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ABSTRACT
Multivariate curve resolution-alternating least squares (MCR-ALS) applied to 

hyperspectral Raman imaging is extensively used to spatially and spectrally resolve the 
individual, pure chemical species within complex, heterogeneous samples. A critical aspect 
of performing MCR-ALS with hyperspectral Raman imaging is the selection of the number 
of chemical components within the experimental data. Several methods have previously been 
proposed to determine the number of chemical components, but it remains a challenging 
task that if done incorrectly, can lead to the loss of chemical information. In this work, we 
show that the choice of ‘optimal’ number of factors in the MCR-ALS model may vary 
depending on the relative contribution of the targeted species to the overall spectral intensity. 
In a data set consisting of 27 hyperspectral Raman images of TiO2 polymorphs, it was 
observed that the more dominant species were best resolved with a parsimonious model. 
However, species with intensities near the noise level often needed more factors to be resolved 
than was predicted by standard methods. Based on the observations in this data set, we 
propose a new method that employs approximate reference spectra for determining optimal 
model complexity for identifying minor constituents with MCR-ALS. 
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1. INTRODUCTION
Hyperspectral Raman imaging and multivariate analysis have been extensively utilized 

in pharmaceuticals1-3, food safety and quality4, biological analysis5, environmental and national 
security6, geological and planetary science7, 8, and other applications. Hyperspectral Raman 
imaging is often employed to discern spatially-resolved chemical information about heterogeneous 
samples. By collecting hundreds to thousands of independent spectra at defined spatial locations 
(or pixels), hyperspectral images can produce the distribution of the chemical species within a 
sample. Furthermore, hyperspectral Raman imaging can characterize complex materials, down to 
diffraction limited spatial resolution, with no sample preparation, high sensitivity, high specificity, 
extensive sampling versatility, and low sensitivity to water.9-11 Overall, hyperspectral Raman 
imaging ultimately can enable the visualization of the chemical, molecular, and structural 
properties of heterogeneous samples. 

The analysis of experimental hyperspectral Raman images remains a significant 
challenge, especially with respect to the effective extraction of all useful chemical information 
concerning a sample.7, 8, 12, 13 Hyperspectral Raman imaging typically generates three-dimensional 
experimental data containing spatial (x and y) and spectral (λ or ν) information.9 Univariate 
analysis is the most commonly employed strategy for visualizing this experimental data.7, 8, 12-14 In 
univariate analysis, chemical maps from hyperspectral images can be generated based on the 
integration or intensity of a Raman band or a series of Raman bands characteristic of a known 
analyte of interest.7, 8, 12-14 However, univariate analysis may provide a limited representation of 
the hyperspectral Raman imaging data, especially when interference effects from spectral overlap, 
background interference, fluorescence, laser power fluctuation, loss of focus, sample roughness, 
or sample opacity are encountered.7, 8, 12-14 In these cases, potentially valuable chemical 
information within the hyperspectral Raman imaging data can go unused or be misrepresented 
when univariate analysis is utilized.

Multivariate analysis methods, such as multivariate curve resolution-alternating least 
squares (MCR-ALS), however, can better overcome these interference effects and provide 
significant advantages relative to univariate analyses. These advantages include increased 
selectivity, by better parsing chemical information form interference effects, and increased signal-
to-noise ratios, which lead to better visualization of chemical distribution.7, 8, 12-14 MCR-ALS 
provides a bilinear decomposition of mixed experimental data into estimates of the chemically 
meaningful profiles of the respective chemical species.4, 15-17 MCR-ALS applied to hyperspectral 
Raman imaging data can generate spatially-resolved chemical images and corresponding resolved 
Raman spectra of the pure, individual chemical species within a complex mixture.

Successful application of MCR-ALS hinges, in part, on the determination of the number 
of factors to include in the MCR-ALS model.4, 15-18 Selection of the number of chemical 
components is a challenging task, especially when a number of the chemical species to be detected 
are near the detection limit or there is a large, non-bilinear baseline present. Strategies to determine 
the most appropriate number of factors in the MCR-ALS model frequently require the building of 
many MCR-ALS models while exploring proper quality-of-fit and interpretability of resolved 
chemical information.16 The number of chemical components can be estimated on the basis of 
prior knowledge of the system or by using a variety of multivariate analysis methods7, 8, 12, 15, 16, 19, 

20, including singular-value decomposition16, principal component analysis13, and cluster-aided 
methods18. If the number of components is incorrectly or inconsistently determined, chemical 
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information can be misrepresented or go unnoticed and unused, due to under- or over-estimations 
of the resulting MCR-ALS models.4, 15-18

Improvement of MCR-ALS models has been demonstrating using spectral information 
of reference materials. Multiset analysis5, 15, 21, 22, which employs augmented data matrices that can 
contain spectra of reference materials, have been utilized with MCR-ALS for the spatial and 
spectral resolution of complex experimental data sets. Other iterative methods, such as iterative 
target transform factor analysis (ITTFA)23-25, have been utilized with reference materials to unmix 
concentration and spectral profiles under targeted constraints. Using these approaches, however, 
requires a true reference spectrum for each known analyte of interest. Moreover, this can cause 
significant challenges as a true reference spectrum should be collected using the same 
instrumental, experimental parameters, and sample configurations, and typically, multiple 
reference materials are available for one chemical species of interest. In this work, a novel 
approach is offered for MCR-ALS by utilizing library-based target Raman spectra of reference 
materials. This proposed methodology does not require true reference spectra, allows for vast 
analysis of targeted reference materials that do not have to be known a priori, and promotes the 
use of spectral libraries and databases for evaluation of potential chemical species present in 
unknown, heterogenous samples and materials. 

In this work, we propose a novel methodology for determining the appropriate number 
of latent factors with MCR-ALS. This methodology involves initially building MCR-ALS models 
with low numbers of chemical components and systematically increasing the number of 
components until both the quantitative ‘goodness of fit’ and the correlation of the MCR-ALS-
generated resolved Raman spectra with the potential target estimates of the Raman spectra 
collected from reference materials is satisfactory. Using this approach, the chemically-relevant 
components can be determined for MCR-ALS in a facile, convenient process that is driven by the 
experimental data and is verified by correlation with reference materials. It is significant that these 
target estimates need not be identical to the ‘true’ intrinsic Raman profiles in the hyperspectral 
image. Target spectra libraries collected on different instrumentation or under different 
experimental conditions can be employed.

With application of this method we are observing two surprising and powerful results. 
First, we observe that the most ‘appropriate’ number of factors in a MCR-ALS model depends on 
the overall signal strength of the target analyte. More predominant species tend to be best resolved 
with fewer factors; species with overall signal strengths near that of non-bilinear baseline 
fluctuations tend to require more components in the model to be well resolved. Second, we are 
requiring more factors than is justified by goodness of fit statistics to be able to identify the 
spectroscopic signature of species of these minor components present at levels of the non-bilinear 
baseline fluctuations.

