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Abstract

Nanostructures of transition metal di-chalcogenides (TMDC) exhibit exotic thermal, chemical and 

electronic properties, enabling diverse applications from thermoelectrics, catalysis to nanoelectronics. The 

thermal properties of these nanoscale TMDCs are of particular interest for thermoelectric applications. 

Thermal transport studies on nanotubes and nanoribbons remain intractable to first principles calculations 

whereas existing classical molecular models treat the two chalcogen layers in a monolayer with different 

atom types; this imposes serious limitations in studying multi-layered TMDCs and dynamical phenomena 

such as nucleation and growth. Here, we overcome these limitations using machine learning (ML) and 

introduce a bond order potential (BOP) trained against first principles training data to capture the structure, 

dynamics, and thermal transport properties of a model TMDC such as WSe2. The training is done using a 

hierarchical objective genetic algorithm workflow to accurately describe the energetics, as well as thermal 

and mechanical properties of a free-standing sheet. As a representative case study, we perform molecular 

dynamics simulations using the ML-BOP model to study structure and temperature-dependent thermal 

conductivity of WSe2 tubes and ribbons of different chiralities. We observe slightly higher thermal 

conductivities along the armchair direction than zigzag for WSe2 monolayers but opposite for nanotubes, 

especially of smaller diameters. We trace the origin of these differences to the anisotropy in thermal 

transport and the restricted momentum selection rules for phonon-phonon Umpklapp scattering. The 

developed ML-BOP model is of broad interest and will facilitate studies on nucleation and growth of low 
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dimensional WSe2 structures as well as their transport properties for thermoelectric and thermal 

management applications.
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Introduction

The exotic thermal, chemical and electronic properties of transition metal di-chalcogenide (TMDC) 

nanostructures make them promising for wide range of technological applications1, 2, including 

thermoelectrics, catalysis, and nanoelectronics. Among the TMDC monolayers, semiconducting WSe2 has 

received a lot of attention for thermoelectric applications owing to its ultra-low thermal conductivity 

rivaling that of electrically insulating glasses3, 4. Recent works3 indicate that intensive phonon localization 

in disordered WSe2 can result in extremely low cross-plane thermal conductivity (~ 0.04 – 0.08 Wm-1K-1) 

at room temperature. Shi and co-workers5 experimentally demonstrated that thermal conductivity of 

disordered WSe2 is six times lower than that of compacted single-crystal platelets. First-principles 

calculations suggest that the ultra-low thermal conductivity of WSe2 monolayers (calculated values are 0.3 

– 3.9 W/m.K depending on the sample size) can be attributed to the ultralow Debye frequency and high 

atomic masses of W and Se. Such low thermal conductivity of WSe2 combined with its direct bandgap 

semiconducting nature make it promising for thermoelectric applications.

The thermoelectric efficiency of a material to convert heat into electricity (and vice versa) is 

measured by a figure-of-merit ZT defined as ZT = σS2T/κ, where σ is electrical conductivity, S is Seebeck 

coefficient, κ is thermal conductivity and T is the absolute temperature6, 7. The thermal conductivity κ is the 

sum of phononic (κph) and electronic (κe) contributions. Enhancement of the performance of a 

thermoelectric device, similar to other devices, entails developing materials with set of properties that often 

conflict with each other. An atomic-level understanding of both electron and phonon transport in WSe2 

nanostructures is crucial to realize their full potential in thermoelectric applications.
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While electronic properties of WSe2 have received a lot of attention8-11, studies that focus on phonon 

transport through WSe2 nanostructures are relatively scarce. Similar to other TMDCs, WSe2 exhibits three 

acoustic phonon modes, namely, out-of-plane acoustic (ZA), transverse acoustic (TA) and longitudinal 

acoustic (LA) phonons12. A clear understanding of the relative contribution of each of these modes to overall 

thermal conductivity is vital for modulating heat transport in WSe2 nanostructures, but remains elusive for 

finite size samples such as nanoscale ribbons. One of the major challenges in attaining such fundamental 

knowledge is the high computational expense of first-principles calculations leading to limitations in 

accessible length (supercell size < 1000 atoms) and time scales (~ 100 ps)13-15. Although the phonon band 

structure calculations together with Landauer-type approach should suffice for understanding the 

contribution of acoustic modes in small periodic systems, such restrictions have made first-principles 

techniques impractical for modeling phonon transport in desirable nanostructure geometries, such as tubes, 

slightly disordered 2D sheets, and other low dimensional structures.

As aforementioned, ab initio MD calculations can provide higher accuracy, but they remain limited 

in the system sizes (∼ 100s of atoms) and time scales (∼ 100s of ps) that can be probed. Classical molecular 

dynamics (MD) using empirical interatomic potentials provide a viable alternative and can access the 

necessary length- and time- scales (tens of nanometers, tens of nanoseconds) needed to model thermal 

transport in TMDC nanostructures. These empirical potentials can also inherently capture the full 

anharmonicity in these systems16. Several previous works have reported success in employing equilibrium 

(EMD) and non-equilibrium (NEMD) molecular dynamic simulations to assess thermal conductivity of 

nanoscale structures. For instance, Cherukara et al. have studied the thermal conductivity of stanene in the 

arm-chair and zigzag directions using equilibrium molecular dynamics (EMD) simulations and linear 

response theory (Green–Kubo formalism). The thermal conductivity of stanene sheets was found to be 

substantially lower than other 2-D materials such as graphene owing to low phonon group velocities 

(softness) and high anharmonic response16. Likewise, NEMD simulations were performed by Hong et al.17 

to compute thermal conductivity (κ) of TMDCs such as monolayer MoSe2. They find that the thermal 

conductivity of the monolayer MoSe2 sheet is lower and about half that of the monolayer MoS2 sheet in 
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both armchair and zigzag directions. Classical MD is therefore a powerful technique to evaluate the thermal 

properties of a wide variety of 2-D materials.

