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We demonstrate the relevance of saddle-splay elasticity in nematic liquid crystalline fluids in the context of complex surface

anchoring conditions and complex geometrical confinement. Specifically, nematic cells with patterns of surface anchoring and

colloidal knots are shown as examples where saddle-splay free energy contribution can have a notable role which originates

from nonhomogeneous surface anchoring and varying surface curvature. Patterned nematic cells are shown to exhibit various

(meta)stable configurations of nematic field, with relative (meta)stability depending on the saddle-splay. We show that for high

enough values of saddle-splay elastic constant K24 a previously unstable conformation can be stabilised, more generally indicating

that saddle-splay can reverse or change the (meta)stability of various nematic structures and affecting their phase diagrams.

Furthermore, we investigate saddle-splay elasticity in the geometry of highly curved boundaries – the colloidal particle knots in

nematic – where local curvature of the particles induces complex spatial variations of the saddle-splay contributions. Finally,

nematic order parameter tensor based saddle-splay invariant is shown, which allows for direct calculation of saddle-splay free

energy from the Q-tensor, a possibility very relevant for multiple mesoscopic modelling approaches.

1 Introduction

Complex geometrical confinement of nematic liquid crys-

talline fluids by micro and nano-sized cavities, channels, topo-

logical objects and colloids is today an interesting direc-

tion for developing novel optical1, photonic2,3, rheological4,5,

topological6,7 and microfluidic8 materials. In such systems,

the main variabilities are the geometry of the confining sur-

faces6–8 and the alignment of the nematic imposed by the sur-

faces (i.e. surface anchoring)8,9.

Complex surface conditions for nematic ordering can be

achieved by patterning the surfaces with different surfactants,

e.g. that impose partly perpendicular, partly inplane orienta-

tion of nematic molecules. In flat nematic cells, such approach

can lead to sub-millisecond switching times of the nematic

with electric field and is interesting for fast switching high-

resolution displays9. Flat patterned cells may also exhibit a

variety of nematic states with topological defects10. Patterned

surface can be applied also to spheres11–14 or tori15, thus pro-

ducing Janus colloids.

Geometric variability of nematic confinement is today im-

pressively achieved by producing complex-shaped colloidal

particles that take the shape of knots6, nematic defect con-

ditioned fibres16, faceted particles17–20 or handlebodies7,21.

Contact surfaces between nematic fluid and the confining ge-

ometry can be also made micro-structured, with surface cor-
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rugations22 and surface wrinkles23,24. The geometry and sur-

face anchoring can be designed to give a working key-lock

mechanism25. Another approach towards complex shaped ob-

jects is also by considering emulsions of nematic in host fluids,

leading to complex shaped droplet fibres3 and foams26.

Nematic liquid crystalline fluids are soft materials with long

range orientational order – characterised by nematic director

n with n ↔ −n symmetry – that effectively, responds elas-

tically to external stimuli imposed by external fields or sur-

faces. Three basic elastic modes of nematic ordering are

known to emerge – splay, twist and bend – which importantly,

are further combined with elastic deformation modes know as

saddle-splay and splay-bend. The elasticity effects are typi-

cally considered at the mesoscopic level, relying on the phe-

nomenological expansion of the nematic free energy, as for ex-

ample in Frank-Oseen or Landau-de Gennes formulation27,28.

Notably, the Landau-de Gennes free energy minimisation is

today used as one of the central approaches for modelling and

predicting nematic liquid crystal fields because it can well ac-

count for the formation of topological defects29–37. It is actu-

ally well known that beside the standard splay, twist and bend

elastic modes also saddle-splay elasticity is inherently incor-

porated in the Landau-de Gennes free energy (even with only

one elastic constant), but typically little attention is given to

its actual relevance when interpreting the results.

Saddle-splay elasticity has been of interest in experimen-

tal and theoretical studies. Periodic stripe deformation pattern

was observed experimentally in a nematic confined between a
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homeotropic and a planar surface38,39. Numerical analysis has

revealed the saddle-splay elasticity to be the driving force of

creation of a stripe pattern. In similar geometries a set of point

defects and strings was also observed, allowing for an estima-

tion of saddle-splay elastic constant40. In nematic droplets,

various configurations are observed and predicted, depending

on the droplet size, anchoring of nematic molecules, and ne-

matic elasticity. Saddle-splay was revealed to be a key element

when calculating their stability criteria41–43. Experiments per-

formed on biphenylic liquid crystals confined to cylindrical

capillary with homeotropic anchoring44,45 show at least four

distinct configurations, whose stability is used to analytically

determine the saddle-splay elastic constant. Numerical results

confirm a great role of saddle-splay in capillary, specifically

in the weak anchoring regime46. An experimental and theo-

retical study of lyotropic chromonic liquid crystals confined to

capillary with planar degenerate boundary conditions reveals a

chiral structure, which is a result of a large saddle-splay elastic

modulus47. Similarly, saddle-splay was attributed to the chi-

ral symmetry breaking in torus-shaped droplets21,48. Finally,

the role of saddle-splay was investigated theoretically even for

cholesteric liquid crystals under capillary confinement49 and

nematic shells50.

Experimental21,38,44,45 and numerical51 works on saddle-

splay free energy and its K24 elastic constant agree that K24 is

indeed substantial and can be comparable in size to the stan-

dard Frank elastic constants (K1,K2,K3), at least in a typical

nematic representative 5CB material. Furthermore, recently

unconventional elastic regimes have been reached in experi-

ments, as for example in chromonic liquid crystals52,53 or in

twist-bend54–56 and splay-bend57 phase. Saddle-splay elas-

tic constant in such materials is mostly unknown, however, it

might be possible that such or similar materials could have

also an unconventional saddle-splay elastic constant (as pre-

dicted in47) thus exhibiting some of the effects presented in

this article.