In order to evaluate our methodology, we tested 27 hyperspectral Raman imaging data 
sets that are directly available in Smith et al.8. These data sets were generated by performing 
hyperspectral Raman imaging on 11 natural rutile (TiO2) grains (~100 µm in size) that were 
recovered from four Neoarchean spherule layers deposited between ~2.65 and ~2.54 billion years 
ago.7, 8, 26 Previous work7, 8, 26 documented rutile, ± TiO2-II, ± anatase (TiO2), ± quartz (SiO2), ± 
substrate-adhesive epoxy in these grains. The presence of TiO2-II, a high-pressure, α-PbO2-
structured polymorph of titanium dioxide (TiO2)27, is geologically important, as it provides 
physical evidence to further support an impact origin of these four spherule layers.26 Therefore, 
these grains provide a textbook example to investigate the spatial and spectral resolution of 
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complex, heterogeneous mixtures using hyperspectral Raman imaging with MCR-ALS. To our 
knowledge, this is the first report of MCR-ALS with hyperspectral Raman imaging being 
accomplished using the quantitative correlation of the resolved Raman spectra generated from 
MCR-ALS with the target Raman spectra of reference materials during the systematic increase in 
the number of components for MCR-ALS. Using this methodology, MCR-ALS can be more 
widely utilized by the scientific community for the analysis of hyperspectral Raman imaging data 
in a data-driven and quantitative fashion.

2. SAMPLES AND METHODS
2.1 SAMPLES AND SAMPLE PREPARATION. For this study, grains recovered from 

carbonate-rich hand samples that were collected from outcrops of the Carawine spherule layer 
(CSL), Jeerinah spherule layer (JSL), Monteville spherule layer (MSL), and Bee Gorge spherule 
layer (BGSL) were used. Detailed geologic descriptions of the spherule layers are given in Glass 
and Simonson28. Hand samples X38-2 (CSL), X21-1 (JSL), V111 (MSL), 96714A (BGSL), and 
96714B (BGSL) were used26, the original weights of which range from ~177 g (96714B) to ~448 
g (X21-1). The locations, lithologies, and detailed preparation steps for the hand samples are given 
in Smith et al.26. In brief, the original hand samples were trimmed and sawn into smaller pieces 
that were rinsed with water and subsequently dried at ~60 °C for 12 hours. For each sample, 
subsamples, composed of one or more pieces, were weighed prior to acid digestion. The weights 
of the subsamples used for this study are 144.3 g (X38-2), 34.2206 g (X21-1), 219.9 g (V111), 
8.7879 g (96714A), and 14.2225 g (96714B). The subsamples underwent acid digestion at ~60 °C 
using hydrochloric acid (Fisher Scientific, 12.1 N). The acid-insoluble residues were wet sieved, 
in conjunction with ultrasonic agitation, typically into five size fractions: <38 μm, 38-63 μm, 63-
125 μm, 125-250 μm, and >250 μm. The 63-125 μm size fractions went through heavy liquid (ρ = 
2.96 g/cm3) separation using 1,1,2,2-tetrabromoethane (Fisher Scientific, 99%), and the heavy 
mineral (ρ > 2.96 g/cm3) separates were collected on filter paper (Whatman, 11 µm pore size) then 
rinsed with acetone (Fisher Scientific, 99%). The heavy mineral separates were transferred to glass 
cavity slides.

The identification of the grains in the separates was done using Raman 
microspectroscopy.26 Grain mounts were prepared for selected rutile and TiO2-II-bearing grains, 
and the details of the grain mount preparation are given in Smith et al.7. In brief, grains were fixed 
to a circular glass substrate (Buehler; 25.4 mm diameter x 1.0 mm thick) using epoxy (Buehler), 
and the grain mounts were polished using paper strips (600 μm to 3 µm coarseness) with a 
water/detergent/glycerol solution (~70/15/15 v/v%) to expose cross-sections of the grains. Nine 
grains are exposed, but grains z1-5 and z4-2 (Table 1) are not exposed, in which most portions of 
these two grains are covered by substrate-adhesive epoxy. A final polish of a grain mount was 
performed using Al2O3 powder (Excel Metallurgical, 0.05 µm-sized, 99%) wetted with water. 
Most of the final samples analyzed are therefore cross-sectional representations of grains that are 
63-125 μm in size. Grains from samples X38-2 (CSL), X21-1 (JSL), and V111 (MSL) are mounted 
on grain mounts Z1, Z2, and Z3, respectively, and grains from samples 96714A (BGSL) and 
96714B (BGSL) are mounted on grain mount Z4. In grain mount Z4, grain z4-1 is from sample 
96714A and grain z4-2 is from sample 96714B.

2.2 HYPERSPECTRAL RAMAN IMAGING. All hyperspectral Raman imaging data 
sets were collected using a Senterra Raman spectrometer (Bruker Optics) coupled to a BX-51 
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optical microscope (Olympus). Details of the methodology, instrumentation, and procedures for 
performing hyperspectral Raman imaging on these grains are outlined in Smith et al.7, 8 In brief, a 
Nd:YAG laser frequency-doubled to 532 nm was used as the excitation source. A 20× (0.40 
numerical aperture, NA), 50× (0.75 NA), or 100× (0.80 NA) objective lens (Olympus) was used 
to focus the laser onto the sample’s surface, yielding a spot size of ~5 μm, ~2 μm, and ~1 μm in 
diameter, respectively. Laser exposure times of 1 to 15 seconds with 0 to 3 co-additions were 
utilized. The laser power was held constant and ranged from 2 to 10 mW. Scattered light was 
collected by the objective lens, filtered by a 50×1000 μm slit aperture, and dispersed by a 1200 
grooves/mm grating onto a charge-coupled device (CCD) detector (Bruker Optics) 
thermoelectrically-cooled to a temperature of –65 ˚C. The spectral resolution was 3 to 5 cm-1. The 
probed spectral ranges were either 70 to 1550 cm-1 or 70 to 2650 cm-1 and were covered under one 
or two grating positions, respectively. Background measurements, Raman shift calibration, and 
source wavelength calibration were performed prior to each measurement. Spectral grids using 
dimensions of 10×10 (100 total Raman spectra), 15×15 (225 total Raman spectra), 20×20 (400 
total Raman spectra), or 30×30 (900 total Raman spectra) were employed. The spectral grids were 
rectangular in shape based on the dimensionality of the grain. Raman spectra were collected at 
defined x and y locations about the grain at a constant height. The OPUS 7.2 program (Bruker 
Optics) was used for all hyperspectral Raman imaging measurements.