The predictive power of classical MD calculations relies heavily on the quality of the empirical 

potentials describing the atomic interactions. Typically, these potentials are trained to reproduce 

experimental values (or accurate first-principles predictions) of various relevant material properties, 

including lattice parameters, cohesive energies, elastic constants, surface energies, and phonon dispersion 

relations16, 18-22. While there have been attempts to develop potential models for performing classical MD 

simulations of TMDCs, such models are often limited in their flexibility to model multi-layered and 

nanoscale TMDC structures. For instance, a reactive potential (ReaxFF) has been developed for MoS2 (a 

representative TMDC), which can accurately describe its thermodynamic and structural properties23. 

However, this model was not trained against phonon dispersions, restricting its suitability for studying 

thermal transport in MoS2 nanostructures. Furthermore, ReaxFF potentials are expensive compared to other 

empirical potentials such as Tersoff, Stillinger-Weber, etc; this makes it challenging to use ReaxFF for 

large-scale MD simulations necessary to assess thermal transport behavior of nanostructures. Recently, 

ReaxFF potential has been employed to investigate the thermal conduction in polycrystalline MoS2. 

However, it is important to note that the primary goal of this work was to evaluate the thermal contact 

conductance at grain boundaries24, which is relatively simpler than obtaining the intrinsic size-independent 

thermal conductivity of 2D sheets or 1D nanotubes. On the other hand, the available inexpensive models 

for TMDCs, such as Stillinger-Weber, are trained to reproduce phonon properties of MoSe2, MoS2 17, 25, 26, 

and WSe2 27. However, they treat the two layers of S/Se atoms in a monolayer with separate atom types; 

this is a major drawback, since these potentials are not suitable to investigate other dynamical behavior in 

TMDCs, such as their growth on substrates. Inspired by the success of classical MD simulations in 

modeling phonon transport, and the promise of WSe2 nanostructures for thermoelectric applications, we 

focus on developing an inexpensive machine learned bond order potential (ML-BOP) that can accurately 

describe the structure, thermodynamics, phonon-transport, mechanics, and growth dynamics of 

monolayers, multilayers, and nanostructures of WSe2. Note that although the focus of the current work is 
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on WSe2, the ML strategy described here can enable potential models for any TMDC that retain accuracy 

of first-principles calculations, while being four orders of magnitude cheaper computationally. 

Here, we use machine learning to train a bond order potential model that describes the complex 

potential energy surface of WSe2 as well as accurately captures its structural, elastic, and thermal transport 

properties. Bond order potential models possess a complex functional form (with tens of independent 

parameters); developing such models requires a systematic parameterization approach that can efficiently 

sample the high dimensional parameter space. To accomplish such sampling, we leverage supervised 

machine learning methods powered by a combination of global and local optimization methods. We employ 

genetic algorithms using hierarchical objectives for global optimization, and Simplex to search for local 

minima; this technique leads to an optimum set of independent set of bond order parameters for WSe2, 

without the need for human intuition or traditional heuristics. Our ML-BOP model is trained rigorously 

against an extensive first-principles based data set that includes lattice parameters, cohesive energies, 

equations of state, elastic properties and phonon dispersion. Using such a large-dataset enables ML-BOP 

to accurately capture the energetics, structure, mechanics, and thermal transport behavior of a wide range 

of WSe2 nanostructures containing varied atomic configurations. To demonstrate the capability of our 

newly developed ML-BOP model, we first perform NEMD to study thermal transport in WSe2 

nanostructures at different temperatures. The ML-BOP predicted thermal properties at room temperature 

are in good agreement with previous experiments and first-principles calculations, which underscores its 

predictive power. Furthermore, we investigate the structural stability and atomistic mechanisms of phonon 

transport in WSe2 nanosheets and nanostructures of WSe2.

Methods

Functional Form: Our ML-BOP model employs the Tersoff-Brenner formulation to describe the atomic 

interactions. In this formalism, the total potential energy V of the system consists of pairwise contributions 
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from repulsive fR(rij) and attractive fA(rij) interactions between each distinct atomic pair i-j at a distance rij 

from each other. V is written as:

 ,𝑉 =
1
2∑

𝑖
∑

𝑗 ≠ 𝑖𝑓𝑐(𝑟𝑖𝑗)[𝑓𝑅(𝑟𝑖𝑗) + 𝑏𝑖𝑗𝑓𝐴(𝑟𝑖𝑗)] (1)

where fc(rij) is the cut-off function that limits the range of interaction to nearest neighbors, and is given by: 

  ,𝑓𝐶(𝑟) = { 
            1 ,         𝑟 < 𝑅 ― 𝐷

1
2 ―

1
2sin (π(𝑟 ― 𝑅)