If the nematic degree of order (scalar order parameter) is ho-

mogeneous, the saddle-splay elastic free energy can be rewrit-

ten into a form of a surface term, effectively renormalising

the surface anchoring. Typically, this is the main reason why

its contribution to the total free energy is (and can be) ignored.

However, if the nematic geometry is complex and has complex

boundaries, this surface integral may be of the same size as

the splay, twist or bend elastic contributions and importantly,

also spanning over regions which are defects (e.g. boojums

or other). Even in view of homogeneous order parameter and

defect-free configurations, there are two reasons how saddle-

splay can be important: i) if the surface anchoring is small

enough to allow for deviations from the preferred order at the

boundary, as is the case in38,39. ii) If the anchoring is made

degenerate, saddle-splay is made important by the local curva-

ture of the boundary21,47,48, or by patterning the surface with

different anchoring regimes, as shown in this article. The idea

of this paper is to show that in distinct complex confining ge-

ometries and surface anchoring configurations it is essential to

consider also the saddle-splay elasticity, when exploring ne-

matic fields. The examples of such geometries and surfaces

include patterned cells9 and complex shaped colloidal parti-

cles, like knots6.

In this paper, we explore the saddle-splay free energy of ne-

matic liquid crystalline fluids in complex geometries and in

complex surface anchoring profiles, specifically demonstrat-

ing the important role of saddle-splay elasticity in patterned

cells and in nematic colloidal knots. We consider saddle-

splay elasticity in surface and volume free energy density for-

mulations, taking advantage of both descriptions to demon-

strate its role. Notably, we explore saddle-splay elasticity for-

mulated by tensor order parameter free energy terms -rather

than the standard director based formulation. We analyse the

role of the elastic anisotropy in homeotropic-planar patterned

cells for local hybrid aligned nematic and for boojum struc-

tures, finding that relative (meta)stability of the structures can

be strongly affected by the actual value of the saddle-splay

constant. We extend out analysis to colloidal knots, show-

ing that regions of nematic boojum defects (which form at

largest curvature regions of the particle knots) contribute via

the saddle-splay as much as 37% to the total elastic free en-

ergy if assuming single Landau elastic constant approxima-

tion (2K24 = Ki = K). Finally, we evaluate the mutual relation

between tensor and director based formulation of the saddle-

splay free energy.

2 Model and methods

The relevance of saddle-splay nematic deformation is ex-

plored within the general framework of the mesoscopic free

energy, formulated in terms of nematic order parameter tensor

Qi j =
S
2
(3nin j −δi j)+

P
2

(

e
(1)
i e

(1)
j − e

(2)
i e

(2)
j

)

, which besides

the scalar order parameter S and the director n includes also

the biaxial ordering around second director e(1) with biaxiality

parameter P. The free energy is most commonly written in the

Landau-de Gennes form:27,58,59

F =
∫

V

{A

2
Qi jQ ji +

B

3
Qi jQ jkQki +

C

4
(Qi jQ ji)

2

+
L1

2

∂Qi j

∂xk

∂Qi j

∂xk

+
L2

2

∂Qi j

∂x j

∂Qik

∂xk

}

dV

+
∫

Suni

1

2
W uni

(

Qi j −Q0
i j

)2
dS

+
∫

Sdeg
W deg

[(

Q̃i j − Q̃⊥
i j

)2

+

(

Q̃2
i j −

9

4
S2

S

)2
]

dS.

(1)

First line of Eq. 1 describes the nematic bulk phase behaviour,

where A, B, and C are material constants which determine the
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bulk equilibrium nematic degree of order Seq. Second line

corresponds to the effective nematic elastic free energy which

we will denote also as Fel. L1 and L2 are temperature inde-

pendent (tensorial) elastic constants. Third line characterises

the homeotropic anchoring surface free energy integrated over

surface Suni. Q0
i j is the surface-preferred order parameter ten-

sor imposing homeotropic orientation of the director and bulk

equilibrium value of the nematic degree of order and W uni the

surface anchoring strength. Fourth line gives planar degener-

ate surface free energy where W deg is the anchoring strength

Q̃i j = Qi j + SSδi j/2, Q̃⊥
i j = PikQ̃klPl j, Pi j = δi j − νiν j, and νi

is the surface normal. SS is the surface-imposed degree of or-

der which is set to Seq. Generally, the first two lines of Eq. 1

form the Landau-de Gennes free energy FLdG and the last two

lines form the surface anchoring free energy Fa. The main ad-

vantage of the Q-tensor formulation of the free energy is that

-besides the deformation of the director field- it also allows

for modelling of the spatial variation of the nematic degree of

order, thus better describing various experimental systems, in

particular those with nematic defects. The director symmetry

n↔−n is also inherently incorporated in the tensor approach,

making it a strong choice when calculating the nematic field

profiles.

Nematic elastic free energy Fel formulated via the nematic

order parameter tensor Qi j can be rewritten (as well known

from the literature27,28) into the form based on derivatives of

the nematic director field n, if assuming uniaxial Qi j and ho-

mogeneous nematic degree of order. The result is the Frank-

Oseen FF-O and saddle-splay F24 free energy:27,28

FF-O =
∫

V
dV

{1

2
K1(∇ ·n)2 +

1

2
K2(n ·∇×n)2

+
1

2
K3(n×∇×n)2

}

,

(2)

F24 =−
∫

V
dV

{

K24∇ · [n(∇ ·n)+n×∇×n]
}

, (3)

where F24 =
∫

V dV f vol
24 , K1, K2, K3, and K24 are splay, twist,

bend, and saddle-splay elastic constants, respectively. The

elastic constants depend on temperature (or concentration, if

considering lyotropic liquid crystals) and as such on the ne-

matic degree of order S. Here, primarily for simplicity, we use

only two (tensorial) elastic constants L1 and L2, which corre-

sponds to K1 = K3. This identity can be broken by including

the third (tensorial) elastic constant. The correspondence be-

tween the two used temperature independent (tensorial) elastic

constants Li(i = 1,2) and Frank elastic constants Ki is as fol-

lows: K1 = K3 = 9S2

4
(2L1 +L2), K2 = 9S2

2
L1, and K24 = K2

2
.