2.3 MULTIVARIATE CURVE RESOLUTION-ALTERNATING LEAST 
SQUARES (MCR-ALS). MCR-ALS is a self-modeling mixture analysis method. By applying 
MCR-ALS to hyperspectral Raman imaging data sets, spatially-resolved chemical images and 
corresponding resolved Raman spectra of the individual, pure chemical components within 
complex, heterogeneous samples of unknown composition can be produced. Specifically, MCR-
ALS decomposes an experimental data matrix, D, as follows:

(1)𝑫 = 𝑪𝑺𝑻 +𝑬
where C is the concentration profile matrix, ST is the resolved spectral matrix, and E is the residual 
error matrix. The experimental data generated from hyperspectral Raman imaging is three-
dimensional and includes spatial (x and y) and spectral (λ or v) information. Prior to MCR-ALS, 
this three-dimensional experimental data is unfolded into the two-dimensional experimental data 
matrix, D, containing combined spatial (both x and y together) and spectral (λ or v) information. 

A variety of multivariate methods7, 8, 12, 13, 15, 16, 18-20 have been employed to estimate the 
appropriate number of latent factors for MCR-ALS and to provide an initial estimation of C and 
ST. The subsequent optimization of C and ST is performed using ALS until convergence is 
achieved. Using chemically and physically meaningful constraints, C and ST can be readily guided 
to the respective solution during ALS. Possible constraints include non-negative concentration and 
non-negative spectral intensities which are especially valid for hyperspectral Raman imaging 
because neither the concentration nor the spectral intensity of a chemical component should be 
negative at any pixel. Correlation of resolved spectral estimates in ST to target reference spectra 
are employed to help ascertain which components are related to chemical species and which 
components model the non-bilinear baseline fluctuations.  

In this work, 27 hyperspectral Raman imaging data sets were analyzed using MCR-ALS. 
Each hyperspectral Raman imaging data set was first unfolded into the two-dimensional 
experimental data matrix, D, to allow for the application of the bilinear MCR-ALS model. In D, 
each row is the intensity at various wavenumbers. The most appropriate number of chemical 
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components for MCR-ALS was selected by quantitatively comparing and correlating the resolved 
Raman spectra, in ST, with target Raman spectra of reference materials. An initial estimation of ST 
was determined using distance criteria. As such, the first Raman spectrum estimate for 
initialization was selected to be furthest from the mean, and subsequent Raman spectra were 
selected to be furthest from the mean and all prior selected Raman spectra. During ALS, constraints 
of non-negative concentration and non-negative spectral intensity were both employed. A 
convergence of 0.01% was achieved for all MCR-ALS models. MCR-ALS methods were utilized 
in Matlab 7.12 (MathWorks) with the PLS Toolbox (Eigenvector Research) to generate the 
concentration profile matrix, C, and the resolved spectral matrix, ST. MCR-ALS was performed 
using the full spectral range of the given hyperspectral Raman imaging data set. No preprocessing 
was performed prior to application of MCR-ALS.

2.4 DETERMINATION AND SELECTION OF THE NUMBER OF CHEMICAL 
COMPONENTS FOR MCR-ALS. A total of 16 target Raman spectra of reference materials 
were considered. Ten Raman spectra were obtained directly from the RRUFF database29—two for 
rutile, two for anatase, one for quartz, one for aragonite (CaCO3), one for calcite (CaCO3), one for 
dolomite (CaMg(CO3)2), one for coesite (SiO2), and one for stishovite (SiO2). Six Raman spectra 
were collected in-house—five for TiO2-II at different laser powers and one for substrate-adhesive 
epoxy. Raman spectra of reference materials were collected using the same methodology, 
instrumentation, and procedures as were used for the generation of hyperspectral Raman imaging 
data (Section 2.2). For the chemical species previously identified7, 8, 26 in these grains, a total of 
11 target Raman spectra of reference materials were used—two for rutile, five for TiO2-II, two for 
anatase, one for quartz, and one for substrate-adhesive epoxy. For each of the five chemical 
species—aragonite, calcite, dolomite, coesite, and stishovite—known not to be present within the 
grains, a target Raman spectrum of a reference material was used to act as a negative control. For 
all MCR-ALS models, correlation coefficients were generated from the comparison of the MCR-
ALS-based resolved Raman spectra with these 16 total target Raman spectra of reference 
materials. 

For each of the 27 hyperspectral Raman imaging data sets, MCR-ALS models were built 
using 1–20 latent factors. Therefore, 20 MCR-ALS models were generated for each hyperspectral 
Raman imaging data set, and in total, 540 MCR-ALS models were built and analyzed. For a given 
hyperspectral Raman imaging data set, the final selection of the best MCR-ALS model was chosen 
by first identifying the set of models that resolved the most target chemical species and then 
selecting, from that set, the single model that is both stable and has high correlations between the 
resolved Raman spectra generated from MCR-ALS and the target Raman spectra of reference 
materials for these identified chemical species. Stability of an MCR-ALS model is achieved when 
the correlation coefficients between the resolved Raman spectra generated from MCR-ALS and 
the target Raman spectra of reference materials remain statistically constant during the increase in 
the number of components. If, for example, we compare an MCR-ALS model built using three 
latent components that resolves only rutile with a correlation coefficient of 0.99 with an MCR-
ALS model built using six latent components that resolves rutile and TiO2-II with correlation 
coefficients of 0.85 and 0.86, respectively, the latter model is selected as the better model because 
it has identified all the chemical species present (rutile and TiO2-II), even though the three 
component model has a higher correlation coefficient for rutile. However, it is noteworthy that the 
best correlation between the resolved and reference rutile spectra occurred at 2, not 6, intrinsic 
factors.

Page 6 of 29Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Smith 7 of 28

2.5 GENERATION OF CORRELATION COEFFICIENTS FROM THE 
COMPARISON OF MCR-ALS-BASED RESOLVED RAMAN SPECTRA WITH THE 
TARGET RAMAN SPECTRA OF REFERENCE MATERIALS. Correlation of the resolved 
Raman spectra generated from MCR-ALS with the target Raman spectra of reference materials 
was conducted in RStudio AGPL v3. The correlation results were generated as correlation 
coefficients (R2). The maximum correlation coefficient is determined and plotted for each 
chemical species within the given MCR-ALS model. The spectral range of the target Raman 
spectra of reference materials, directly obtained from the RRUFF database29, was adjusted to 
reflect the 70 to 1550 cm-1 spectral range, with increments of 0.5 cm-1, that was utilized for the 
hyperspectral Raman imaging data sets. Offsets in the RUFF database and collected Raman spectra 
wavenumbers were rectified by interpolation of a moving 6-point, 2nd-order polynomial fit to the 
RUFF spectra prior to generating the correlation coefficients. 