2𝐷 ) ,         𝑅 ― 𝐷 ≤ 𝑟 < 𝑅 + 𝐷
            0 ,         𝑟 ≥ 𝑅 + 𝐷

(2)

where R and D define the cut-off distance of the potential. The repulsive and attractive contributions to the 

bond energy of i-j pair decay exponentially with the separation distance rij, written as: 

fR (r)  Ae1r ,

fA (r)  Be2r ,

(3)

(4)

where A, B, 1, and 2 are related to the dimer strength and Pauling constant.29,30 The term bij in Equation 1 

describes the bond-order for a pair of atoms i-j, which describes the weakening of an i-j bond owing to the 

presence of the other bond i-k around atom i. This term explicitly accounts for angular interactions via 

Equations 5-7: 

The parameters , n, 3, , c, d, and h are adjustable, while m = 1 (can only be 1 or 3) defines the variants 
of the Tersoff potential in LAMMPS and is not optimized (kept constant). In all, we optimized 13 
independent parameters (γ, 3, c, d, h, n, , 2, B, R, D, 1, and A) for each pair of atom types.

bij  1  n ij
n 

1
2n , (5)

, ij  fc rik  gik ijk e
3

m rij rik m
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


ki, j
 (6)

g ijk    ijk 1 c2

d 2  c2

d 2  cosijk  h 2













 . (7)
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Training Data Set: The Tersoff functional form described above is used to describe the interactions 

between W-W, Se-Se, and W-Se. The potential parameters for W-W are obtained from Ref. 28, which is 

fitted to bulk W properties. However, the structure of bulk Se involves two major interaction distances, 

which the Tersoff function form, being a first neighbor only potential, can only model one of them. 

Therefore, instead of bulk Se structures, our Se-Se potential parameters are fitted to density functional 

theory (DFT) predicted energies of stable selenium clusters (see Fig. 1). These predicted energies are within 

1% of the target values. The cross-interaction parameters for W-Se are fitted to an ab-initio derived training 

set that included the equation of state, cohesive energy, lattice constants, and phonon dispersion of WSe2, 

calculated using DFT. All DFT calculations in the training set were performed using the Vienna ab-initio 

simulation package (VASP)34,35. The projector augmented-wave (PAW) atom potentials supplied with 

VASP were used, which included all d-electrons. We employed the Perdew-Burke-Ernzerof (PBE)36 

generalized gradient approximation (GGA) functional to treat the exchange-correlation. All calculations 

were performed on a single primitive cell of WSe2 using a 520-eV plane-wave cutoff. The Brillouin zone 

was sampled using a 24241 -centered Monkhorst-Pack grid. Atomic coordinates were relaxed using 

conjugate gradient minimization until the force components on each atom was smaller than 10-3 eV/Å. A 

vacuum of 20 Å was employed in the direction normal to the plane of the WSe2 sheet to avoid spurious 

interaction between periodic images. Phonon properties of WSe2 are calculated using a finite difference 

method as implemented in Phonopy package.37. To evaluate the dynamical matrix, we employ a 661 

supercell, and a 441 k point grid; prior to introducing atomic displacements, the monolayer structure is 

optimized until all the atomic forces are less than 10-4 eV/Å.

Besides the use of first principle training data, we also complement it by adding in temperature 

dependent stability as one of the fitting criteria. The idea is to run on-the-fly MD simulations during the 

fitting process to assess the stability of various structures at different target temperatures. This approach 

addresses the problem of overfitting to energy minimized configurations that commonly leads to well fitted 

energy predictions but a lack of stabilities in MD and also missing of temperature dependency for the 
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predicted properties. Using this approach, we obtain Se-Se potential parameters that correctly capture the 

dynamics and relative stabilities of small Se clusters. For example, the potential is able to model the cis-

trans isomerism of Se6 ring and the ring opening/closing of Se3. Furthermore, our W-Se potential parameters 

stabilizes a WSe2 monolayer at a wide range of temperatures without the need to use any angular constrains 

or multiple atom types for Se atoms in the top and bottom layers17, 25-27 (common fixes in other potentials).

Hierarchical Objective Genetic Algorithm Optimization: We evaluate the quality of the parameter set 

based on a hierarchical objective function (Fig. 2). In the HOGA evolutionary scheme, we truncate the 

evaluation of a parameter set which leads to large errors in hierarchal property classes and assign it a penalty 

depending on the class it fails at. The selection of hierarchical classes is at the discretion of the user. Our 

chosen hierarchy of the property classes for the WSe2 parameter optimization is listed in Table 2. The 

hierarchical approach accelerates the traditional evolutionary search by (i) more efficiently sampling the 

parameter landscape in a given generation, and (ii) overcomes the limitation of a single objective that relies 

on assigning arbitrary weights.