For liquid crystal materials, the Ki set of elastic constants is

typically measured. In the free energy formulation, splay-

bend elastic terms can be also included28,60–62. This diver-

gence term includes ∇
2n elastic free energy density contribu-

tion, which is a higher order elastic term, and is typically not

included in the Landau-de Gennes free energy formulation;

therefore we do not consider it in this article.

Our numerical simulations are performed by minimising

the total free energy by using finite difference relaxation al-

gorithm on a cubic mesh37. The notable advantage of using

this computationally simple method is that it is fast and also

not very computer memory demanding, allowing us to simu-

late rather large simulation volumes, which qualitatively and

even quantitatively compare well with experiments6,16. The

minimisation is performed with full symmetric Qi j tensor, and

only after the equilibrium configuration is achieved, the direc-

tor, nematic degree of order and other possible variables are

calculated from the equilibrium Qi j profile. In the simulations,

the following values of the parameters are used: A=−0.172×
106 Jm−3, B = −2.13× 106 Jm−3, C = 1.73× 106 Jm−3, and

mesh resolution ∆x = 10nm which is sufficient to avoid defect

pinning by the mesh. x0, y0, and z0 are used to denote the size

of the simulation box in x, y, and z directions. Mesh box equals

140×140×71 points for patterned cells and 300×300×300

points for colloidal knots. In the regime of a single elastic

constant, we use L1 = 4× 10−11 N (and L2 = 0). Chosen pa-

rameters roughly correspond to cyanobiphenilic liquid crys-

tals63,64. In the elastically anisotropic regime, we use different

ratios between elastic constants denoting the elastic anisotropy

within the Frank-Oseen formulation as K1/K2. To preserve

the lower estimate for the correlation length ξ = 6.63nm (im-

portant for numerical stability), the larger of the two elastic

constants is increased when changing the elastic anisotropy at

constant nematic degree of order, while keeping the relations

K3 = K1 and K24 = K2/2 preserved. The above material pa-

rameters correspond to dimensionless numerical parameters,

set by L1(K1 = K2) = 1 and ξ = 1, as follows: A = −0.118,

B = −2.341, C = 1.901, ∆x = 1.5. Preserving the lower es-

timate of the correlation length, the following transformation

of dimensionless L1 and L2 is performed to characterise the

K1/K2 ratio: L1 = K2/K1, L2 = 2(1−K2/K1) in the case of

K1/K2 ≤ 1, and L1 = 1, L2 = 2(K1/K2 − 1) in the case of

K1/K2 ≥ 1. Experimentally, similar elastic regimes could be

achieved by the proper choice of the nematic material52–57 or

by tuning the temperature, and thus taking advantage of large

deviations of elastic constants near nematic-isotropic64,65 or

nematic-smectic66,67 phase transition.

2.1 Surface form of saddle-splay elasticity

Considering the Gauss theorem, the saddle-splay free energy

can be rewritten into the surface integral form in the regime of

homogeneous nematic degree of order28:

F24 =−
∫

S
dSννν ·K24 [n(∇ ·n)+n×∇×n] (4)

where ννν is the surface normal. Notably, in such formulation

the F24 can be considered as a surface free energy term, where
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the integration is performed over the whole surface of a ne-

matic. Defect cores are in principle excluded from the bulk in-

tegral in Eq. 2,3, which has to be considered also when defin-

ing the nematic surface in Eq. 4. Please note, that we write

K24 under the integral, since in principle it depends on the in-

homogeneous scalar order parameter (K24 = K24(S)). In that

way, it is possible to achieve a more accurate analysis of f surf
24

in boojum structures (Section 3.2), nevertheless still neglect-

ing ∇S (and biaxiality) terms. In that case the surface integral

in Eq. 4 can be performed over the whole outer surface of the

nematic, regardless of the defect cores. However, due to in-

homogeneity of S, Eq. 4 is only approximate as also spatial

derivatives of S should have been included. For selected ex-

amples, the relative contributions are tested and reported in

the paper. We mark f surf
24 as a saddle-splay surface free en-

ergy density (F24 =
∮

S dS f surf
24 ), in contrast to bulk saddle-splay

free energy density f bulk
24 . We provide the analysis of saddle-

splay elasticity in complex nematic systems in view of volume

(Eq. 3) and surface (Eq. 4) free energy density, which are cal-

culated after the Q-tensor relaxation of the free energy (Eq. 1)

has been performed.

If we consider a nematic cell, bounded by two horizontal

planes and periodic boundary conditions in the lateral direc-

tions (as for example in Fig. 1a), the Eq. 4 can be further

rewritten into

F24 = 2

∮

S
dSK24

(

n‖ ·∇
)

n⊥, (5)

where n⊥ = nnn ·ννν and nnn‖ = nnn−n⊥ννν . Considering Eq. 5, we see

that f surf
24 is proportional to the derivatives of the normal com-

ponent of the director along the in-plane director component.

This indicates that the saddle-splay can become notable if the

director varies within the plane of the surface; for example, if

the anchoring is rather weak or if there is a border between

different (strong) anchoring regimes (for example, boundary

between strong homeotropic and strong planar anchoring).