3. RESULTS AND DISCUSSION
3.1 RAMAN SPECTRA, RAMAN OPTICAL MODES, AND 

CRYSTALLOGRAPHY OF THE CHEMICAL SPECIES WITHIN THE GRAINS. 
Previous studies7, 8, 26 documented the presence of three TiO2 polymorphs (rutile, anatase, and 
TiO2-II), quartz (SiO2), and substrate-adhesive epoxy within the grains investigated in this work. 
Rutile, anatase, and brookite are the three main polymorphs of natural TiO2, with rutile being the 
most abundant polymorph.30 Rutile has a tetragonal structure with the P42/mnm space group.31 The 
primitive unit cell of rutile has 15 optical modes, four of which are Raman active.31 The Raman 
spectral bands (cm-1) and corresponding optical mode assignments of rutile are 143 cm-1 (B1g), 237 
cm-1 (high-order Raman band), 443 cm-1 (Eg), 611 cm-1 (A1g), and 815 cm-1 (B2g).31, 32 Anatase has 
a tetragonal structure with the I41/amd space group.33, 34 The primitive unit cell of anatase has 15 
optical modes, six of which are Raman active.33, 34 The Raman spectral bands and corresponding 
optical mode assignments of anatase are 145 cm-1 (Eg), 198 cm-1 (Eg), 396 cm-1 (B1g), 513 cm-1 
(B1g), and 637 cm−1 (Eg).33-35 

High-pressure polymorphs of TiO2 can be produced under pressures and temperatures of 
4-12 GPa and 400-1500 °C.27, 36, 37 Five high-pressure polymorphs of TiO2 are presently known, 
and one of these polymorphs is termed TiO2-II.38, 39 TiO2-II is an important high-pressure 
polymorph due to its stability at ambient conditions.40 TiO2-II is isostructural with the 
orthorhombic α-PbO2 phase and has space group Pbcn.41 The primitive unit cell of TiO2-II has 36 
optical modes, four of which are Raman active.41 The transformation of ambient TiO2 to TiO2-II 
is kinetically and thermodynamically limited40, 42, and evidence of precursory TiO2 is consistently 
reported in both natural and synthetic TiO2-II.43-47 Therefore, it has been difficult to obtain a 
Raman spectrum of pure TiO2-II. Smith et al.7 recently provided an estimated Raman spectrum of 
pure TiO2-II that is in agreement with the Raman spectrum of synthetic TiO2-II.40 The Raman 
spectral bands and corresponding optical mode assignments of TiO2-II are 152 cm-1 (B3g), 174 
cm-1 (Ag), 286 cm-1 (B1g), 315 cm-1 (B1g), 341 cm-1 (B2g), 357 cm-1 (B3g), 412 cm-1 (B2g), 426 cm-

1 (Ag), 531 cm-1 (Ag), and 572 cm-1 (B1g).7, 41

Crystalline quartz undergoes a reversible solid-state phase transition at approximately 
574 °C, in which the low-temperature phase is referred to as α-quartz and the high-temperature 
phase is referred to as β-quartz.48 In this work, the Raman active modes and Raman spectra of 
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ambient quartz, i.e., α-quartz, will be discussed, since this was identified in previous studies7, 8, 26 
of these grains. Quartz is trigonal-structured and has space group P3221.48 Quartz has 27 optical 
modes, including 4A1 Raman active modes and 8 ET/EL Raman active modes.49 The Raman 
spectral bands and corresponding optical mode assignments of quartz are 201 cm-1 (A1), 264 cm-1 
(ET), 356 cm-1 (A1), 395 cm-1 (ET), 403 cm-1 (EL), and 464 cm-1 (A1).48 Substrate-adhesive epoxy, 
the fifth chemical species identified in these grains during previous studies7, 8, is a commonly used 
substrate adhesive containing polymeric epoxide and has been extensively studied using Raman 
spectroscopy.50, 51 The Raman spectrum of substrate-adhesive epoxy is characterized by five major 
Raman bands at the following spectral locations: 640 cm-1, 822 cm-1, 1113 cm-1, 1185 cm-1, and 
1462 cm-1.50, 51

3.2 MULTIVARIATE CURVE RESOLUTION-ALTERNATING LEAST 
SQUARES WITH HYPERSPECTRAL RAMAN IMAGING. In total, up to five distinct 
chemical species were resolved within the hyperspectral Raman imaging data sets employing 
MCR-ALS models with, generally, 8 to 12 factors. These five chemical species include three 
polymorphs of TiO2 (rutile, anatase, and TiO2-II), SiO2 (quartz), and substrate-adhesive epoxy 
(Table 1). Of the 27 hyperspectral Raman imaging data sets analyzed (Figures S5-S29), six data 
sets were shown to contain these five chemical species. Furthermore, MCR-ALS applied to the 
hyperspectral Raman imaging data sets revealed that two data sets contain only one chemical 
species (rutile), one data set contains two chemical species (rutile/substrate-adhesive epoxy), eight 
data sets contain three chemical species (rutile/TiO2-II/substrate-adhesive epoxy or 
rutile/anatase/substrate-adhesive epoxy), and ten data sets contain four chemical species 
(rutile/anatase/quartz/substrate-adhesive epoxy or rutile/TiO2-II/anatase/substrate-adhesive 
epoxy). In this work, we therefore evaluate our MCR-ALS methodology applied to hyperspectral 
Raman imaging, in which two selected hyperspectral Raman imaging data sets are presented and 
discussed.

(Insert Table 1 here)
3.3 MCR-ALS APPLIED TO HYPERSPECTRAL RAMAN IMAGING DATA SET RA15: 
CORRELATION OF MCR-ALS RESOLVED RAMAN SPECTRA WITH TARGET 
RAMAN SPECTRA OF REFERENCE MATERIALS FOR MODEL SELECTION AND 
EVALUATION. Analyses of the hyperspectral Raman image collected on Monteville spherule 
layer grain z3-13 highlight the necessity to better extract trace chemical signatures from highly 
variable, noisy baselines. Preliminary analysis by principal component analysis (PCA) predicts six 
components, at most, are needed to model the non-systematic variance of this image. A four 
principal component (PC) model captures greater than 99% of the cumulative variance and a six 
PC model captures greater than 99.9% of the variance. Plots of the eigenvalues vs. PC number and 
root mean squared error of cross validation (RMSECV) vs. PC number similarly pick between 
four and six components, with more than six components not presenting a statistical improvement 
in model fit. Were the MCR-ALS analyses limited to six components, the spectra of substrate-
adhesive epoxy and quartz would not be extracted and the best estimates of the TiO2 polymorph 
spectra would not be resolved.