Given the objective function definition as described in Fig. 2, we apply a two-stage optimization 

technique to search for a suitable parameter set for WSe2 in the multi-dimensional parameter space. We use 

the genetic algorithm29 (GA) for global optimization and the Nelder-Mead Simplex algorithm30 for local 

optimization. Within the HOGA workflow, we initiate the global optimization process with ten initial 

population of Np random parameter sets. The objective value Δ(i) for each of these parameter sets is 

evaluated based on the hierarchical classes and their convergence is checked. If the convergence criteria 

are not met, genetic operations (selection, cross-over, mutation, etc.) are performed to arrive at a new list 

of Np parameter sets based on the old parameter sets having the lowest objective values. The selection 

operation creates a list of best parameter sets based on their objective values, which mimics the principle 

of “survival of the fittest” in evolution. The cross-over operation intermixes these parameter sets to generate 

new set of good candidates; this procedure is analogous to how good traits are passed from biological 

parents to their offspring. The mutation operation introduces sufficient diversity into the population thereby 
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avoiding pre-mature GA run convergence. This allows the population the opportunity to improve beyond 

those possible via inheriting traits from parent structures (crossover). We use the tournament selection 

without replacement as the selection operation, the simulated binary method as the crossover operation with 

an operation probability of 0.9, and a polynomial of order 20 for the mutation operation with an operation 

probability of 0.1. For each of the parameter set, the objective value is evaluated followed by test for 

convergence. This routine is iteratively performed until we converge to a decent set of parameters, which 

is then subject to local optimization.

We typically perform at least 20 GA runs simultaneously (up to a total of 100 runs) to effectively sample 

the objective landscape. Each GA run typically has a population size of 200 and run for about 100 

generations. The global optimization stage typically returns a list of decent parameter sets which we further 

refine using local optimization techniques. We use the Nelder-Mead Simplex algorithm30 for local 

optimization. Note that the Simplex algorithm requires only function evaluations, and does not require 

function derivatives to be evaluated during the optimization. For minimization, a simplex with (N + 1) 

vertices is constructed for a function with N variables. At each iteration, a vertex with the highest value is 

replaced with another point. During iterations, simplex contracts on to the final minimum given a good 

initial guess. The GA optimized parameter sets serve as the initial guess for Simplex. Owing to its 

simplicity, Simplex is widely popular for local optimization than some of the other methods that use 

derivatives such as Levenberg-Marquardt (L-M). Also, the combination of GA and Simplex has proven to 

be successful in our previous studies31 and hence was also utilized in the present study. In principle, one 

can use any combination of global optimization and local optimization to train classical potential models 

for MD simulations.

Machine learning workflow: In our workflow, minimization of the cost function is done via a series of 

regression akin to the least squares or linear regression informed from supervising learning (GA combined 

with Simplex). Genetic algorithm (GA) and Simplex are used to generate/select the candidates based on 

these regressions. The ML-training set is built from features extracted from DFT calculations, which 
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includes atomic coordinates (~3000 data points), energies (~29 data points), phonon dispersion curves 

(~460 data points), etc. These features (data points) are organized into groups based on a hierarchy of 

property classes in descending importance (Table 2). We next sample the parameter space using GA 

followed by Simplex to obtain (a) errors in predictions of individual properties, as compared to DFT values, 

and (b) time necessary to compute them. Using these data, we identify connections between prediction 

errors for different property classes (e.g., structure, elastic constants, phonon dispersion etc.). These 

connections help us classify property classes that are most important, i.e., errors in which are strongly 

correlated with errors in others but require short compute times. In our hierarchical scheme, such property 

classes are placed first in the order. Essentially, the importance of a property class dictates its position in 

the hierarchical order as shown in Table 2.

Each group has an objective function that minimizes the weighted sum of squares of errors of the model 

predictions and the targets. The minimization process proceeds in order, group-by-group, and can terminate 

at any point if the group convergence criterion is not met. The objective function of group i is given by: 

𝜟𝒊 = ∑
𝒋

𝒘𝒋(𝑽𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅
𝒋 ― 𝑽𝒕𝒂𝒓𝒈𝒆𝒕

𝒋 )𝟐

where Vj 
predicted is the (BOP) model prediction, Vj 

target is the (DFT) target for data point j in the group, wj is 

the weighting factor. The weighting factor is applicable only within a group (i.e., not across groups), For 

the selection of weights, one may consider the relative focus of different simultaneously evaluated 

observables within a group (e.g., minimized atomic coordinate vs. minimized energy). In most cases, the 

data points in each group are weighted equally (no bias for particular points). The clustering and ordering 

of groups within the hierarchy is the main determining factor for the quality of the model for the different 

target properties.

The use of hierarchy overcomes two main problems with optimization in a high dimensional space, namely 

(a) it circumvents the use of a single objective and hence the training of the parameter sets is unaffected by 

Page 10 of 31Nanoscale



the choice of the weights when multiple objectives are present (b) allows for faster convergence and better 

sampling by weeding out parameter sets that are unlikely to lead to good solutions. In other words, the 

hierarchical optimization avoids getting stuck in local minima and performs a more elaborate global search 

to identify the optimal parameter set for the chosen target objectives. 

Furthermore, in a departure from conventional force-field fitting, it is worth noting that the training 

is traditionally only performed against energetics or ground state properties i.e. derived from first-principles 

calculations. Temperature dependent properties and “stability checks” are seldom performed as part of the 

training procedure in conventional fitting. Often, the parameters obtained from such training may fit well 

against target energetics, but fail during an actual MD simulation i.e. dynamics at finite temperatures are 

incorrect due to poor representation of temperature dependent structural stability. Root mean square 

deviation (RMSD) of atom positions after a short MD run at different temperatures provides a way to 

estimate this instability (as illustrated in Fig. 3). For parameter sets that yield high RMSD, the energy is not 

conserved when simulations are performed at finite temperatures. To avoid this, we depart from 

conventional force-field fitting and explicitly check for “temperature dependent stability” during the 

training process. Each evolving population of parameter set is used to perform an on-the-fly MD simulation 

at different temperatures and checked to ensure energy is conserved. 