Alternatively, Eq. 4 can be understood in terms of curvature

of the boundary48,68. Under the assumption of strong (degen-

erate) planar surface anchoring, Eq. 4 can be rewritten into48:

F24 =
∫

S
dSK24

(

κ1n2
1 +κ2n2

2

)

, (6)

where κ1 and κ2 are the principal curvatures of the boundary

and n1 and n2 are the components of the director along the

directions of principal curvatures. This relation indicates that

highly curved surfaces can also yield notable saddle-splay free

energy contributions.

2.2 Tensor form of saddle-splay elasticity

Elastic anisotropy in liquid crystals is at the mesoscopic

level generally described by introducing multiple invariants

in the total free energy, each typically with a different elastic

constants, which account for different elastic responses69–71.

Saddle-splay is generally explored in the framework of ne-

matic director, but today the majority of (numerical) calcula-

tions are performed with the nematic order parameter tensor.

Therefore, specifically writing down the Q-tensor invariants

that correspond to the saddle-splay seems a reasonable consid-

eration, allowing for the direct evaluation of the saddle-splay

elasticity. A possible formulation of the tensor-based saddle-

splay volume free energy density f ten
24 can be written as:

f ten
24 = L24

(

∂Q jk

∂xi

∂Qik

∂x j

−
∂Qi j

∂x j

∂Qik

∂xk

)

(7)

where L24 can be taken as the tensorial saddle-splay constant.

Eq. 7 is based on the well known and established relation

between the director-based Frank-Oseen free energy and the

Q-tensor-based Landau-de Gennes free energy, which can be

related by assuming uniaxial form of the Q tensor and homo-

geneous profile of the nematic degree of order. Indeed, the Q

tensor based saddle-splay free energy in Eq. 7 can be rewritten

– by assuming uniaxial form of the Q-tensor – into:

f ten
24 =−K24∇ · [n(∇ ·n)+n×∇×n] (8)

−
2K24

S
(∇ ·n)(∇S ·n)+

2K24

S
(∇S) [(n ·∇)n] , (9)

where L24 = 4K24/9S2. The fact that together both terms in

Eq. 7 correspond to the saddle-splay contribution was already

considered in the past50,69,70. In the case of two elastic con-

stants L1 and L2, the relations between L1, L2, and K24 give

L24 = L1. In Supplementary Information we show that for

L24 = 4K24/9S2, Eq. 7 can be mapped into Eq. 3 plus ad-

ditional contributions arising from biaxiality and inhomoge-

neous S, as was also considered in the past50,69,70.

We use tensor based and director based formulations of

saddle-splay volume and surface density to demonstrate the

importance of saddle-splay elasticity in complex geometrical

confinement. Specifically, the two exemplary setups – as con-

sidered in Eq. 5 and Eq. 6 – provide us with an direct insight

into the relevance of saddle-splay elastic free energy and are

considered in the next sections. The importance of Eq. 5 can

be demonstrated in nematic cells with patterned surface an-

choring, where n⊥ changes along the cell’s boundary, whereas

Eq. 6 clearly comes into account in nematics, confined by

curved boundaries, as for example in the systems of knotted

colloidal particles dispersed in nematic fluid.

3 Saddle-splay elasticity in nematic cells with

patterned surface anchoring

In our first example we investigate saddle-splay elasticity in

patterned cells, where anchoring at one cell surface (top) is
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homeotropic whereas at the other surface (bottom) there is

a circular patch of planar degenerate anchoring surrounded

by homeotropic anchoring conditions (see Fig. 1a). In sec-

tions 3.1 and 3.2 we simulate two elasticity regimes K1 =K2 =
K3 and K1 = 2K2 = K3 (with W uni =W deg = 2×10−3 J/m2),

respectively. In section 3.3 we investigate the nematic field

for high values of K2, which is not a typical elastic anisotropy

regime of nematic liquid crystals but such elastic anisotropy is

shown to allow for the formation of novel field configurations.

3.1 Local hybrid aligned nematic (HAN) configuration

Nematic profile with local hybrid aligned nematic director

profile emerges in patterned cells in the regime of materials

with roughly equal or similar elastic constants (K1 = 2K2 =
K3) (see Fig.1). The director field in such configuration shows

a gradual transition from inplane orientation at the planar de-

generate surface patch to the perpendicular at the homeotropic

surfaces, as shown in Fig. 1b,c,d,e.

In one elastic constant regime (K1 = K2 = K3), the in-plane

director component n‖ is homogeneous throughout the bottom

surface patch, with the actual direction of n‖ being arbitrary.

The orientation along y axis was chosen for an easier analy-

sis. The saddle-splay free energy density – calculated as sur-

face free energy density f surf
24 or as volume free energy density

f vol
24 – turns out to be substantial at the border line regions be-

tween the homeotropic and degenerate anchoring. The sign of

saddle-splay free energy density locally depends on the struc-

ture of the nematic director, which effectively is determined by

the direction of the hybrid alignment (i.e. the bend), as seen

in Fig. 1e,f. Due to the symmetry of n‖, the locally negative

and the positive values of f surf
24 and f vol

24 add up to zero (when

performing the integration over surface or over bulk), giving

no net saddle-splay free energy F24.

In elastically anisotropic regime (K1 = 2K2 = K3), the sym-

metry of the inplane director n‖ breaks and the net saddle-

splay free energy F24 becomes non-zero, and actually notably

contributing to the total elastic free energy (see Table 1). The

regions contributing to this net value are close to the planar-

homeotopic anchoring transition, where the director field gets

additionally distorted compared to the elastically isotropic

regime (Fig. 1b,c).

