried out with two-electron atoms20

and generalized out with few electron atoms and simple
diatomic molecules23. Here we find the interpolation ap-
proach is appropriate for metallic hydrogen. With begin-
ning by Loeser22, we find the interpolation not only pro-
vided adequate energies but also the correct function forms
of symmetry and lattice parameters. From the gradient and
the curvature of the energy curves as a function of the lat-
tice parameter R, we were able to calculate some important
physical quantities. Among are the bulk and shear moduli,
and three temperatures governed by pressure: the Debye
temperature, the Lindemann melting temperature, and the
critical transition temperature for superconductivity.

It is relatively easy to calculate the D→ ∞ and D = 1
limits, so the interpolation formula can predict results for
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the physical dimension, D = 3. Therefore, D−scaling might
approach the electronic structure of strongly correlated sys-
tems, where often traditional approaches are faced with
computational difficulties!
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