(Insert Figure 1 here)
Correlation of the resolved Raman spectra to standard spectra from the RRUFF database29 

shows that each of the five chemical components identified in the image is best resolved with a 
different complexity of MCR-ALS model (Figure 1). The chemical species resolved from MCR-
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ALS are tracked by correlation (Figure 1), not by absolute component number within the MCR-
ALS model. Additionally, all models that show highest correlation with the standard spectra have 
more than the four to six components predicted by PCA analytics. Four of the five components 
correlate to standard spectra with coefficients, R2, greater than 0.80. Only the residual substrate-
adhesive epoxy spectrum has a poor fit to the standard spectrum employed with a 0.45 correlation 
coefficient. By way of comparison, no resolved Raman spectrum from any of the 20 different 
models correlated well to the RRUFF standard Raman spectra of five other target minerals – 
aragonite, calcite, coesite, dolomite, and stishovite (Figure 2). Of the 199 factors produced by the 
20 different models, the highest correlation coefficient observed was 0.19 for one factor in the 20 
component model with coesite. Consequently, it was determined that these five minerals are not 
present in the analyzed grain.

(Insert Figure 2 here)
For the five identified chemical components, TiO2-II is first resolved first with a seven 

component model and its correlation coefficients are stable with models having between seven and 
15 components. Based on correlation alone, it is impossible to state which of the five TiO2-II 
standard spectra are most appropriate to characterize the TiO2-II in the sample. TiO2-II is known 
to have a temperature dependent Raman spectrum that broadens with increasing laser power during 
interrogation.7 The resolved TiO2-II Raman spectrum has a slightly higher correlation coefficient 
with the standard spectra collected at 5 mW and at 10 mW than with the standard spectra collected 
with the highest (20 mW) or lowest (0.2 mW) laser power. The resolved anatase Raman spectrum 
is recognizable with a seven factor model (0.78 R2) but is best resolved with a nine to 15 
component model. Quartz is not resolved until 10 or more factors are employed in the MCR-ALS 
model. Rutile is identifiable in the resolved Raman spectra starting with a six component model 
(0.8 R2) and its resolved spectrum rises to a 0.9 correlation coefficient with the chosen standard 
when an 11 factor model is employed. Analysis of Figure 1 shows that a 10 component model is 
the most parsimonious model that resolves all five identified components. The evolution of 
resolved spectra of the identified components shows that including more factors tends to better 
remove a spectral baseline from each component (Figure 3). This trend is most evident in the 
removal of the baseline of the rutile spectrum by changing from a four to a 10 factor model (Figure 
3). The slight baseline in the eight factor anatase spectrum, relative to the 10 factor anatase 
spectrum, accounts for the slight difference in the respective correlation coefficients. 

(Insert Figure 3 here)
Full results for the 10 component MCR-ALS model applied to hyperspectral Raman 

imaging data set Ra15 are shown in Figure S3. The spatial distribution of the resolved chemical 
species (Figure 4) was generated from the application of a 10 component MCR-ALS model to 
hyperspectral Raman imaging data set Ra15. The optical and backscattered electron (BSE) images 
of this grain (Figure S1) highlight the heterogeneity of this grain. The BSE image (Figure S1B) 
displays polydispersed-sized particles of varying shapes within grain z3-13. Moreover, the optical 
and BSE images of grain z3-13 (Figure S1) can be used to directly compare the physical properties 
of the grain to the spatially-resolved chemical images generated from MCR-ALS. The spatial 
distribution of rutile (Figure 4A) demonstrates that rutile is a major chemical species within this 
grain and is primarily located towards the top-middle and bottom-middle portions of the grain. The 
spatial distribution of TiO2-II (Figure 4B) demonstrates that TiO2-II is also a predominant 
chemical species and is primarily located in the top-middle and bottom-middle portions of the 
grain in a complementary fashion to that of rutile. The spatial distribution of anatase (Figure 4C) 
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demonstrates that anatase is highly localized and is predominantly located towards the top-middle 
and bottom-right portions of the grain. The spatial distribution of quartz (Figure 4D) demonstrates 
that quartz is located primarily towards the bottom-left portion of the grain in a highly localized 
manner. The spatial distribution of substrate-adhesive epoxy (Figure 4E) demonstrates that 
substrate-adhesive epoxy is located primarily exterior to the grain.

(Insert Figure 4 here)
The resolved Raman spectra generated from a 10 component MCR-ALS model applied to 

hyperspectral imaging data set Ra15 (Figure 4) are in agreement with the target Raman spectra of 
reference materials. Specifically, the resolved Raman spectrum of rutile (Figure 4A) demonstrates 
a 0.87 correlation coefficient with that of the RRUFF database reference material, in which the 
Raman bands characteristic of rutile at 446 cm-1 and 610 cm-1 are observed. The resolved Raman 
spectrum of TiO2-II (Figure 4B) demonstrates a 0.96 (5 mW) correlation coefficient with that of 
the reference material, in which the Raman bands characteristic of TiO2-II at 151 cm-1, 175 cm-1, 
287 cm-1, 315 cm-1, 339 cm-1, 357 cm-1, 428 cm-1, 533 cm-1, and 574 cm-1 are observed. The 
resolved Raman spectrum of anatase (Figure 4C) demonstrates a 0.93 correlation coefficient with 
that of the reference material from the RRUFF database, in which the Raman bands characteristic 
of anatase at 143 cm-1, 397 cm-1, 514 cm-1, and 637 cm-1 are observed. The resolved Raman 
spectrum of quartz (Figure 4D) demonstrates a 0.83 correlation coefficient with that of the 
reference material from the RRUFF database, in which the Raman bands characteristic of quartz 
at 127 cm-1, 206 cm-1, and 464 cm-1 are observed. The resolved Raman spectrum of substrate-
adhesive epoxy (Figure 4E) demonstrates a 0.38 correlation coefficient with that of the reference 
material, in which the Raman bands characteristic of substrate-adhesive epoxy at 640 cm-1, 822 
cm-1, 1113 cm-1, 1187 cm-1, and 1462 cm-1 are observed. Thus, for the identified chemical species, 
the resolved Raman spectra generated from MCR-ALS are both in agreement and have high 
correlations with the target Raman spectra of the respective reference materials. 