3.2 Boojum nematic configuration

The surface patterned cells allow – beside the local HAN con-

figuration presented above – also for formation of the nematic

profile with a surface boojum defect in the center of the planar

patch, as shown in Fig. 2. Actually, in the considered patterned

cell, we were able to generate three different boojum configu-

rations via the initial conditions: a radial boojum, a hyperbolic

boojum with winding number +1 (which we further call +1

homeotropic surface 

anchoring

periodic boundary 

conditions

planar degenerate surface 
anchoring

x
y
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Fig. 1 Saddle-splay free energy in nematic cells with patterned

surface anchoring. (a) Scheme of the nematic cell with patterned

surface anchoring and periodic boundary conditions. (b) Director

profile in a given cross-section and the corresponding tensor based

saddle-splay free energy density f ten
24 at z = 0 for one elastic constant

regime (K1 = K2 = K3) and (c) elastically anisotropic regime

(K1 = 2K2 = K3). For comparison, director based volume f vol
24 and

surface f surf
24 saddle-splay free energy densities are drawn for

elastically isotropic (d,e) and anisotropic (f,g) regimes, respectively.

(h,i) Director field in given cross-sections for elastically anisotropic

regime. (j) Saddle-splay free energy surface density along the z = 0,

x = x0/2 axis. From (c) it is clearly seen that in the case of elastic

anisotropy the symmetry of the saddle-splay density along the

y = y0/2 axis is broken (see especially the region close to the

planar-homeotropic anchoring border). Patch diameter equals x0/2.
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Fig. 2 Saddle-splay free energy in configurations with boojum defects. Director field profiles and the corresponding tensor based

saddle-splay volume free energy density (1st, 2nd, and 3rd column) and director based saddle-splay surface free energy density (4th and 5th

column) in the xy (first column), xz (second column), yz (4th and 5th column) cross-sections for (a-e) radial boojum, (f-j) +1 hyperbolic

boojum, and (k-o) −1 hyperbolic boojum. Graphs in the 4th column represent the variation of saddle-splay surface free energy density along

the y axis (and x in (n)) through the center of the bottom plane as marked by dotted lines.

hyperbolic boojum), and a hyperbolic boojum with winding

number −1 (−1 hyperbolic boojum), all of them are presented

in Fig. 2. Once formed, they turned out to be long-lived but

were ultimately unstable and gradually deformed into a defect-

free state (i.e. the local HAN configuration). Such behaviour

is also reported to be observed experimentally72. These in-

duced boojum states have for several 10% higher total free

energy as the local HAN configuration.

The boojum configurations allow us to evaluate the saddle-

splay free energy in comparison to other free energy contri-

butions (Table 1), and to analyse the spatial profiles of the

saddle-splay contributions to the free energy, especially in

the red view of topological defects. The saddle-splay free

energy density profiles are distinctly different, as compared

to the HAN configuration where locally positive and nega-

tive contributions mostly cancelled each other out in the total

saddle-splay free energy F24. In the boojum configurations,

the saddle-splay volume free energy density f vol
24 is substan-

tial close to the degenerate surface, but moreover in the region

of the central boojum defect (Fig. 2b,c,g,h,l,m). For the ra-

dial boojum in Fig. 2a-e), f vol
24 is mostly positive. For the +1

hyperbolic boojum in Fig. 2f-j, f vol
24 has regions of both neg-

ative an positive values with leadingly positive regions. For

the −1 hyperbolic boojum structure (Fig. 2k-o), f vol
24 shows a

complex spatial profile where regions of positive and negative

f vol
24 mostly cancel each other out and F24 thus contributes only

little to the total elastic free energy (Table 1). The profile of

the saddle-splay volume density in boojum configurations ex-

plains the substantial contributions of saddle-splay elasticity

to the total elastic free energy for radial and +1 hyperbolic

configurations and much smaller saddle-splay free energy for

a −1 hyperbolic boojum. Since the main contributions arise

from regions close to boojum defect cores, the knowledge of

boojums could potentially suffice to deduce the amount (or

the sign) of saddle-splay free energy in general systems with

surface boojum defects.

Considering the saddle-splay as the surface term f surf
24 , it is

primarily conditioned by the contributions from the the planar-

homeotropic anchoring boundary. At this boundary region,

f surf
24 is negative for the radial boojum (Fig. 2d,e), it is positive

for the +1 hyperbolic boojum (Fig. 2i,j), and the sign varies

for the −1 hyperbolic boojum (Fig. 2n,o). The f surf
24 shows

variations close to the defect cores; however, they are sup-

pressed by the low values of the nematic degree of order. How-

ever, although contributions of f surf
24 arise from the director dis-

tortions at the planar-homeotropic anchoring border, the total

value of F24 is still conditioned by the possible occurrence of

a boojum at the center of a planar degenerate surface. In the

absence of a boojum (i.e. HAN configuration) or in the case

of a −1 hyperbolic boojum, f surf
24 at the planar-homeotropic

anchoring border mostly cancel each other out. In the case

of a radial or +1 hyperbolic boojum, the sign of Fsurf
24 stays

the same throughout the planar-homeotropic anchoring transi-

tion and thus f surf
24 contributes a substantial amount to the total

elastic free energy (Table 1).

Changing the elastic constants to K1 = 2K2 = K3 has lit-

tle effect on the nematic field in boojum states. The free en-

ergy of boojum states remains few 10% higher than for HAN
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configuration. In radial and +1 hyperbolic configuration, the

change of the elastic constants mostly increased the weight of

splay and bend deformations thus reducing the saddle-splay

contribution to the elastic energy, while in −1 hyperbolic state

the applied change in elastic anisotropy changed the balance

towards positive value of F24 (Table 1). Free energy contri-

butions for higher elastic anisotropy are given in Table 1. We

see that for HAN configuration an anisotropic elastic condi-

tion was necessary to induce a nonzero saddle-splay elasticity.