Furthermore, it is worth noting the procedure outlined above also helps in circumventing issues 

arising from overfitting i.e. parameter sets that may lead to good predictions of energy (e.g. cohesive 

energy) but perform poorly overall in other properties (e.g. phonon dispersion). Such over-fitting can lead 

to unrealistic imaginary modes in the phonon dispersion curve, while providing excellent prediction of 

energetics. These imaginary modes (with negative frequencies in phonon dispersion) represent modes of 

deformation, which when activated (e.g., via temperature) will result in structural instability, i.e., 

spontaneous collapse of the structure. For example, Fig. 4 shows one such parameter set that predicts energy 

within 0.3 eV of DFT value, but exhibits imaginary modes in phonon dispersion. Although, the energy 

prediction at absolute zero is excellent, the imaginary modes get activated during a MD simulation at finite 
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temperatures (even at room temperature). Consequently, the structure collapses (i.e., is unstable) at finite 

temperatures. To avoid this issue, we check for imaginary modes in phonon-dispersion and RMSD of atoms 

within short MD runs at finite temperatures for promising parameter sets. The predictions of final trained 

ML model compared to values in ML-training set are discussed in the next section. The final parameter set 

listed in Table 1 is chosen based on the performance in validation tests.

NEMD simulations of thermal conductivities: The system is first equilibrated under an NPT ensemble at 

the respective temperature and a pressure of 0 bar, using Nose Hoover thermostat and barostat, for 300 ps. 

The system is subsequently equilibrated under NVT ensemble for additional 200 ps before computing the 

thermal conductivity. The NEMD simulations to compute the thermal conductivities of the nanostructures 

are performed with the Muller-Plathe algorithm. Here the simulation domain is divided into bins along the 

direction of heat transfer and a temperature gradient is created by exchanging kinetic energy between two 

particles in different bins of the simulation box (source and sink) every N steps. We use N=1000. Typical 

values in literature range from 100-5000. For small temperature gradients, linear response should be 

observed when NEMD is performed on a sufficiently equilibrated system. If the observed temperature 

gradient is not linear, then the energy is being swapped too frequently. In such cases N should be increased. 

We confirm for our simulations with N=1000 that we are indeed in the linear response regime. The bin size 

in NEMD simulation is approximately 5 Å. More details about the Muller Plathe algorithm can be found in 

Ref 32. Note that in the present simulations, long-range Coulomb interactions were not employed since W 

and Se do not carry any formal charges. The timestep of integration used in all the simulations is 0.5 fs.  

Results and Discussion

We assess the accuracy of our ML-BOP potential model by comparing its predicted values for 

several structural and mechanical properties of WSe2 with those obtained from first principles calculations, 

and previous experiments reported in the literature (Table 3). The stiffness constants are calculated using 

the second-order derivatives of the energy with respect to strain (see Topsakal et al.32 for details). Evidently, 
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the predictions of our ML-BOP are in good agreement with our DFT calculations, as well as the values 

reported previously in literature.

Fig. 5 shows that our newly developed ML-BOP model captures phonon dispersion relations and 

density of states (DOS) in good agreement with DFT calculations. The newly developed ML-BOP captures 

the frequencies of the various acoustic and optical modes, within ~ 10 cm–1 of those derived from DFT. 

This clearly demonstrates the suitability of our model to describe vibration (phonon) modes and thermal 

transport in WSe2. Note that the model has more emphasis on lower energy (acoustic) modes since an 

adequate representation of these modes is needed to capture the thermal properties within a classical MD 

force-field. Hence, in our parameterization, we weigh the acoustic branches much more compared to the 

optical branches; this is the reason why the errors in the optical branches are much larger (Fig. 5(a)). The 

temperature-dependence of specific heat capacity CV of WSe2 is also accurately captured by ML-BOP (Fig. 

5(b)). It is worth noting that the CV reaches 90% of the classical limit at about 150 K, and therefore we do 

not expect any significant errors at temperatures higher than 150 K due to the difference in classical and 

quantum phonon populations. Additionally, ML-BOP also describes well the energy-strain relationships in 

monolayer WSe2 (Fig. 5(c)), making it suitable to investigate mechanical behavior. Furthermore, Fig. 5(d) 

shows a snapshot of a WSe2 monolayer equilibrated at 300 K using the optimized parameter set. Note that 

only a single atom type is needed to describe Se atoms in both the top and bottom layers.