3.4 MCR-ALS APPLIED TO HYPERSPECTRAL RAMAN IMAGING DATA SET RA23: 
CORRELATION OF MCR-ALS RESOLVED RAMAN SPECTRA WITH TARGET 
RAMAN SPECTRA OF REFERENCE MATERIALS FOR MODEL SELECTION AND 
EVALUATION. MCR-ALS was applied to the hyperspectral Raman imaging data set Ra23, 
collected on grain z4-1, that was recovered from the Bee Gorge spherule layer26. Previous MCR-
ALS analyses discerned four identifiable Raman spectra on this grain (Table 1)—rutile, TiO2-II, 
anatase, and substrate-adhesive epoxy.7, 8, 26 Preliminary analyses by PCA predicts a three to five 
component model is appropriate for describing the non-systematic spectral variance in the 
hyperspectral image. A three PC model describes 99.5% of the variance, while a four PC model 
describes 99.9% of the spectral variance. Eigenvalue, root mean squared error of calibration 
(RMSEC), and RMSECV plots estimate either four or five PCs as appropriate. 

(Insert Figure 5 here)
However, if a four or five factor MCR-ALS model were employed, then anatase, a minor 

chemical species in this grain, would not be detected. Quantitative comparison between the 
resolved Raman spectra and Raman spectra of target standards show that three of the chemical 
components are well resolved with a four factor MCR-ALS model (Figure 5), which exhibits 
correlation coefficients of 0.70, 0.96 (5 mW), and 0.89 for rutile, TiO2-II, and substrate-adhesive 
epoxy, respectively. The substrate-adhesive epoxy is not resolved with a three factor MCR-ALS 
model. The resolved rutile Raman spectra are not as well correlated to those of the RRUFF rutile 
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target standards compared to the correlations of the other resolved species. As discussed below, 
this is likely to be a consequence of the sub-micrometer-scale crystal size of minerals within the 
grain and the orientation dependence of the Raman spectrum for rutile. The rutile Raman spectrum 
depends on both the crystal face presented to the laser and the rotation of the crystal relative to the 
laser polarization. Consequently, there is a bounded continuum of rutile Raman spectra from the 
grains analyzed in this work that prohibits comparison to a true standard. The seven target rutile 
standards employed represent seven possibilities (and ideally end members) within this continuum. 
The fourth identified chemical species, anatase, is first observed using an 11 factor MCR-ALS 
model. Here the resolved Raman spectrum of anatase has a 0.91 correlation coefficient with that 
of the RRUFF anatase standards. 

(Insert Figure 6 here)
The resolved Raman spectra generated from MCR-ALS applied to hyperspectral Raman 

imaging data set Ra23 are in good agreement with the target Raman spectra of reference materials 
expected to be found in this sample (Figure 5). Furthermore, these resolved Raman spectra exhibit 
poor correlation with target Raman spectra of reference materials from the RRUFF database that 
are not observed in this sample (Figure 6). Five minerals (aragonite, calcite, coesite, dolomite, and 
stishovite) not observed in the grain all exhibit correlation coefficients less than 0.2 for all the 
MCR-ALS models having one to 20 factors. For quartz, however, the correlation coefficient was 
less than 0.15 for MCR-ALS models having one through 15 factors, but jumped to approximately 
0.25 for 16 through MCR-ALS models having 20 factors. Given that quartz was observed in other 
samples, these results suggest a trace quartz contribution within the sample. If the presence of 
quartz was particularly interesting or worthy of study, these results would be an indication to 
collect spectra at greater signal to noise were the putative quartz contribution dispersed and/or at 
greater pixel density in a small area were the putative quartz contribution highly localized.

(Insert Figure 7 here)
The optimal MCR-ALS model for hyperspectral Raman imaging data set Ra23 was 

determined to have 11 factors. This conclusion is based on the high correlation of the resolved 
Raman spectra generated from MCR-ALS with the target Raman spectra of reference materials 
(Figures 5 and 7) and the stability of the correlation coefficients from factor to factor for this 
model (Figure 5). Full results for the 11 component MCR-ALS model applied to hyperspectral 
Raman imaging data set Ra23 are shown in Figure S4. Chemical images constructed from the 11 
component MCR-ALS model (Figure 7) show the spatial distribution of the four resolved 
chemical components. The optical and scanning electron microscopy images (Figure S2) of this 
grain (z4-1; Table 1) indicate that it is heterogeneous and comprised of polydispersed particles of 
varying shapes and orientations. The imaged section of the grain is dominated by rutile and TiO2-
II. Rutile is concentrated in the upper-left portion of the imaged area and TiO2-II is the primary 
constituent in the rest of the imaged grain. Anatase is localized in a few areas along the grain 
perimeter, with the most intense Raman spectra extracted from the lower-left edge. As expected, 
the substrate-adhesive epoxy is found exterior to, and not within the polished grain, and mineral 
Raman spectra were not extracted from the region of the substrate-adhesive epoxy.

Selected Raman spectra within hyperspectral Raman imaging data set Ra23 are shown in 
Figure S30. These Raman spectra demonstrate the varying baselines observed throughout Ra23. 
Moreover, non-bilinear spectral baselines that are much larger in their variance than traditional 
white noise baselines are observed. To resolve these non-bilinear baselines, additional components 
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in the MCR-ALS model may be needed, especially when investigating trace or minor chemical 
species. Performing minimal baseline corrections to ensure no chemical information concerning 
the minor or trace species is removed can further this effect, in which the model can now account 
for the nonrandom variance in the baseline by using additional components for MCR-ALS.

3.5 INVESTIGATION OF THE TARGET RAMAN SPECTRA OF REFERENCE 
MATERIALS FOR MCR-ALS MODEL DETERMINATION. The method described here is 
applicable when there is no exact reference target in the library, as is the case for TiO2-II. As 
discussed above, the TiO2-II Raman spectrum broadens with increasing laser power. Similarly, the 
RRUFF database offers four distinct anatase Raman spectra (Figure 8A) and seven distinct rutile 
spectra (Figure 9A) collected with a 532nm depolarized laser.29 Both anatase and rutile occur in 
the ditetragonal-dipyramidal (4/mmm) crystal class. However, anatase belongs to the I41/amd 
space group and rutile belongs to the P42/mnm space group. Consequently, these polymorphs 
exhibit different Raman spectra. Anatase presents an intense peak at 143 cm-1 and other peaks at 
397 cm-1, 514 cm-1, and 637 cm-1.29 Of the four RRUFF anatase spectra, three have the 143 cm-1 
peak truncated. Rutile has three main Raman bands—235 cm-1, 446 cm-1, and 610 cm-1. The 
location of these bands does not shift among the RRUFF Raman spectra; however, their relative 
intensities vary greatly with the orientation of the crystal relative to the polarization of the laser. 
The effect of laser scattering relative to crystal orientation is evident in the Raman spectra of the 
RRUFF rutile standards. With the laser parallel to the (1 0 0) face of rutile, all three bands are 
visible with the 444 cm-1 and 608 cm-1 peaks having intense, comparable heights. When Raman 
spectra are collected with the excitation laser parallel to the (0 0 1) face, the 608 cm-1 peak is more 
intense while the 444 cm-1 peak is decreased. Additional effects are seen in the polarization of the 
laser relative to the rutile crystallographic axes. In this work, the depolarized and unoriented 
RRUFF standards were employed for both anatase and rutile comparisons. However, the set of 
seven depolarized, unoriented rutile Raman spectra show characteristics of being variously aligned 
with the (1 0 0) or (0 0 1) crystal faces.