For radial and +1 hyperbolic boojum configurations F24 con-

tributed a larger amount to the total elastic free energy also

in the one elastic constant regime. The change of elastic con-

stants affected the F24/Fel ratio, however the saddle-splay free

energy remains substantial. Compared to other boojum states,

F24 for a −1 hyperbolic boojum is relatively small, which does

not change much in different elastic regime.

Table 1 Saddle-splay free energy F24 contributions to the total

elastic free energy Fel in patterned cells. F24 is calculated as the bulk

integral (Eq. 3)

F24/Fel for F24/Fel for

K1 = K2 = K3 K1 = 2K2 = K3

HAN configuration 0 4.9

radial boojum −0.34 −0.15

+1hyperbolic boojum 0.36 0.27

−1 hyperbolic boojum −0.012 0.038

We use the calculated boojum and HAN configurations to

test the relevance of Eq. 4 (the surface director formulated

saddle-splay free energy density). For the HAN configuration,

we can calculate Eq. 4 at homogeneous nematic degree of or-

der Seq without the numerical difficulties due to singularities in

the director field. The results agree with F24, calculated from

Eq. 3 up to a negligible numerical relative error of 4× 10−6.

However, if spatially dependent nematic degree of order S is

taken as calculated from the order parameter tensor, the Eq. 4

can deviate from Eq. 3 for up to 24%73. This discrepancy is

rather notable not only in the boojum configurations, but actu-

ally emerges also in the elastically anisotropic hybrid aligned

configuration (Section 3.1). Therefore, more generally, if ne-

matic degree of order S varies throughout the sample, Eq. 4

can be taken (as expected) only as an estimate for calculating

the the saddle-splay free energy contribution. For exact com-

putation of the saddle-splay free energy, the bulk formulation

of the saddle-splay free energy needs to be evaluated (Eq. 3).

3.3 Stabilisation of radial boojum via saddle-splay

Strongly negative values of the saddle-splay free energy of the

radial boojum configuration suggest that for high saddle-splay

coupling such state could potentially become not only long-

lived but metastable or even stable. Indeed, we demonstrate

that this can be achieved by increasing the elastic anisotropy

ratio K2/K1 where K24 = K2/2 and K1 = K3, effectively in-

creasing the saddle-splay elastic constant K24. The free energy

of the radial boojum configuration falls below the free energy

of the HAN configuration at K2/K1 ∼ 2 and becomes the equi-

librium configuration, which is shown in Fig 3. When increas-

ing the K2/K1 ratio, the free energy configurations show a de-

crease in the difference between Frank-Oseen free energies,

but a rather constant large difference between the saddle-splay

free energies of the two states, which causes the stabilisation

that can be attributed to the saddle-splay. More broadly, this

indicates that the actual values of the saddle-splay constant in

different systems can be a major factor in determining stabil-

ity, metastability or non-stability of different structures.

Models which include only Frank-Oseen and not also the

saddle-splay free energy could not properly predict the stabil-

ity of a radial boojum at K2/K1 ∼ 2. Although our simula-

tion includes saddle-splay elasticity and does not correspond

exactly to Frank-Oseen free energy minimisation, Fig. 3 indi-

cates that Frank-Oseen free energy of a radial boojum should

fall below the Frank-Oseen free energy of the HAN configu-

ration at much higher elastic anisotropy than K2/K1 ∼ 2 and

therefore, such behaviour could not be fully explained in terms

of solely Frank-Oseen elasticity.

a)

c)

d)

b)

-2

-1

0

1

2

3

4

5

1 1.5 2 2.5 3

Fig. 3 Stabilisation of boojum configuration via saddle-splay (a)

Free energy contributions for the HAN configuration (superscript

HAN, in red) and the radial boojum configuration (superscript r, in

blue) as dependent on the elastic anisotropy K2/K1 where

K24 = K2/2. At higher values of K2/K1, the free energy of the radial

boojum falls below the value of the HAN configuration. Note that

the relative amount of the saddle-splay energy increases with the

elastic anisotropy. FLdG is plotted as a difference to the Landau-de

Gennes free energy of an undistorted homogeneous nematic of the

same volume. The snapshots of the director field at the bottom

degenerate planar patch are presented for (b,c) the HAN

configuration and (d) radial boojum configuration. Surface

anchoring was set to W uni = 0.01J/m2 and W deg = 0.01J/m2.
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4 Saddle-splay elasticity in planar degenerate

colloidal knots

The relevance of curved boundaries in the saddle-splay free

energy are demonstrated for the case of colloidal knots with

planar degenerate boundary conditions. Experimentally and

with numerical modelling they were explored in Ref.6. We

simulate the trefoil (3,2) and pentafoil (5,3) torus knots as

tubes of the following parametric curves:

r(3,2) = (2.1R(cosφ −2.25cos2φ) ,

2.1R(sinφ +2.25sin2φ) ,

6Rsin3φ),

(10)

r(5,3) = (2.75R(cos3φ −3cos2φ) ,

2.75R(sin3φ +3sin2φ) ,

6Rsin5φ),

(11)

similar to6, where φ ∈ [0,2π) and R = 10∆x is the knot size

parameter. Knots are of the width d0 = 12.5∆x. The director

field at the boundaries of the simulation box is assumed to be

homogeneous along the z direction. One elastic constant ap-

proximation and anchoring strength of W deg = 4×10−3 J/m2

are used.

The trefoil knot generates 12 boojums as shown in

Fig. 4b,c,d,e) in red color, which emerge at the regions of

highest local curvature, i.e. local saddle points and local

peaks. These boojums emerge as + and − pairs, satisfying

the topological constraints of the knot6. Analogously as the

trefoil knot, the pentafoil knot generates 20 boojums, again at

highest-local curvature locations, as seen from Fig. 4.