Next, we demonstrate the capability of our newly developed ML-BOP model by investigating the 

thermal transport along the armchair and zigzag directions of WSe2 monolayer using Müller-Plathe reverse 

non-equilibrium molecular dynamics (RNEMD) simulations. 33. RNEMD techniques to evaluate the 

thermal conductivity (κ) of bulk systems are influenced by finite size effects34, 35. Thermal conductivity in 

the limit of L → ∞ (κ∞), where L is length of the system, is determined by performing RNEMD simulations 

for several different L and extrapolating the 1/κ vs. 1/L plot to 1/L = 0.  Fig. 6(a) shows the computed values 

of κ∞ along the armchair and zigzag direction of a monolayer  WSe2 as a function of temperature. The 

decrease in thermal conductivity with temperature can be attributed to the increased Umklapp scattering of 

phonons at higher temperatures which is also observed in other 2D materials 16. We also computed the 
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cross-plane thermal conductivity across the WSe2 layers (Fig. 6(b)). Similar to the in-plane thermal 

conductivity, the out-of-plane thermal conductivity also decreases with temperature due to increased 

Umklapp scattering. The low cross-plane thermal conductivity is consistent with experimental reports 3, 36, 

37. Also as expected, the thermal conductivity in the cross-plane direction is much lower than the in-plane 

direction, similar to other layered nanomaterials.

Interestingly, the in-plane thermal conductivity along the armchair direction is marginally higher 

than that in zigzag, with this anisotropy being more prominent at low temperatures. We see a modest 

temperature averaged anisotropy ratio (armchair/zigzag) of 1.48 ± 0.47 that is consistent with prior reports4, 

38 within the error of the method (see Table 4). Specifically, WSe2 nanoribbons have been reported with 

armchair direction phonon thermal conductance exceeding that in zigzag by a factor of 1.6 at 300 K and 

~2x at 100 K4. Other first principles-based studies on monolayer WSe2 have reported an armchair:zigzag 

anisotropy of 1.35 at 300 K38. The authors in Ref. 38 treat this anisotropy as relatively modest and 

subsequently only report the average isotropic thermal conductivity at other temperatures.

In such 2D materials, there are two sources of anisotropy – boundary and intrinsic. For instance, 

anisotropic phonon transport along the zigzag (ZZ) and armchair (AC) lattice directions has been reported 

in graphene nanoribbons39. Such anisotropy is absent in monolayer graphene40. In these cases, the 

anisotropy arises from the differential strengths of boundary scattering at the ZZ and AC edges of the 

nanoribbon. Typically, ZZ edsges have specular scattering, while AC edges have angle-dependent 

scattering. Other layered nanomaterials, such as black phosphorus41, have been reported to have an intrinsic 

anisotropy as well. Here, the anisotropy in thermal transport is caused by anisotropic phonon dispersion 

and scattering rate along the ZZ and AC directions41. To clearly elucidate the origin of the anisotropy in 

monolayer WSe2, and verify that the observed results is not a size/boundary artifact of the NEMD 

simulation, we calculate the expected values directly from the phonon dispersion employing the relaxation 

time approximation. The results are summarized in Table 4.  We see that within, our method error the 

NEMD anisotropy is comparable to anisotropy from intrinsic effects. Nevertheless, the anisotropy ratio is 

modest (1 – 1.5) and for most practical purposes, WSe2 monolayer can be considered isotropic.
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Within the relaxtion time approximation (RTA) the effective thermal conductivity can be written 

as

(8)κ (𝑇) =  ∑𝜆𝐶𝜆(𝑇) 𝑣2
𝜆 𝜏𝜆(𝑇)

Where Cλ(T), νλ, and τλ(T) are the heat capacity, group velocity and relaxation time of the phonon mode λ. 

When the temperature is much greater than the debye temperature, the phonon-phonon Umklapp scattering 

rate takes the form42, 43 

(9)
1

𝜏𝜆
𝑈 =

𝛾2
𝜆𝑘𝐵𝑇𝜔2

𝜆

𝑀𝑣2
𝜆𝜔𝐷,𝜆

where γλ and ωD are the gruneissen parameter and debye frequency, respectively. Since all the phonon 

modes are populated in classical MD simulations, we can assume a constant debye frequency for all the 

branches. Hence, 

(10)κ(𝑇) ∝  ∑𝜆
𝐶𝜆𝑣2

𝜆

𝛾2
𝜆𝜔2

𝜆
𝑇

The anisotropy in the terms ∑λ(Cλνλ
2) and ∑λ(Cλνλ

4 / γλ
2ωλ

2), computed from DFT and the parameterized 

Tersoff potential, are listed in Table 4 along with the anisotropy from NEMD. Both the DFT and Tersoff 

potential shows limited anisotropy. Moreover, the anisotropy predicted from NEMD agrees resonably with 

the anisotropy reported from calculations based on first-principles and phonon Boltzman transport 

equaition38. We find that the in-plane thermal conductivity of monolayer WSe2 at room temperature is 13.04 

± 4.48. Our calculated out-of-plane thermal conductivity (~ 0.34 ± 0.02) is in between that measured 

previously by time-domain thermoreflectance (TDTR) (Ref. 3) for disordered WSe2  (0.04 - 0.08 W/mK) 

and single crystal WSe2 (~ 1.4 W/mK). In general, the k∞ predicted using ML-BOP is within the range of 

previously reported theoretical and experimental values 0.05 – 3.9 W/mK3, 38.

Next, we investigate the structural stability and thermal transport in WSe2 nanotubes. 

WSe2 nanotubes modeled using our ML-BOP potential maintain their structural integrity over the 

entire range of temperatures considered in this work. Fig. 7(h) shows the k∞ calculated using 
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RNEMD for armchair and zigzag tubes with different diamters as a function of temperatures. 