(Insert Figure 8 here)
While the most appropriate anatase standard to employ for spectral validation is not known 

a priori, plots of correlation coefficients vs. number of factors clearly indicate that the R070582 
RRUFF standard Raman spectrum has the best correlation to the resolved anatase spectra in both 
hyperspectral Raman imaging data sets (Figure 8 B/C). Both the intense 143 cm-1 band and the 
less intense 637 cm-1 band match for the standard and resolved Raman spectra (Figures 4C and 
7C). The other three anatase standards have significantly lower correlations due to differences in 
the relative intensities of the four bands between the RRUFF standards and the resolved anatase 
Raman spectra. Large correlation coefficients, around 0.9, are realized despite the fact that anatase 
is a minor component in these grains. Anatase is stable at ambient temperature, but is not the 
equilibrium polymorph of TiO2. Between 500 o C and 1000 o C anatase converts to rutile. Given that 
TiO2-II forms around 5-12 GPa and 500 ᵒC-1200 ᵒC, the presence of TiO2-II indicates a 
formational environment in which anatase would convert to rutile.

(Insert Figure 9 here)
The seven unoriented rutile Raman spectra from the RRUFF database fall into three classes 

(Figure 9A). Four of the spectra (R040049, R050031, R050417, and R060493) exhibit strong 
spectral features at both 444 cm-1 and 608 cm-1, consistent with spectra collected with the laser 
parallel to the (1 0 0) face. Two RRUFF standards (R060745 and R110109) have a very strong 
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feature at 608 cm-1 and lesser intensity at 444 cm-1, consistent with Raman spectra collected with 
the laser parallel to the (0 0 1) face. The seventh spectra (R120008) is difficult to classify.  

Plots of correlation coefficients for the Raman spectra of seven rutile standards with the 
resolved Raman spectra versus the number of factors in the MCR-ALS model show the best match 
with the RRUFF spectra having intense features at both 444 cm-1 and 608 cm-1 for models 
generated with less than 15 factors (Figure 9). RRUFF standards R040049, R050031, and 
R060493 fit equivalently to the resolved spectra, while standard R050417 matches slightly better 
for data set Ra23 and slightly worse for data set Ra15. For data set Ra15, the RRUFF Raman 
spectra (R060745 and R110109) having a single intense feature at 608 cm-1 do not correlate well 
with the resolved Raman spectra until a 17 factor MCR-ALS model is employed. For data set 
Ra23, there is a steady increase in the correlation for RRUFF standards R060745 and R110109, 
with these ‘one Raman band’ standards having a greater correlation with resolved components 
than the ‘two Raman band’ standards when the models have 15 or more factors. One possible 
explanation for these results is the forced splitting into degenerate factors when many factors are 
employed. However, were this the case, the resolved spectral profiles would be unlikely to have a 
high correlation with the rutile standards, a situation in disagreement with the result that the two 
standards have consistently high correlations for models employing 16 through 20 factors.

An alternative explanation is that MCR-ALS is able to resolve spectral profiles of two 
different rutile orientations – one with the (1 0 0) plane parallel to the laser and the other with the 
(0 0 1) plane parallel to the laser. Scanning electron microscope (SEM) analyses show that the 
TiO2 particles and crystals are very small relative to the 1-5 µm-diameter probing area of the laser 
employed for acquisition of the hyperspectral images. Consequently, a random sampling of rutile 
orientations are presented at each pixel in the hyperspectral image. The slight variation in (1 0 0) 
to (0 0 1) ratio necessitated MCR-ALS models with 15 or more factors to resolve this difference 
in the presence of other baseline variations. Converting the relative resolved intensities of these 
two spectral profiles to a chemical image shows that the (1 0 0) face of rutile is predominantly 
parallel to the laser in the upper right of the chemical image for data set Ra15 (Figure 10A), while 
the contribution by rutile oriented with the (0 0 1) face parallel to the laser is consistent across the 
chemical image (Figure 10B). Similarly, for data set Ra23, rutile oriented with the (1 0 0) face 
parallel to the laser is slightly more prevalent in the lower half of the grain (Figure 10C), while 
rutile oriented with the (0 0 1) face parallel to the laser is most predominant in the upper third of 
the grain (Figure 10D). This explanation is also supported by multiple hyperspectral Raman 
imaging data sets producing MCR-ALS models with resolved Raman spectra that correlate well 
with both RRUFF rutile standard spectra.

4. CONCLUSIONS
Demonstrated here are recent advances and observations on the extraction and 

identification of chemically significant spectral profiles by MCR-ALS. Correlations to library 
spectra are employed to identify the most appropriate models for feature identification. We have 
shown that this method works even when there is no ‘true’ spectral profile in the library. It is 
observed that MCR-ALS models which are more complex than is optimally predicted by 
traditional PCA screening methods may contain chemically descriptive factors that are not well 
resolved in more parsimonious models. This is especially true when samples have significant 
baseline variance that is not well modeled by MCR-ALS. It is additionally observed that there is 
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no single ‘best’ model for the extraction of particular chemical profiles within a data set among 
the given components of interest; more prominent chemical profiles tend to be more accurately 
resolved with fewer components in the model, while more minor components need more complex 
models to realize the most accurate spectral estimation. Future work includes testing to see if these 
observations are generalizable to other linear ALS modelling methods such, as PARAFAC or 
Tucker models.
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TABLES AND FIGURES

Table 1: Results of MCR-ALS applied to 27 hyperspectral Raman imaging data sets. These 
results were determined by comparison of the resolved Raman spectra generated from MCR-
ALS with the target Raman spectra of reference materials. This comparison includes Raman 
band positions, intensities, and Raman spectral shape. The hyperspectral Raman imaging data 
sets are directly available in Smith et al.8, in which the “Data Set ID” is identical to that in Smith 
et al.8.