The saddle-splay free energy density f surf
24 shows for both

the trefoil and pentafoil knots a distinctive pattern, which can

be partially explained by Eq. 6. Possible values of f surf
24 de-

pend on the local curvature of the particle knot and since the

major part of the knot’s surface has positive curvature the f surf
24

is mostly positive. In the vicinity of the hyperbolic boojums

(bottom one in Fig. 4b,c), f surf
24 > 0 if the director bends along

the direction of positive principal curvature, and f surf
24 < 0 if

the director bends along the direction of the negative prin-

cipal curvature. However, beside Eq. 6 there are additional

surface contributions to the saddle-splay free energy, which

arise due to finite anchoring strength. In the vicinity of +1

hyperbolic boojums, the normal component of the director in-

creases along the surface in a manner that is similar to the

planar-homeotropic alignment border in the case of a radial

boojum in a patterned cell (Fig. 2b,c). This variation of the

director field along the surface explains negative areas of f surf
24

around +1 hyperbolic boojums, as seen in Fig. 4a. Elsewhere

along the surface, the variations from the surface-preferred di-

rector orientation are (i) not strong enough or (ii) in agreement

n0

n0

d0

n0

d0

a) b)

c)

d) e)

f)

h)

g)

i)

j)

Fig. 4 Saddle-splay free energy in complex curved geometry of

knotted colloidal particles. (a) Saddle-splay surface free energy

density plotted at the surface of the trefoil colloidal knot. Surface of

the particle is plotted in yellow, green color corresponds to

isosourface of positive saddle-splay surface free energy density

f surf
24 = 10−21 J/m2, and blue to isosurface of negative saddle-splay

surface free energy density f surf
24 =−10−21 J/m2. Director far-field is

marked by n0. (b,c) Two detailed views of the director field in given

cross-sections with indicated boojums as isosurfaces of S = 0.4
shown in red. (d,e) Boojum defects at the particles knots drawn in

red as isosurfaces of S = 0.4. (f,g) Volume density of a director

based saddle-splay free energy F24 compared to the (h,i) tensor

based F ten
24 shows little difference, supporting the fact that primarily

the director deformations are responsible for the tensor based free

energy density profiles. The isosurfaces are drawn at 5×10−21 J/m3

in light blue and at −0.6×10−21 J/m3 purple. (j) Saddle-splay

surface free energy density f surf
24 of the pentafoil knot. Surface of the

particle is plotted in yellow, green color corresponds to isosourface

of f surf
24 = 10−21 J/m2, and blue isosurface of f surf

24 =−10−21 J/m2.

with saddle-splay contributions arising from local curvature

and cause no specific pattern to occur.

Figures 4f,g show saddle-splay volume free energy density
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f vol
24 . Close to the +1 hyperbolic boojum, f vol

24 is mostly posi-

tive. This shows similarity to f vol
24 in patterned cells, only that

in the case of knots the area with negative f vol
24 is suppressed

near +1 hyperbolic boojums. There is even greater similar-

ity in the case of −1 hyperbolic boojum. Both Fig. 4f and

Fig. 2l,m show a region of f vol
24 > 0, surrounded by two re-

gions where f vol
24 < 0.

More generally, the calculated results agree with anticipat-

ing positive saddle-splay free energy because of primarily pos-

itive curvature of the investigated colloidal knots. The analy-

sis of the saddle-splay elasticity in combination with flat and

curved geometry now also suggests that boojums indicate the

structure of saddle-splay free energy density, where in par-

ticular +1 hyperbolic boojums give positive contributions to

the saddle-splay free energy and radial boojums give negative

contributions to F24. Calculating the total saddle-splay free

energy of the knotted colloids F24, it is in fact positive and

represents a substantial part of the total elastic free energy Fel

for a trefoil and a pentafoil knot as shown in Table 2.

Table 2 Saddle-splay contribution to the total elastic free energy in

colloidal knots with planar degenerate anchoring

trefoil particle knot (3,2) pentafoil particle knot (5,3)

F24/Fel 0.37 0.34

5 Comparison between tensor and director for-

mulated saddle-splay free energy

Exact comparison between tensorial and director-based con-

sideration of saddle-splay is important when exact values of

free energies are needed, e.g. when predicting stability or

structural transitions between different nematic (meta)stable

structures or profiles. Fig. 1 and Fig. 4 reveal clearly sim-

ilar profiles of the director based and tensor based saddle-

splay free energy density, however, selected differences be-

tween both approaches can be observed. Here, we provide

a further more quantitative analysis of the individual contri-

butions to the difference between director and tensor based

approaches. We show the use of Q-tensor saddle-splay free

energy F ten
24 for the example of a radial boojum structure in

a patterned cell within one elastic constant regime (Fig. 2a-

e, Section 3.2). The results are presented in Table 3, where

∇S and biaxial contributions, total discrepancy between F24

and F ten
24 , and the error resulting from finite mesh resolution

are calculated at two mesh resolutions. Note that the tensorial

saddle-splay free energy Eq. 7 is not explicitly incorporated as

a new free energy contribution to the total free energy, but is

actually already an inseparable part of the standard one elas-

tic constant Landau-de Gennes free energy FLdG. Single elas-

tic invariant
∂Qi j

∂xk

∂Qi j

∂xk
from FLdG incorporates not only splay,

bend, and twist deformation modes but also saddle-splay.