Unlike the WSe2 monolayer, the k∞ shows relatively weak temperature dependence which can be 

attributed to the intrinsic stress assosiated with differential bending of the atomic layers in WSe2. 

Fig. 7(a-c) and 7(d-f) shows the color mapping of the atomic stress across the cross-section of 

the armchair and zigzag tubes respectively. The inner Se layer experiences a compressive stress 

whereas the W and outer Se layers suffer from a tensile stress. This atomic stress weakens with 

increase in tube diameter. The suppression of temperature dependance is also observed in the 

case of Stanene nanotubes16. We attribute the slightly higher thermal conductivity in smaller tubes 

to the restricted momemtum selection rules for phonon-phonon Umpklapp scattering. A similar 

behaviour has been reported for carbon nanotubes44. A more detailed investigation is required to 

understand the exact diameter dependence of thermal conductivity.  

Conclusions

In summary, we employed supervised machine learning approach to develop a bond order potential 

for W-Se system that accurately describes the structure, energetics, mechanics, and thermal transport 

properties of WSe2 nanostructures. Our newly developed ML-BOP is a nearest-neighbor potential that 

accounts for directional effects; unlike other SW models available in the literature, ML-BOP does not treat 

Se atoms of different layers in WSe2 monolayer as different atom types. This makes ML-BOP capable of 

describing well the structure, energetics, mechanical properties, and thermal transport in monolayer, multi-

layer, disordered, and other low-dimensional nanostructures of WSe2. Using this newly developed ML-
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BOP, we studied the thermal transport behavior in monolayer WSe2, and nanotubes. We find that ML-BOP 

predicts a limited in-plane anisotropy in thermal conductivity consistent with previous reports based on 

first-principle calculations 4, 38. In other words, the dynamics within our ML-BOP model correspond to a 

comparable phonon-phonon Umklapp scattering rates along the armchair and zigzag directions at room 

temperature.  The ability of ML-BOP to accurately describe different atomic environments and bond 

formation/breaking opens new avenues for characterizing mechanical behavior and thermal transport in 

WSe2 nano-structures. In particular, we envisage the use of ML-BOP for understanding cracking of WSe2 

nanostructures, the effect of grain boundaries on thermal transport, and thermo-mechanical behavior of 

TDMC heterostructures. Additionally, ML-BOP will enable understanding of the atomic-scale processes 

governing growth of WSe2, the impact of various process variables on final as-grown nanostructure, as well 

as mixed TMDC monolayers.
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Fig. 1 (a-f) Example selenium structures (dimer, trimer, ring, etc) in the training dataset. The table shows 
energies of these structures obtained from first principle calculations (target) and from the ML-BOP 
potential (predicted). See Table 1 for the optimized force field parameters for Se.

Energy (eV/atom) Target Predicted
a) Se2 -2.030 -2.077
b) Se3 (ring) -2.170 -2.402
c) Se6 (ring) -2.522 -2.544
d) Se8 (ring) -2.585 -2.583
e) Se8 (helix) -2.380 -2.434
f) Se8 (ladder) -2.346 -2.397
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Fig. 2 Supervised Machine learning workflow to train interatomic potential for WSe2. The training set 
consists of heterogeneous data (energy, structure, phonon band structures, etc.) calculated from first 
principle methods and complemented by temperature dependent data from experiments. On-the-fly MD 
simulations are run during the fitting to assess the stability of various Se clusters and WSe2 structures at 
their native temperature ranges. A hierarchical objective function is used to improve computational 
efficiency (early rejection) and to circumvent the need to assign arbitrary weights to the various properties 
in the heterogeneous data set (see Table 2 for the hierarchy of property classes). A two-stage approach is 
employed to navigate the high dimensional search space; evolutionary algorithm is used for global 
optimization, which is then followed by parameter refinements using local optimization (e.g., simplex) to 
obtained the optimized set of parameters. See table 1 for the optimized force field parameters for WSe2.
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Fig. 3 Comparison of the predictions of the parameter sets evolving during the ML training. The parameter 
sets that poorly represent the temperature dependent structural stability are removed from the gene pool. 
Root mean square deviation (RMSD) of atom positions after a short MD run at different temperatures 
provides a way to estimate this instability and is used for updating the populations during the evolutionary 
optimization. 
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Fig. 4 Example of a parameter set that over-fits to cohesive energy. The predicted energy at T = 0 K is 
within 0.3 eV of DFT value, but the phonon dispersion exhibits unrealistic imaginary modes (negative 
frequencies). These frequencies represent modes of deformation that when activated at finite temperatures 
(even at room temperature) result in structural instability, i.e., spontaneous collapse of the structure in MD 
simulations.
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Fig. 5 (a) Comparison between ML-BOP (blue) and DFT (red) predicted phonon band structures and the 
total density of state. (b) ML-BOP and DFT predicted heat capacity as a function of temperature based on 
the quasi-harmonic approximation45. (c) ML-BOP and DFT predicted relative equation of state for a WSe2 
monolayer (isotropic strain along in-plane directions). The two curves are vertically shifted with respect to 
their minimums for a clear comparison of their shapes. (d) Snapshot of a WSe2 monolayer (periodic 
boundaries in the in-plane directions) equilibrated at 300 K. Se atoms in the top and bottom layers are 
represented by the same atom type. See table 1 for the optimized parameters.
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Fig. 6 (a) Thermal conducitivity along the armchair and zigzag direction of WSe2 monolayers, (b) 
Thermal conductivity across the WSe2  layers in the bulk.
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Fig. 7 Color mapping of atomic stress across the cross-section of (a-c) armchair tubes, (d-f) zigzag tubes 
and (g) along the axial direction of armchair tubes. Chirality of the tubes is listed in parentheses (in brown 
color). (h) thermal conductivity of nanotubes computed using RNEMD as a function of temperature.
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Table 1:  Optimized ML-BOP force field parameters for WSe2 obtained using our developed workflow. 
Parameters for W-W are obtained from Ref. 28.