Data Set
ID*

Grain
ID*

Total Number of
Chemical Species Chemical Species Resolved

Ra1 z1-2 1 rutile
Ra2 z1-5 5 rutile, TiO2-II, anatase, quartz, and epoxy
Ra3 z1-19 4 rutile, anatase, quartz, and epoxy 
Ra4 z2-4 3 rutile, TiO2-II, epoxy
Ra5 z2-4 3 rutile, TiO2-II, epoxy
Ra6 z2-4 3 rutile, TiO2-II, epoxy
Ra7 z3-2 2 rutile, epoxy
Ra8 z3-2 1 rutile
Ra9 z3-3 3 rutile, anatase, epoxy
Ra10 z3-4 4 rutile, anatase, quartz, and epoxy
Ra11 z3-13 5 rutile, TiO2-II, anatase, quartz, and epoxy
Ra12 z3-13 5 rutile, TiO2-II, anatase, quartz, and epoxy
Ra13 z3-13 5 rutile, TiO2-II, anatase, quartz, and epoxy
Ra14 z3-13 5 rutile, TiO2-II, anatase, quartz, and epoxy
Ra15 z3-13 5 rutile, TiO2-II, anatase, quartz, and epoxy
Ra16 z3-14 4 rutile, TiO2-II, anatase, epoxy
Ra17 z3-14 3 rutile, TiO2-II, epoxy
Ra18 z3-14 3 rutile, TiO2-II, epoxy
Ra19 z3-14 3 rutile, TiO2-II, epoxy
Ra20 z4-1 4 rutile, TiO2-II, anatase, epoxy
Ra21 z4-1 4 rutile, TiO2-II, anatase, epoxy
Ra22 z4-1 3 rutile, TiO2-II, epoxy
Ra23 z4-1 4 rutile, TiO2-II, anatase, epoxy
Ra24 z4-1 4 rutile, TiO2-II, anatase, epoxy
Ra25 z4-1 4 rutile, TiO2-II, anatase, epoxy
Ra26 z4-1 4 rutile, TiO2-II, anatase, epoxy
Ra27 z4-2 4 rutile, TiO2-II, anatase, epoxy

*Note: ID = Identification
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Figure 1: Correlation results for MCR-ALS models applied to hyperspectral Raman imaging 
data set Ra15. The resolved Raman spectra generated from MCR-ALS were quantitatively 
compared to target Raman spectra of reference materials, in which correlation coefficients were 
generated for each individual comparison. The maximum correlation coefficient is plotted for 
each chemical species within the given MCR-ALS model. The number of chemical components 
within each MCR-ALS model was varied from one to twenty.
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Figure 2: Correlation results for MCR-ALS models applied to hyperspectral Raman imaging 
data set Ra15. The resolved Raman spectra generated from MCR-ALS were quantitatively 
compared to target Raman spectra of reference materials not present within data set Ra15, in 
which correlation coefficients were generated for each individual comparison The maximum 
correlation coefficient is plotted for each chemical species within the given MCR-ALS model. 
The number of chemical components within each MCR-ALS model was varied from one to 
twenty.
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Figure 3: Resolved Raman spectra generated from MCR-ALS applied to hyperspectral Raman 
imaging data set Ra15. The number of components for MCR-ALS was systematically increased, 
in which MCR-ALS models with (A) four components, (B) five components, (C) eight 
components, (D) 10 components, and (E) 20 components were generated. The final MCR-ALS 
model selected (D) was able to resolve all five chemical species—rutile, substrate-adhesive 
epoxy, TiO2-II, anatase, and quartz—and was statistically stable with high correlations.
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Figure 4: Spatially-resolved chemical images and corresponding resolved Raman spectra 
generated from a 10 component MCR-ALS model applied to hyperspectral Raman imaging data 
set Ra15. Chemical images and corresponding resolved Raman spectra are shown for rutile (A), 
TiO2-II (B), anatase (C), quartz (D), and substrate-adhesive epoxy (E), the five chemical species 
that were resolved by this 10 component MCR-ALS model. Target Raman spectra of reference 
materials are displayed in addition to the resolved Raman spectra generated from MCR-ALS. 
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Figure 5: Correlation results for MCR-ALS models applied to hyperspectral Raman imaging 
data set Ra23. The resolved Raman spectra generated from MCR-ALS were quantitatively 
compared to target Raman spectra of reference materials, in which correlation coefficients were 
generated for each individual comparison. The maximum correlation coefficient is plotted for 
each chemical species within the given MCR-ALS model. The number of chemical components 
within each MCR-ALS model was varied from one to twenty.

Page 23 of 29 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Smith 24 of 28

Figure 6: Correlation results for MCR-ALS models applied to hyperspectral Raman imaging 
data set Ra23. The resolved Raman spectra generated from MCR-ALS were quantitatively 
compared to target Raman spectra of reference materials not present within data set Ra23, in 
which correlation coefficients were generated for each individual comparison. The maximum 
correlation coefficient is plotted for each chemical species within the given MCR-ALS model. 
The number of chemical components within each MCR-ALS model was varied from one to 
twenty.
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Figure 7: Spatially-resolved chemical images and corresponding resolved Raman spectra 
generated from an 11 component MCR-ALS model applied to hyperspectral Raman imaging 
data set Ra23. Chemical images and corresponding resolved Raman spectra are shown for rutile 
(A), TiO2-II (B), anatase (C), and substrate-adhesive epoxy (D), the four chemical species 
resolved by this 11 component MCR-ALS model. Target Raman spectra of reference materials 
are displayed in addition to the resolved Raman spectra generated from MCR-ALS.
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Figure 8: The effects of using different anatase standards from the RRUFF database as 
reference materials on the MCR-ALS-based results for data sets Ra15 and Ra23. Four Raman 
spectra for anatase standards from the RUFF database are shown (A). Correlation results for 
these four reference Raman spectra with the resolved Raman spectra from data sets Ra15 (B) 
and Ra23 (C) are shown. In (A), (B), and (C), the blue, orange, purple, and green colors 
correspond to anatase standards R060277, R070582, R120013, and R120064, respectively.
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Figure 9: The effects of using different rutile standards from the RUFF database as reference 
materials on the MCR-ALS-based results for data sets Ra15 and Ra23. Seven Raman spectra 
for rutile standards from the RRUFF database are shown (A). Correlation results for these 
seven reference Raman with the resolved Raman spectra from data sets Ra15 (B) and Ra23 (C) 
are shown. In (A), (B), and (C), the dark blue, orange, gray, purple, light blue, green, and red 
colors correspond to rutile standards R040049, R050031, R050417, R060493, R060745, 
R110109, and R120008, respectively.
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Figure 10: Spatially-resolved chemical images for different rutile reference Raman spectra for 
data sets Ra15 (A and B) and Ra23 (C and D) are shown. The rutile reference Raman spectra, 
obtained from the RRUFF database, had either one or two major Raman bands. For those 
Raman spectra that had two major Raman bands, RRUFF rutile standard R050031 had the 
highest correlation with data sets Ra15 and Ra23 (A and C, respectively). For those Raman 
spectra that had one major Raman band, RRUFF rutile standard R110109 had the highest 
correlation with data sets Ra15 and Ra23 (B and D, respectively).
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