There are three main differences between the tensor based

saddle-splay free energy F ten
24 and director based saddle-splay

free energy F24: (i) possible local biaxiality of Qi j (in partic-

ular in the defect cores), (ii) ∇S terms (relevant in the defect

regions), and (iii) numerical error due to finite mesh resolu-

tion (we use ∆x/ξ = 1.5). The biaxial contribution to F ten
24

is evaluated by taking only the uniaxial part of the calculated

Qi j and re-evaluating Eq. 7. The ∇S contributions are calcu-

lated explicitly from the diagonalisation of the Q-tensor pro-

file. The rest of the discrepancy between F ten
24 and F24 is at-

tributed to finite resolution, which we quantify by modelling

exactly the same structure with two resolutions (∆x = 10nm

and ∆x/2 = 5nm). Indeed, the finite difference algorithm with

rather large mesh resolution (∆x/ξ ∼ 1) suffers from rather

low precision at the determination of the exact value of the

total free energy. Especially the explicit calculation of saddle-

splay free energy, as done in this article at sharp surface an-

choring boundaries, gives a limited precision of ∼ 20% due

to finite resolution. Finer resolution or, especially in the case

of curved interfaces, finite elements methods could be used to

investigate saddle-splay free energy density with higher pre-

cision. Table 3 shows that director deformations are still the

most significant part of the f ten
24 , which is in agreement with

the comparison between director based and tensor based free

energy density profiles in Fig. 4.

Table 3 Relative contributions in Q-tensor saddle-splay free energy

F ten
24 as compared to director based F24. They are calculated at the

resolution ∆x and at ∆x/2 keeping the same physical sample size.

Finite resolution error in the last column is calculated by explicitly

subtracting ∇S and biaxial contributions from F ten
24 and reevaluating

F24−F ten
24

F24
.

Mesh

resolu-

tion

∇S terms

(Eq. 9)

biaxial con-

tribution

F24 −F ten
24

F24
finite reso-

lution error

∆x −0.11Fdir
24 −0.07Fdir

24 0.39 0.21

∆x/2 −0.12Fdir
24 −0.08Fdir

24 0.33 0.13

To generalise, f ten
24 represents an easy-to-implement mea-

sure of saddle-splay elasticity in terms of Q-tensor. Due to the

nature of Q-tensor formalism, discrepancy between saddle-

splay free energy, calculated in director or tensorial approach,

may occur and is actually expected to occur –in particular in

systems with large variations of nematic degree of order and

possibly even biaxiality, which is often the case in complex

geometrical confinements.
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6 Conclusions

We have explored the relevance of saddle-splay elasticity in

complex nematic geometries, with particular focus on nematic

systems with inhomogeneous (patterned) surface anchoring

and with complex surface curvatures. Saddle-splay elastic-

ity was analysed in the view of volume and surface density,

where the latter can be considered only as an approximation

if nematic degree of order is inhomogeneous. Specifically, we

investigated the saddle-splay elasticity in patterned cells and

around colloidal knots.

In the first example of patterned cells, the large saddle-splay

contributions F24 to the total free energy emerge from the

border region between the planar and homeotropic anchoring

patches, as seen from both surface and volume saddle-splay

free energy formulations. To vary the magnitude of the saddle-

splay free energy F24, elastic anisotropy is used, which helps

in achieving a larger stability window of the simulations. Neg-

ative values of F24 of a radial structure on the surface patch

make it possible to reduce its free energy below the free en-

ergy of the hybrid aligned configuration if K2 and K24 are large

enough, showing that saddle-splay elasticity can condition the

ground state of nematic in geometries with complex surface.

In the second example of colloidal knots, the largest saddle-

splay contributions to the total free energy are shown to

emerge from the highest local curvature regions, which ac-

tually also coincide with the locations of surface boojum de-

fects. Generally, in the colloidal knots, F24 is large due to

surface variations of normal director component and due to

high curvature of colloidal knots. The spatial profiles of the

saddle-splay volume free energy are calculated, and shown

to distinctly depend on the boojum-type, i.e. its topological

structure. Indeed, boojum structures that appear at the trefoil

(3,2) and pentafoil (5,3) colloidal knots have similar spatial

profile of the saddle-splay free energy density f vol
24 as in pat-

terned cells.

We explored saddle-splay formulated as a Q-tensor (not di-

rector) term
∂Q jk

∂xi

∂Qik

∂x j
−

∂Qi j

∂x j

∂Qik

∂xk
. The contributions to the

tensor-based saddle-splay free energy are shown to be in the

range of several 10% with the magnitudes strongly depending

on the actual considered nematic geometry, in particular on

the presence of topological defects. Such tensor based saddle-

splay free energy is significantly influenced by ∇S and biaxial

terms, but represents a directly implementable way to calcu-

late saddle-splay contribution to the free energy in a given ne-

matic field.

More generally, in the explored structures, the saddle-splay

free energy is found to contribute substantially to the total

free energy, thus affecting the stability or metastabilty of the

structures. Nematic profiles in complex geometries typically

form a range of (meta)stable states, with their mutual stabil-

ity or metastability conditioned by the exact value of the total

free energy minimum. Therefore, when considering phase-

diagrams or stability in complex nematic structures the rele-

vance of saddle-splay – i.e. the actual value of saddle-splay

elastic constant K24 – has to be considered. Finally, the pre-

sented work is a contribution towards understanding the sta-

bility and formation of complex structures in general nematic

complex fluids, including liquid crystal and active nematics.
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I. Muševič and T. Rasing, submitted to Soft Matter.

73 Relative error of F24 calculated from surface or volume density is evalu-

ated only for the structures where F24/Fel > 0.02. We were not interested

in the discrepancy between surface and bulk representation of saddle-

splay elasticity in the cases where F24 is in fact negligible.

1–11 | 11

Page 11 of 12 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Graphical abstract 

Saddle-splay elastic interaction can notably affect the orientational ordering of nematic fluids in 

distinct regimes, including patterned geometries and complex-shaped colloids. 
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