m γ λ3 (Å-1)
W-W 1.0 0.00188227 0.45876
Se-Se 1.0 0.34906213 0.0
W-Se 1.0 1.83073272 -0.0021971

c d h n β
W-W 2.14969 0.17126 0.2778 1.0 1.0
Se-Se 1.1986462544 1.06060163 -0.03966719 1.0 1.0
W-Se 1.3680636146 0.62917207 0.52270473 1.005583506 0.0792382146

λ2 (Å-1) B (eV) R (Å) D (Å) λ1 (Å-1) A (eV)
W-W 1.411246 306.49968 3.5 0.3 2.719584 3401.474424
Se-Se 1.958642032 880.03835004 3.41105925 0.37688017 2.937922484 4929.6960118
W-Se 1.349159955 175.93383819 3.26742071 0.76396915 3.214794733 4350.90479176

For Tersoff pair style in LAMMPS,

Element 1 Element 2 Element 3 Tersoff parameters
W W W same as W-W
Se Se Se same as Se-Se
W Se Se same as W-Se
Se Se W same as W-Se
W W Se W-Se with n = β = λ2 = B = λ1 = A = 0.0
Se Se W W-Se with n = β = λ2 = B = λ1 = A = 0.0
W Se W W-W with n = β = λ2 = B = λ1 = A = 0.0
Se W Se Se-Se with n = β = λ2 = B = λ1 = A = 0.0
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Table 2:  Hierarchy of the property classes used in HOGA optimization.

# Hierarchy of property classes Convergence Criteria

For Se-Se,

1 Minimized structure and energy of Se2 RMSD < 0.02 Å, |E
predicted

 – E
DFT

| < 0.1 eV/atom

2 Shape of the Se2 dissociation curve average(|ΔE|) < 0.2 eV

2 Minimized structure and relative energy of Se3 (ring) RMSD < 0.05 Å, |ΔE
predicted

 – ΔE
DFT

| < 0.2 eV/atom

3 Minimized structure and relative energy of Se6 (ring) RMSD < 0.1 Å, |ΔE
predicted

 – ΔE
DFT

| < 0.05 eV/atom

4 Minimized structure and relative energy of Se8 (ring) RMSD < 0.1 Å, |ΔE
predicted

 – ΔE
DFT

| < 0.05 eV/atom

5 Minimized structure and relative energy of Se8 (helix) RMSD < 0.05 Å, |ΔE
predicted

 – ΔE
DFT

| < 0.05 eV/atom

6 Minimized structure and energy of Se8 (ladder) RMSD < 0.2 Å, |ΔE
predicted

 – ΔE
DFT

| < 0.2 eV/atom
7 Stability of Se2 stable at T = 2273 K, dissociate at T = 3073 K
8 Stability of Se6 (ring) stable at T = 500 K, dissociate at T = 958 K
9 Stability of Se8 (ring) stable at T = 393 K, dissociate at T = 553 K

For W-Se,

1 Minimized structure and cohesive energy of WSe2 RMSD < 0.02 Å , |E
predicted

 – E
DFT

|
 
< 1.0 eV/atom

2 Equation of state average(|ΔE|) < 0.005 eV

3 Phonon dispersion of WSe2 no negative frequencies

4 Phonon dispersion of WSe2 gamma point error < 0.4 THz 

5 Phonon dispersion of WSe2 band gap error < 0.2 THz

4 Phonon dispersion of WSe2 minimize mean |error| of acoustic band frequencies

5 Phonon dispersion of WSe2 minimize mean |error| of optical band frequencies

6 Stability of WSe2 at T = 300 K, P = 1 bar RMSD < 0.5 Å
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Table 3: ML-BOP predicted properties for a WSe2 monolayer compared to target values. Note 
that the values of elastic constants corresponding to shear modes of deformation show a higher 
deviation between DFT and classical calculation46. C12 is one such shear constant and hence shows 
larger deviations from the target value.

Predicted Target (DFT)
lattice constant, a (Å) 3.350 3.327
C11 (GPa) 177.43 158
C12 (GPa) 76.57 31
C66 (GPa) 50.43 64
cohesive energy, E (eV) -5.076 -4.517
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Table 4: Anisotropies calculated from NEMD and RTA using the phonon frequencies from DFT and 
parameterized force field.

Tersoff DFT Zhou et.al38

NEMD 1.48 ± 0.47 – –
∑(Cvv2) 1.10 1.10 –
∑(Cvv4 / γ2ω2) 1.19 0.82 1.35
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